1
|
Alteration of surface pressure of macromolecular monolayer at the air-water interface and electrochemical impedance characteristics. Colloids Surf B Biointerfaces 2019; 187:110638. [PMID: 31767413 DOI: 10.1016/j.colsurfb.2019.110638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 11/09/2019] [Indexed: 11/23/2022]
Abstract
Proteins are very important biological macromolecules, specific in their functions essential for many biological activities. Proteins are among the most vital components of all living matters with thousands of different types, and they are very specific in their nature which makes them important for usage in many biotechnological, biomedical, and food processing applications. Langmuir monolayer studies provide the characteristics of monolayer at the air-liquid interface. Langmuir monolayer of protein is affected by the molecular weight, macromolecular structure, denaturation and its purity. The interaction of the protein with other molecules greatly affects the behaviour of monolayer. Coconut oil layer at the air-water interface was prepared with different sub-phases including casein protein and whey protein. Wilhelmy plate measurement technique has been used to measure the surface pressure of the monolayer at the air-liquid interface. Experiments were carried out to study the stability using electrochemical impedance measurements. The electrostatic forces dominated the coconut oil - protein interaction, and the interface of macromolecules were controlled by expansion and compression. The macromolecules were adsorbed with a preferential orientation at the interface, and the stability of colloidal dispersions was governed by the intermolecular interactions. The stability using electrochemical impedance spectroscopy on the selected protein macromolecules along with other analysis were performed by varying various parameters.
Collapse
|
2
|
Francois-Moutal L, Marcillat O, Granjon T. Structural comparison of highly similar nucleoside-diphosphate kinases: Molecular explanation of distinct membrane-binding behavior. Biochimie 2014; 105:110-8. [DOI: 10.1016/j.biochi.2014.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
|
3
|
van Ooij C, Withers-Martinez C, Ringel A, Cockcroft S, Haldar K, Blackman MJ. Identification of a Plasmodium falciparum phospholipid transfer protein. J Biol Chem 2013; 288:31971-83. [PMID: 24043620 PMCID: PMC3814793 DOI: 10.1074/jbc.m113.474189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection of erythrocytes by the human malaria parasite Plasmodium falciparum results in dramatic modifications to the host cell, including changes to its antigenic and transport properties and the de novo formation of membranous compartments within the erythrocyte cytosol. These parasite-induced structures are implicated in the transport of nutrients, metabolic products, and parasite proteins, as well as in parasite virulence. However, very few of the parasite effector proteins that underlie remodeling of the host erythrocyte are functionally characterized. Using bioinformatic examination and modeling, we have found that the exported P. falciparum protein PFA0210c belongs to the START domain family, members of which mediate transfer of phospholipids, ceramide, or fatty acids between membranes. In vitro phospholipid transfer assays using recombinant PFA0210 confirmed that it can transfer phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin between phospholipid vesicles. Furthermore, assays using HL60 cells containing radiolabeled phospholipids indicated that orthologs of PFA0210c can also transfer phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Biochemical and immunochemical analysis showed that PFA0210c associates with membranes in infected erythrocytes at mature stages of intracellular parasite growth. Localization studies in live parasites revealed that the protein is present in the parasitophorous vacuole during growth and is later recruited to organelles in the parasite. Together these data suggest that PFA0210c plays a role in the formation of the membranous structures and nutrient phospholipid transfer in the malaria-parasitized erythrocyte.
Collapse
Affiliation(s)
- Christiaan van Ooij
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
4
|
The Lipid Transfer Protein StarD7: Structure, Function, and Regulation. Int J Mol Sci 2013; 14:6170-86. [PMID: 23507753 PMCID: PMC3634439 DOI: 10.3390/ijms14036170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/17/2013] [Accepted: 02/22/2013] [Indexed: 02/06/2023] Open
Abstract
The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. The 15 well-characterized mammalian START domain-containing proteins are grouped into six subfamilies. The START domain containing 7 mRNA encodes StarD7, a member of the StarD2/phosphatidylcholine transfer protein (PCTP) subfamily, which was first identified as a gene overexpressed in a choriocarcinoma cell line. Recent studies show that the StarD7 protein facilitates the delivery of phosphatidylcholine to the mitochondria. This review summarizes the latest advances in StarD7 research, focusing on the structural and biochemical features, protein-lipid interactions, and mechanisms that regulate StarD7 expression. The implications of the role of StarD7 in cell proliferation, migration, and differentiation are also discussed.
Collapse
|
5
|
Flores-Martín J, Rena V, Márquez S, Panzetta-Dutari GM, Genti-Raimondi S. StarD7 knockdown modulates ABCG2 expression, cell migration, proliferation, and differentiation of human choriocarcinoma JEG-3 cells. PLoS One 2012; 7:e44152. [PMID: 22952907 PMCID: PMC3430668 DOI: 10.1371/journal.pone.0044152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background StAR-related lipid transfer domain containing 7 (StarD7) is a member of the START-domain protein family whose function still remains unclear. Our data from an explorative microarray assay performed with mRNAs from StarD7 siRNA-transfected JEG-3 cells indicated that ABCG2 (ATP-binding cassette sub-family G member 2) was one of the most abundantly downregulated mRNAs. Methodology/Principal Findings Here, we have confirmed that knocking down StarD7 mRNA lead to a decrease in the xenobiotic/lipid transporter ABCG2 at both the mRNA and protein levels (−26.4% and −41%, p<0.05, at 48 h of culture, respectively). Also a concomitant reduction in phospholipid synthesis, bromodeoxyuridine (BrdU) uptake and 3H-thymidine incorporation was detected. Wound healing and transwell assays revealed that JEG-3 cell migration was significantly diminished (p<0.05). Conversely, biochemical differentiation markers such as human chorionic gonadotrophin β-subunit (βhCG) protein synthesis and secretion as well as βhCG and syncytin-1 mRNAs were increased approximately 2-fold. In addition, desmoplakin immunostaining suggested that there was a reduction of intercellular desmosomes between adjacent JEG-3 cells after knocking down StarD7. Conclusions/Significance Altogether these findings provide evidence for a role of StarD7 in cell physiology indicating that StarD7 modulates ABCG2 multidrug transporter level, cell migration, proliferation, and biochemical and morphological differentiation marker expression in a human trophoblast cell model.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Biomarkers/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation
- Choriocarcinoma/genetics
- Choriocarcinoma/pathology
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Silencing
- Giant Cells/metabolism
- Humans
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phospholipids/biosynthesis
- Pregnancy Proteins/genetics
- Pregnancy Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Jésica Flores-Martín
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Rena
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sebastián Márquez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Graciela M. Panzetta-Dutari
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Susana Genti-Raimondi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
6
|
Chen D, Latham J, Zhao H, Bisoffi M, Farelli J, Dunaway-Mariano D. Human brown fat inducible thioesterase variant 2 cellular localization and catalytic function. Biochemistry 2012; 51:6990-9. [PMID: 22897136 DOI: 10.1021/bi3008824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mammalian brown fat inducible thioesterase variant 2 (BFIT2), also known as ACOT11, is a multimodular protein containing two consecutive hotdog-fold domains and a C-terminal steroidogenic acute regulatory protein-related lipid transfer domain (StarD14). In this study, we demonstrate that the N-terminal region of human BFIT2 (hBFIT2) constitutes a mitochondrial location signal sequence, which undergoes mitochondrion-dependent posttranslational cleavage. The mature hBFIT2 is shown to be located in the mitochondrial matrix, whereas the paralog "cytoplasmic acetyl-CoA hydrolase" (CACH, also known as ACOT12) was found in the cytoplasm. In vitro activity analysis of full-length hBFIT2 isolated from stably transfected HEK293 cells demonstrates selective thioesterase activity directed toward long chain fatty acyl-CoA thioesters, thus distinguishing the catalytic function of BFIT2 from that of CACH. The results from a protein-lipid overlay test indicate that the hBFIT2 StarD14 domain binds phosphatidylinositol 4-phosphate.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
7
|
Larsson K, Quinn P, Sato K, Tiberg F. Interaction of lipids with proteins and polypeptides. Lipids 2012. [DOI: 10.1533/9780857097910.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Ikeda Y, Tanji E, Makino N, Kawata S, Furukawa T. MicroRNAs associated with mitogen-activated protein kinase in human pancreatic cancer. Mol Cancer Res 2011; 10:259-69. [PMID: 22188669 DOI: 10.1158/1541-7786.mcr-11-0035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant expression of microRNAs (miRNA) is associated with phenotypes of various cancers, including pancreatic cancer. However, the mechanism of the aberrant expression is largely unknown. Activation of the mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in gene expression related to the malignant phenotype of pancreatic cancer. Hence, we studied the role of MAPK in the aberrant expression of miRNAs in pancreatic cancer cells. The alterations in expression of 183 miRNAs induced by activation or inactivation of MAPK were assayed in cultured pancreatic cancer cells and HEK293 cells by means of the quantitative real-time PCR method. We found that four miRNAs, namely, miR-7-3, miR-34a, miR-181d, and miR-193b, were preferentially associated with MAPK activity. Among these miRNAs, miR-7-3 was upregulated by active MAPK, whereas the others were downregulated. Promoter assays indicated that the promoter activities of the host genes of miR-7-3 and miR-34a were both downregulated by alteration in MAPK activity. Exogenous overexpression of the MAPK-associated miRNAs had the effect of inhibition of the proliferation of cultured pancreatic cancer cells; miR-193b was found to exhibit the most remarkable inhibition. A search for target genes of miR-193b led to identification of CCND1, NT5E, PLAU, STARD7, STMN1, and YWHAZ as the targets. Translational suppression of these genes by miR-193b was confirmed by reporter assay. These results indicate that activation of MAPK may play a significant role in aberrant expression of miRNAs and their associated phenotypes in pancreatic cancer.
Collapse
Affiliation(s)
- Yushi Ikeda
- International Research and Educational Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
StarD7 behaves as a fusogenic protein in model and cell membrane bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:425-33. [PMID: 22063720 DOI: 10.1016/j.bbamem.2011.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 11/23/2022]
Abstract
StarD7 is a surface active protein, structurally related with the START lipid transport family. So, the present work was aimed at elucidating a potential mechanism of action for StarD7 that could be related to its interaction with a lipid-membrane interface. We applied an assay based on the fluorescence de-quenching of BD-HPC-labeled DMPC-DMPS 4:1 mol/mol SUVs (donor liposomes) induced by the dilution with non-labeled DMPC-DMPS 4:1 mol/mol LUVs (acceptor liposomes). Recombinant StarD7 accelerated the dilution of BD-HPC in a concentration-dependent manner. This result could have been explained by either a bilayer fusion or monomeric transport of the labeled lipid between donor and acceptor liposomes. Further experiments (fluorescence energy transfer between DPH-HPC/BD-HPC, liposome size distribution analysis by dynamic light scattering, and the multinuclear giant cell formation induced by recombinant StarD7) strongly indicated that bilayer fusion was the mechanism responsible for the StarD7-induced lipid dilution. The efficiency of lipid dilution was dependent on StarD7 electrostatic interactions with the lipid-water interface, as shown by the pH- and salt-induced modulation. Moreover, this process was favored by phosphatidylethanolamine which is known to stabilize non-lamellar phases considered as intermediary in the fusion process. Altogether these findings allow postulate StarD7 as a fusogenic protein.
Collapse
|
10
|
Rena V, Flores-Martín J, Angeletti S, Panzetta-Dutari GM, Genti-Raimondi S. StarD7 gene expression in trophoblast cells: contribution of SF-1 and Wnt-beta-catenin signaling. Mol Endocrinol 2011; 25:1364-75. [PMID: 21622533 DOI: 10.1210/me.2010-0503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Steroidogenic acute regulatory protein-related lipid transfer domain containing 7 (StarD7) is a poorly characterized member of the steroidogenic acute regulatory protein-related lipid transfer proteins, up-regulated in JEG-3 cells, involved in intracellular transport and metabolism of lipids. Previous studies dealing with the mechanisms underlying the human StarD7 gene expression led us to define the cis-acting regulatory sequences in the StarD7 promoter using as a model JEG-3 cells. These include a functional T cell-specific transcription factor 4 (TCF4) site involved in Wnt-β-catenin signaling. To understand these mechanisms in more depth, we examined the steroidogenic factor 1 (SF-1) contribution to StarD7 expression. Cotransfection experiments in JEG-3 cells point out that the StarD7 promoter is activated by SF-1, and this effect is increased by forskolin. EMSA using JEG-3 nuclear proteins demonstrated that SF-1 binds to the StarD7 promoter. Additionally, chromatin immunoprecipitation analysis indicated that SF-1 and β-catenin are bound in vivo to the StarD7 promoter. Reporter gene assays in combination with mutations in the SF-1 and TCF4 binding sites revealed that the StarD7 promoter is synergistically activated by SF-1 and β-catenin and that the TCF4 binding site (-614/-608) plays an important role in this activation. SF-1 amino acid mutations involved in the physical interaction with β-catenin abolished this activation; thus demonstrating that the contact between the two proteins is necessary for an efficient StarD7 transcriptional induction. Finally, these data suggest that β-catenin could function as a bridge between SF-1 and TCF4 forming a ternary complex, which would stimulate StarD7 expression. The SF-1 and β-catenin pathway convergence on StarD7 expression may have important implications in the phospholipid uptake and transport, contributing to the normal trophoblast development.
Collapse
Affiliation(s)
- Viviana Rena
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, X5000HUA Córdoba, Argentina
| | | | | | | | | |
Collapse
|
11
|
Rena V, Angeletti S, Panzetta-Dutari G, Genti-Raimondi S. Activation of beta-catenin signalling increases StarD7 gene expression in JEG-3 cells. Placenta 2009; 30:876-83. [PMID: 19679347 DOI: 10.1016/j.placenta.2009.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/23/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
StarD7 gene encodes a protein that belongs to the StAR-related lipid transfer proteins involved in intracellular transport and metabolism of lipids. It has been previously documented that StarD7 has a wide-spread mRNA expression in trophoblastic tissues and several tumour cell lines with highest levels in both choriocarcinoma JEG-3 and JAR cells, hepatocellular carcinoma HepG2, and colorectal adenocarcinoma HT-29 cells. To understand the molecular mechanisms that regulate the expression of the human StarD7 gene, we have cloned and characterized the 5'-flanking region of the gene. Transient transfections of several 5'deleted StarD7-promoter-firefly luciferase constructs into JEG-3 cells indicated that the -312/+157 region contains the gene minimal promoter. In addition, sequence analysis of a 1.6kb gene fragment revealed the presence of a TATA-less promoter as well as multiple regulatory motifs, including one regulatory element corresponding to the T-cell factor 4 (TCF4) binding site. Inhibition of glycogen synthase kinase-3beta (GSK3beta), a component of Wnt/beta-catenin signalling, increased both StarD7 mRNA and protein expression as well as its promoter activity. Co-transfection experiments in JEG-3 cell line revealed that the StarD7 promoter is activated by TCF4 transcription factor and by its beta-catenin coactivator. Moreover, site-directed mutagenesis of the TCF4 site located -614/-608bp relative to the transcription start site markedly diminished StarD7 promoter activity. Chromatin immunoprecipitation analysis demonstrated that beta-catenin and TCF4 are bound in vivo to the StarD7 gene promoter in JEG-3 cells treated with lithium chloride. Collectively, these studies show that beta-catenin and TCF4 activate the human StarD7 gene interacting with its promoter region through Wnt/beta-catenin signalling.
Collapse
Affiliation(s)
- V Rena
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, Argentina
| | | | | | | |
Collapse
|
12
|
Angeletti S, Rena V, Nores R, Fretes R, Panzetta-Dutari G, Genti-Raimondi S. Expression and Localization of StarD7 in Trophoblast Cells. Placenta 2008; 29:396-404. [DOI: 10.1016/j.placenta.2008.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/18/2008] [Accepted: 02/21/2008] [Indexed: 01/16/2023]
|
13
|
Pavinatto FJ, Pavinatto A, Caseli L, Santos DSD, Nobre TM, Zaniquelli MED, Oliveira ON. Interaction of Chitosan with Cell Membrane Models at the Air−Water Interface. Biomacromolecules 2007; 8:1633-40. [PMID: 17419586 DOI: 10.1021/bm0701550] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we employed phospholipid Langmuir monolayers as membrane models to probe interactions with chitosan. Using a combination of surface pressure--area and surface potential--area isotherms and rheological measurements with the pendent drop technique, we observed that chitosan interacts with phospholipid molecules at the air-water interface. We propose a model in which chitosan interacts with the phospholipids mainly through electrostatic interactions, but also including H-bonding and hydrophobic forces, depending on the phospholipid packing density. At large areas per molecule, chitosan in the subphase adsorbs onto the monolayer, expanding it. At small areas per molecule, chitosan is located in the subsurface. Indeed, a mixed chitosan-phospholipid monolayer can be transferred onto solid supports, even at high surface pressures. The effects of chitosan on the viscoelastic properties of phospholipid monolayers may be taken as evidence for the ability of chitosan to disrupt cell membranes.
Collapse
Affiliation(s)
- Felippe J Pavinatto
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Vernoux N, Maniti O, Besson F, Granjon T, Marcillat O, Vial C. Mitochondrial creatine kinase adsorption to biomimetic membranes: a Langmuir monolayer study. J Colloid Interface Sci 2007; 310:436-45. [PMID: 17359991 DOI: 10.1016/j.jcis.2007.01.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 11/16/2022]
Abstract
Interaction of mitochondrial creatine kinase (mtCK) with either synthetic or natural zwitterionic or acidic phospholipids was monitored by surface pressure measurements. Injection of mtCK beneath a monolayer at very low surface pressure results in a large increase in the apparent area per lipid molecule reflecting the intrinsic surface activity of the protein. This effect is particularly pronounced with anionic phospholipid-containing films. Upon compression to high lateral pressure, the protein is squeezed out of the lipid monolayer. On the contrary, mtCK injected beneath a monolayer compressed at 30 mN/m, does not insert into the monolayer but is concentrated below the surface by anionic phospholipids as evidenced by the immediate and strong increase in the apparent molecular area occurring upon decompression. Below 8 mN/m the protein adsorbs to the interface and remains intercalated until the lateral pressure increases again. The critical pressure of insertion is higher for anionic lipid-containing monolayers than for films containing only zwitterionic phospholipids. In the former case it is markedly diminished by NaCl. The adsorption of mtCK depends on the percentage of negative charges carried by the monolayer and is reduced by increasing NaCl concentrations. However, the residual interaction existing in the absence of a global negative charge on the membrane may indicate that this interaction also involves a hydrophobic component.
Collapse
Affiliation(s)
- Nathalie Vernoux
- CNRS UMR 5246/IMBL, Biomembranes et enzymes associés, Université Lyon 1, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Belem-Gonçalves S, Tsan P, Lancelin JM, Alves T, Salim V, Besson F. Interfacial behaviour of bovine testis hyaluronidase. Biochem J 2006; 398:569-76. [PMID: 16771711 PMCID: PMC1559454 DOI: 10.1042/bj20060485] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interfacial properties of bovine testicular hyaluronidase were investigated by demonstrating the association of hyaluronidase activity with membranes prepared from bovine testis. Protein adsorption to the air/water interface was investigated using surface pressure-area isotherms. In whichever way the interfacial films were obtained (protein injection or deposition), the hyaluronidase exhibited a significant affinity for the air/water interface. The isotherm obtained 180 min after protein injection into a pH 5.3 subphase was similar to the isotherm obtained after spreading the same amount of protein onto the same subphase, indicating that bovine testicular hyaluronidase molecules adopted a similar arrangement and/or conformation at the interface. Increasing the subphase pH from 5.3 to 8 resulted in changes of the protein isotherms. These modifications, which could correspond to the small pH-induced conformational changes observed by Fourier-transform IR spectroscopy, were discussed in relation to the pH influence on the hyaluronidase activity. Adding hyaluronic acid, the enzyme substrate, to the subphase tested the stability of the interfacial properties of hyaluronidase. The presence of hyaluronic acid in the subphase did not modify the protein adsorption and allowed substrate binding to a preformed film of hyaluronidase at pH 5.3, the optimal pH for the enzyme activity. Such effects of hyaluronic acid were not observed when the subphase was constituted of pure water, a medium where the enzyme activity was negligible. These influences of hyaluronic acid were discussed in relation to the modelled structure of bovine testis hyaluronidase where a hydrophobic region was proposed to be opposite of the catalytic site.
Collapse
Affiliation(s)
- Silvia Belem-Gonçalves
- *Laboratoire Organisation et Dynamique des Membranes Biologiques, UMR-CNRS 5013, Université Claude Bernard Lyon I, 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
- ‡Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, CP 68502, Rio de Janeiro, 21945-970, RJ, Brazil
| | - Pascale Tsan
- †Laboratoire de RMN Biomoléculaire, CNRS UMR 5180, Université Claude Bernard-Lyon 1, 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Jean-Marc Lancelin
- †Laboratoire de RMN Biomoléculaire, CNRS UMR 5180, Université Claude Bernard-Lyon 1, 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Tito L. M. Alves
- ‡Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, CP 68502, Rio de Janeiro, 21945-970, RJ, Brazil
| | - Vera M. Salim
- ‡Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, CP 68502, Rio de Janeiro, 21945-970, RJ, Brazil
| | - Françoise Besson
- *Laboratoire Organisation et Dynamique des Membranes Biologiques, UMR-CNRS 5013, Université Claude Bernard Lyon I, 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Vernoux N, Granjon T, Marcillat O, Besson F, Vial C. Interfacial behavior of cytoplasmic and mitochondrial creatine kinase oligomeric states. Biopolymers 2006; 81:270-81. [PMID: 16283667 DOI: 10.1002/bip.20412] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adsorption to the air/water interface of isoenzymes of creatine kinase was investigated using surface pressure-area isotherms and Brewster angle microscopy (BAM) observations. Octameric mitochondrial creatine kinase (mtCK) exhibits a significant affinity for the air/water interface. Whatever the mode of formation of the interfacial film, i.e., injection of the protein in the subphase or spreading onto the buffer surface, the final arrangement and conformation adopted by mtCK molecules lead to a similar result. In contrast, the dimeric isoenzymes mtCK and cytosolic MMCK do not induce any surface pressure variation. However, when the subphase contains 0.3M NaCl, both isoenzymes adsorb to the interface. When treated with 0.8 or 3M GdnHCl, muscle creatine kinase (MMCK) becomes surface active and occupies a greater surface than mtCK. This result contrasts with previous observations, often derived from monomeric proteins, that their surface activity is increased upon unfolding. It underlines the possible influence exerted by the protein oligomeric state on its interfacial activity. At a subphase pH of 8.8, which corresponds to the pI of octameric mtCK, the profiles of the isotherms obtained with dimeric and octameric states and the resistance to compression of the protein monolayers are significantly affected when compared to those recorded at pH 7.4. These data suggest that the octamer is more hydrophobic than the dimer and may contribute to explaining why octamers bind to the inner mitochondrial membrane while dimers do not.
Collapse
Affiliation(s)
- Nathalie Vernoux
- UMR CNRS 5013, Biomembranes et enzymes associés, Université Claude Bernard Lyon I, 43, boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | | | | | | | | |
Collapse
|
17
|
Del Boca M, Caputto BL, Maggio B, Borioli GA. c-Jun interacts with phospholipids and c-Fos at the interface. J Colloid Interface Sci 2005; 287:80-4. [PMID: 15914151 DOI: 10.1016/j.jcis.2005.01.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 12/28/2004] [Accepted: 01/24/2005] [Indexed: 12/01/2022]
Abstract
We describe c-Jun, a widely studied transcription factor that participates in cell proliferation, differentiation, and tumorigenesis, as amphitropic. We show that c-Jun forms stable monolayers and interacts favorably, although in a nonselective manner, with phospholipids at the interface. The surface activity of c-Jun, together with that of c-Fos, its common partner in AP-1 transcription heterodimers, drives interfacial complex formation. We show that AP-1 is very stable at the air-water interface and suggest that AP-1 may not be substantially formed in solution as a stable equimolar association of both proteins.
Collapse
Affiliation(s)
- Maximiliano Del Boca
- CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
18
|
Olayioye MA, Vehring S, Müller P, Herrmann A, Schiller J, Thiele C, Lindeman GJ, Visvader JE, Pomorski T. StarD10, a START domain protein overexpressed in breast cancer, functions as a phospholipid transfer protein. J Biol Chem 2005; 280:27436-42. [PMID: 15911624 DOI: 10.1074/jbc.m413330200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We originally identified StarD10 as a protein overexpressed in breast cancer that cooperates with the ErbB family of receptor tyrosine kinases in cellular transformation. StarD10 contains a steroidogenic acute regulatory protein (StAR/StarD1)-related lipid transfer (START) domain that is thought to mediate binding of lipids. We now provide evidence that StarD10 interacts with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by electron spin resonance measurement. Interaction with these phospholipids was verified in a fluorescence resonance energy transfer-based assay with 7-nitro-2,1,3-benzoxadiazol-4-yl-labeled lipids. Binding was not restricted to lipid analogs since StarD10 selectively extracted PC and PE from small unilamellar vesicles prepared with endogenous radiolabeled lipids from Vero monkey kidney cells. Mass spectrometry revealed that StarD10 preferentially selects lipid species containing a palmitoyl or stearoyl chain on the sn-1 and an unsaturated fatty acyl chain (18:1 or 18:2) on the sn-2 position. StarD10 was further shown to bind lipids in vivo by cross-linking of protein expressed in transfected HEK-293T cells with photoactivable phosphatidylcholine. In addition to a lipid binding function, StarD10 transferred PC and PE between membranes. Interestingly, these lipid binding and transfer specificities distinguish StarD10 from the related START domain proteins Pctp and CERT, suggesting a distinct biological function.
Collapse
Affiliation(s)
- Monilola A Olayioye
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rosetti CM, Oliveira RG, Maggio B. The Folch-Lees proteolipid induces phase coexistence and transverse reorganization of lateral domains in myelin monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1668:75-86. [PMID: 15670733 DOI: 10.1016/j.bbamem.2004.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/11/2004] [Accepted: 11/16/2004] [Indexed: 11/16/2022]
Abstract
Solvent solubilized myelin membranes spread as monomolecular layers at the air-water interface show a heterogeneous pattern at all surface pressures. In order to asses the role of myelin protein and lipid components in the surface structuring we compared the topography, as seen by Brewster angle microscopy (BAM) and epifluorescence microscopy, of monolayers made from mixtures containing all myelin lipids (except gangliosides) and variable proportions of Folch-Lees proteolipid protein (PLP, the major protein component of myelin). The presence of the single PLP, in the absence of the other myelin proteins, can reproduce the surface pattern of the whole myelin extract films in a concentration-dependant manner. Moreover, a threshold mole fraction of PLP is necessary to induce the lipid-protein component reorganization leading to the appearance of a rigid (gray) phase, acting as a surface skeleton, at low surface pressures and of fractal clusters at high surface pressures. The average size of those clusters is also dependent on the PLP content in the monolayer and on the time elapsed from the moment of film spreading, as they apparently result from an irreversible lateral aggregation process. The transverse rearrangement of the monolayer occurring under compression was different in films with the highest and lowest PLP mole fractions tested.
Collapse
Affiliation(s)
- C M Rosetti
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|