1
|
Chatterjee PK, Shakes LA, Wolf HM, Mujalled MA, Zhou C, Hatcher C, Norford DC. Identifying Distal cis-acting Gene-Regulatory Sequences by Expressing BACs Functionalized with loxP-Tn10 Transposons in Zebrafish. RSC Adv 2013; 3:8604-8617. [PMID: 24772295 DOI: 10.1039/c3ra40332g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial Artificial Chromosomes (BACs) are large pieces of DNA from the chromosomes of organisms propagated faithfully in bacteria as large extra-chromosomal plasmids. Expression of genes contained in BACs can be monitored after functionalizing the BAC DNA with reporter genes and other sequences that allow stable maintenance and propagation of the DNA in the new host organism. The DNA in BACs can be altered within its bacterial host in several ways. Here we discuss one such approach, using Tn10 mini-transposons, to introduce exogenous sequences into BACs for a variety of purposes. The largely random insertions of Tn10 transposons carrying lox sites have been used to position mammalian cell-selectable antibiotic resistance genes, enhancer-traps and inverted repeat ends of the vertebrate transposon Tol2 precisely at the ends of the genomic DNA insert in BACs. These modified BACs are suitable for expression in zebrafish or mouse, and have been used to functionally identify important long-range gene regulatory sequences in both species. Enhancer-trapping using BACs should prove uniquely useful in analyzing multiple discontinuous DNA domains that act in concert to regulate expression of a gene, and is not limited by genome accessibility issues of traditional enhancer-trapping methods.
Collapse
Affiliation(s)
- Pradeep K Chatterjee
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Leighcraft A Shakes
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Hope M Wolf
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Mohammad A Mujalled
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Constance Zhou
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Charles Hatcher
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Derek C Norford
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| |
Collapse
|
2
|
Shakes LA, Malcolm TL, Allen KL, De S, Harewood KR, Chatterjee PK. Context dependent function of APPb enhancer identified using enhancer trap-containing BACs as transgenes in zebrafish. Nucleic Acids Res 2008; 36:6237-48. [PMID: 18832376 PMCID: PMC2577333 DOI: 10.1093/nar/gkn628] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An enhancer within intron 1 of the amyloid precursor protein gene (APPb) of zebrafish is identified functionally using a novel approach. Bacterial artificial chromosomes (BACs) were retrofitted with enhancer traps, and expressed as transgenes in zebrafish. Expression from both transient assays and stable lines were used for analysis. Although the enhancer was active in specific nonneural cells of the notochord when placed with APPb gene promoter proximal elements its function was restricted to, and absolutely required for, specific expression in neurons when juxtaposed with additional far-upstream promoter elements of the gene. We demonstrate that expression of green fluorescent protein fluorescence resembling the tissue distribution of APPb mRNA requires both the intron 1 enhancer and approximately 28 kb of DNA upstream of the gene. The results indicate that tissue-specificity of an isolated enhancer may be quite different from that in the context of its own gene. Using this enhancer and upstream sequence, polymorphic variants of APPb can now more closely recapitulate the endogenous pattern and regulation of APPb expression in animal models for Alzheimer's disease. The methodology should help functionally map multiple noncontiguous regulatory elements in BACs with or without gene-coding sequences.
Collapse
Affiliation(s)
- Leighcraft A Shakes
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Chemistry, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | |
Collapse
|
3
|
Borghini S, Vargiolu M, Di Duca M, Ravazzolo R, Ceccherini I. Nuclear factor Y drives basal transcription of the human TLX3, a gene overexpressed in T-cell acute lymphocytic leukemia. Mol Cancer Res 2006; 4:635-43. [PMID: 16966433 DOI: 10.1158/1541-7786.mcr-05-0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on a knocked-out mouse model and a few expression studies, TLX3 is regarded as a homeobox gene crucial for the development of the autonomic nervous system. This gene can undergo rearrangements or deregulation, giving rise to T-cell acute lymphocytic leukemia. The present report is focused on the identification of elements and factors playing a role in the TLX3 physiologic expression regulation and therefore likely to be involved in cancer development. In particular, after identifying the transcription start points, we have made use of in vitro transfection assays to show that the 5'-untranslated region of the gene is necessary for the basal promoter activity in cell lines from different origin. By site-directed mutagenesis, two tandem CCAAT boxes have been localized as critical elements of this region. In vivo chromatin immunoprecipitation and electrophoretic mobility shift assays have indicated that nuclear factor Y (NFY) recognizes these sites in all the analyzed cell lines. The physiologic role of such an interaction has been confirmed by a dominant-negative version of the NFY transcription factor that has turned out to decrease both in vitro TLX3 promoter activity and endogenous amount of mRNA. Finally, a consistent in vivo TLX3 expression impairment was also achieved after NFY mRNA knockdown. The full characterization of the TLX3 transcription regulation will ultimately provide crucial elements to define the involvement of this gene in T-cell acute lymphocytic leukemia development.
Collapse
Affiliation(s)
- Silvia Borghini
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, L.go Gerolamo Gaslini, 5, 16148 Genova, Italy
| | | | | | | | | |
Collapse
|
4
|
Chatterjee PK, Mukherjee S, Shakes LA, Wilson W, Coren JS, Harewood KR, Byrd G. Selecting transpositions using phage P1 headful packaging: new markerless transposons for functionally mapping long-range regulatory sequences in bacterial artificial chromosomes and P1-derived artificial chromosomes. Anal Biochem 2005; 335:305-15. [PMID: 15556570 DOI: 10.1016/j.ab.2004.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Indexed: 01/24/2023]
Abstract
New Tn10 minitransposons were constructed to functionally map long-range transcription regulatory sequences in bacterial artificial chromosomes (BACs) and P1-derived artificial chromosomes (PACs). Each contained a wild-type loxP site but, significantly, contained no mammalian or bacterial genes and/or promoter elements within the transposed portion of DNA. In contrast to loxP transposons described previously, the new ones do not introduce transcription regulatory elements capable of interfering with those endogenous to the BAC clone in functional mapping studies. Progressive deletions from the loxP end of genomic DNA were efficiently generated using these transposons, and a series of truncations generated in a green fluorescence protein (GFP)-BAC fusion clone unambiguously identified three new long-range enhancer sequences functionally in the Nkx2-5 gene in transgenic mice. Insertions of these new transposons lacking antibiotic resistance genes into a BAC or PAC were indirectly selected by their ability to delete enough DNA from the clone so as to enable its packaging within a P1 phage head with both loxP sites intact for subsequent recovery of the large plasmid. The outcome of such an indirect mode of selection is both desirable and undesirable. First, because the screen is not antibiotic resistance marker dependent, the same transposon can be used to generate nested deletions efficiently in both BACs and PACs. Second, deletions through intrainsert recombinations unrelated to loxP/Cre also get packaged and recovered, and size analyses of the BAC/PAC vector band after NotI digestion is indispensable to identify authentic loxP/Cre deletions. The procedure nevertheless offers a potential approach to map recombinogenic sequences in BACs and PACs.
Collapse
Affiliation(s)
- Pradeep K Chatterjee
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| | | | | | | | | | | | | |
Collapse
|