1
|
Rakowski SA, Filutowicz M. Plasmid R6K replication control. Plasmid 2013; 69:231-42. [PMID: 23474464 DOI: 10.1016/j.plasmid.2013.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
The focus of this minireview is the replication control of the 39.9-kb plasmid R6K and its derivatives. Historically, this plasmid was thought to have a narrow host range but more recent findings indicate that its derivatives can replicate in a variety of enteric and non-enteric bacterial species (Wild et al., 2004). In the four-plus decades since it was first described, R6K has proven to be an excellent model for studies of plasmid DNA replication. In part this is because of its similarities to other systems in which replication is activated and regulated by Rep protein and iteron-containing DNA. However its apparent idiosynchracies have also added to its significance (e.g., independent and co-dependent replication origins, and Rep dimers that stably bind iterons). Here, we survey the current state of knowledge regarding R6K replication and place individual regulatory elements into a proposed homeostatic model with implications for the biological significance of R6K and its multiple origins of replication.
Collapse
Affiliation(s)
- Sheryl A Rakowski
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
2
|
Bowers LM, Filutowicz M. Cooperative binding mode of the inhibitors of R6K replication, pi dimers. J Mol Biol 2008; 377:609-15. [PMID: 18295232 DOI: 10.1016/j.jmb.2008.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 12/24/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
The replication initiator protein, pi, plays an essential role in the initiation of plasmid R6K replication. Both monomers and dimers of pi bind to iterons in the gamma origin of plasmid R6K, yet monomers facilitate open complex formation, while dimers, the predominant form in the cell, do not. Consequently, pi monomers activate replication, while pi dimers inhibit replication. Recently, it was shown that the monomeric form of pi binds multiple tandem iterons in a strongly cooperative fashion, which might explain how monomers outcompete dimers for replication initiation when plasmid copy number and pi supply are low. Here, we examine cooperative binding of pi dimers and explore the role that these interactions may have in the inactivation of gamma origin. To examine pi dimer/iteron interactions in the absence of competing pi monomer/iteron interactions using wild-type pi, constructs were made with key base changes to each iteron that eliminate pi monomer binding yet have no impact on pi dimer binding. Our results indicate that, in the absence of pi monomers, pi dimers bind with greater cooperativity to alternate iterons than to adjacent iterons, thus preferentially leaving intervening iterons unbound and the origin unsaturated. We discuss new insights into plasmid replication control by pi dimers.
Collapse
Affiliation(s)
- Lisa M Bowers
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
3
|
Ma B, Pan Y, Zheng J, Levine AJ, Nussinov R. Sequence analysis of p53 response-elements suggests multiple binding modes of the p53 tetramer to DNA targets. Nucleic Acids Res 2007; 35:2986-3001. [PMID: 17439973 PMCID: PMC1888811 DOI: 10.1093/nar/gkm192] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 03/11/2007] [Accepted: 03/17/2007] [Indexed: 01/02/2023] Open
Abstract
The p53 tetramer recognizes specifically a 20-bp DNA element. Here, we examined symmetries encoded in p53 response elements (p53REs). We analyzed base inversion correlations within the half-site, as well as in the full-site palindrome. We found that p53REs are not only direct repeats of half-sites; rather, two p53 half-sites couple to form a higher order 20 bp palindrome. The palindrome couplings between the half-sites are stronger for the human than for the mouse genome. The full-site palindrome and half-site palindrome are controlled by insertions between the two half-sites. The most notable feature is that the full-site palindrome with coupling between quarter-sites one and four (H14 coupling) dominates the p53REs without insertions. The most frequently observed insertion in human p53REs of 3 bp enhances the half-site palindrome. The statistical frequencies of the coupling between the half-sites in the human genome correlate with grouped experimental p53 affinities with p53REs. Examination of known p53REs indicates the H14 couplings are stronger for positive regulation than for negatively regulated p53REs, with repressors having the lowest H14 couplings. We propose that the palindromic sequence couplings may encode such potential preferred multiple binding modes of the p53 tetramer to DNA.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Research Program, SAIC-Frederick Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
4
|
Bowers LM, Krüger R, Filutowicz M. Mechanism of origin activation by monomers of R6K-encoded pi protein. J Mol Biol 2007; 368:928-38. [PMID: 17383678 PMCID: PMC2001305 DOI: 10.1016/j.jmb.2007.02.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/15/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
One recurring theme in plasmid duplication is the recognition of the origin of replication (ori) by specific Rep proteins that bind to DNA sequences called iterons. For plasmid R6K, this process involves a complex interplay between monomers and dimers of the Rep protein, pi, with seven tandem iterons of gamma ori. Remarkably, both pi monomers and pi dimers can bind to iterons, a new paradigm in replication control. Dimers, the predominant form in the cell, inhibit replication, while monomers facilitate open complex formation and activate the ori. Here, we investigate a mechanism by which pi monomers out-compete pi dimers for iteron binding, and in so doing activate the ori. With an in vivo plasmid incompatibility assay, we find that pi monomers bind cooperatively to two adjacent iterons. Cooperative binding is eliminated by insertion of a half-helical turn between two iterons but is diminished only slightly by insertion of a full helical turn between two iterons. These studies show also that pi bound to a consensus site promotes occupancy of an adjacent mutated site, another hallmark of cooperative interactions. pi monomer/iteron interactions were quantified using a monomer-biased pi variant in vitro with the same collection of two-iteron constructs. The cooperativity coefficients mirror the plasmid incompatibility results for each construct tested. pi dimer/iteron interactions were quantified with a dimer-biased mutant in vitro and it was found that pi dimers bind with negligible cooperativity to two tandem iterons.
Collapse
Affiliation(s)
- Lisa M. Bowers
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | | - Marcin Filutowicz
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
- *Corresponding author (M. Filutowicz): Tel. 608-262-6947; Fax. 608-262-9865; E-mail:
| |
Collapse
|
5
|
Ruiz-Masó JA, Lurz R, Espinosa M, del Solar G. Interactions between the RepB initiator protein of plasmid pMV158 and two distant DNA regions within the origin of replication. Nucleic Acids Res 2007; 35:1230-44. [PMID: 17267412 PMCID: PMC1851628 DOI: 10.1093/nar/gkl1099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasmids replicating by the rolling circle mode usually possess a single site for binding of the initiator protein at the origin of replication. The origin of pMV158 is different in that it possesses two distant binding regions for the initiator RepB. One region was located close to the site where RepB introduces the replication-initiating nick, within the nic locus; the other, the bind locus, is 84 bp downstream from the nick site. Binding of RepB to the bind locus was of higher affinity and stability than to the nic locus. Contacts of RepB with the bind and nic loci were determined through high-resolution footprinting. Upon binding of RepB, the DNA of the bind locus follows a winding path in its contact with the protein, resulting in local distortion and bending of the double-helix. On supercoiled DNA, simultaneous interaction of RepB with both loci favoured extrusion of the hairpin structure harbouring the nick site while causing a strong DNA distortion around the bind locus. This suggests interplay between the two RepB binding sites, which could facilitate loading of the initiator protein to the nic locus and the acquisition of the appropriate configuration of the supercoiled DNA substrate.
Collapse
Affiliation(s)
- José A. Ruiz-Masó
- Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. E-28040-Madrid, Spain and Max Planck Institute for Molecular Genetics. Ihnestrasse 73, D-14195 Berlin, Germany
| | - Rudi Lurz
- Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. E-28040-Madrid, Spain and Max Planck Institute for Molecular Genetics. Ihnestrasse 73, D-14195 Berlin, Germany
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. E-28040-Madrid, Spain and Max Planck Institute for Molecular Genetics. Ihnestrasse 73, D-14195 Berlin, Germany
| | - Gloria del Solar
- Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. E-28040-Madrid, Spain and Max Planck Institute for Molecular Genetics. Ihnestrasse 73, D-14195 Berlin, Germany
- * To whom correspondence should be addressed. Tel: +34 918373112; Fax: +34 915360432; E-mail:
| |
Collapse
|
6
|
Díaz-López T, Dávila-Fajardo C, Blaesing F, Lillo MP, Giraldo R. Early Events in the Binding of the pPS10 Replication Protein RepA to Single Iteron and Operator DNA Sequences. J Mol Biol 2006; 364:909-20. [PMID: 17045290 DOI: 10.1016/j.jmb.2006.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 09/04/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
RepA protein, encoded in the Pseudomonas pPS10 replicon, is a stable dimer in solution (dRepA), acting as a self-repressor of repA transcription through binding to an inverted repeat operator. However, RepA monomers (mRepA) are required to initiate plasmid replication upon binding to four directly repeated DNA sequences (iterons). RepA is composed of two winged-helix (WH) domains: C-terminal WH2 is the main DNA-binding domain (DBD) for both target sequences, whereas N-terminal WH1 acts as dimerization interface in dRepA, but becomes a second DBD in mRepA. On the basis of CD spectroscopy, hydrodynamics, X-ray crystallography and model building studies, we proposed previously that the activation of RepA initiator implies a large structural change in WH1, coupled to protein monomerization and interdomain compaction. Here, we report novel features in the process. Binding curves of RepA to an iteron, followed by fluorescence anisotropy in solution and by surface plasmon resonance on immobilized DNA, exhibit the profiles characteristic of transitions between three states. In contrast, RepA-R93C, a monomeric activated mutant, exhibits a single binding transition. This suggests the presence of an intermediate species in the iteron-induced dissociation and structural transformation of RepA. High concentrations of bovine serum albumin or ovalbumin (macromolecular crowding) enhance RepA affinity for an iteron in solution and, in gel mobility-shift assays, result in the visualization of novel protein-DNA complexes. RepA-induced DNA bending requires the binding of two WH domains: either both WH2 in dimers (operator) or WH1 plus WH2 in monomers (iteron).
Collapse
Affiliation(s)
- Teresa Díaz-López
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Kunnimalaiyaan S, Inman RB, Rakowski SA, Filutowicz M. Role of pi dimers in coupling ("handcuffing") of plasmid R6K's gamma ori iterons. J Bacteriol 2005; 187:3779-85. [PMID: 15901701 PMCID: PMC1112066 DOI: 10.1128/jb.187.11.3779-3785.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One proposed mechanism of replication inhibition in iteron-containing plasmids (ICPs) is "handcuffing," in which the coupling of origins via iteron-bound replication initiator (Rep) protein turns off origin function. In minimal R6K replicons, copy number control requires the interaction of plasmid-encoded pi protein with the seven 22-bp iterons of the gamma origin of replication. Like other related Rep proteins, pi exists as both monomers and dimers. However, the ability of pi dimers to bind iterons distinguishes R6K from most other ICPs, where only monomers have been observed to bind iterons. Here, we describe experiments to determine if monomers or dimers of pi protein are involved in the formation of handcuffed complexes. Standard ligation enhancement assays were done using pi variants with different propensities to bind iterons as monomers or dimers. Consistent with observations from several ICPs, a hyperreplicative variant (pi.P106L(wedge)F107S) exhibits deficiencies in handcuffing. Additionally, a novel dimer-biased variant of pi protein (pi.M36A(wedge)M38A), which lacks initiator function, handcuffs iteron-containing DNA more efficiently than does wild-type pi. The data suggest that pi dimers mediate handcuffing, supporting our previously proposed model of handcuffing in the gamma ori system. Thus, dimers of pi appear to possess three distinct inhibitory functions with respect to R6K replication: transcriptional autorepression of pi expression, in cis competition (for origin binding) with monomeric activator pi, and handcuffing-mediated inhibition of replication in trans.
Collapse
Affiliation(s)
- Selvi Kunnimalaiyaan
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
8
|
Kunnimalaiyaan S, Krüger R, Ross W, Rakowski SA, Filutowicz M. Binding modes of the initiator and inhibitor forms of the replication protein pi to the gamma ori iteron of plasmid R6K. J Biol Chem 2004; 279:41058-66. [PMID: 15247259 DOI: 10.1074/jbc.m403151200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Discerning the interactions between initiator protein and the origin of replication should provide insights into the mechanism of DNA replication initiation. In the gamma origin of plasmid R6K, the Rep protein, pi, is distinctive in that it can bind the seven 22-bp iterons in two forms; pi monomers activate replication, whereas pi dimers act as inhibitors. In this work, we used wild type and variants of the pi protein with altered monomer/dimer ratios to study iteron/pi interactions. High resolution contact mapping was conducted using multiple techniques (missing base contact probing, methylation protection, base modification, and hydroxyl radical footprinting), and the electrophoretic separation of nucleoprotein complexes allowed us to discriminate between contact patterns produced by pi monomers and dimers. We also isolated iteron mutants that affected the binding of pi monomers (only) or both monomers and dimers. The mutational studies and footprinting analyses revealed that, when binding DNA, pi monomers interact with nucleotides spanning the entire length of the iteron. In contrast, pi dimers interact with only the left half of the iteron; however, the retained interactions are strikingly similar to those seen with monomers. These results support a model in which Rep protein dimerization disturbs one of two DNA binding domains important for monomer/iteron interaction; the dimer/iteron interaction utilizes only one DNA binding domain.
Collapse
Affiliation(s)
- Selvi Kunnimalaiyaan
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|