1
|
Yokota H. Roles of the C-Terminal Amino Acids of Non-Hexameric Helicases: Insights from Escherichia coli UvrD. Int J Mol Sci 2021; 22:ijms22031018. [PMID: 33498436 PMCID: PMC7864180 DOI: 10.3390/ijms22031018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
| |
Collapse
|
2
|
Queiroz RML, Smith T, Villanueva E, Marti-Solano M, Monti M, Pizzinga M, Mirea DM, Ramakrishna M, Harvey RF, Dezi V, Thomas GH, Willis AE, Lilley KS. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat Biotechnol 2019; 37:169-178. [PMID: 30607034 DOI: 10.1038/s41587-018-0001-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
Existing high-throughput methods to identify RNA-binding proteins (RBPs) are based on capture of polyadenylated RNAs and cannot recover proteins that interact with nonadenylated RNAs, including long noncoding RNA, pre-mRNAs and bacterial RNAs. We present orthogonal organic phase separation (OOPS), which does not require molecular tagging or capture of polyadenylated RNA, and apply it to recover cross-linked protein-RNA and free protein, or protein-bound RNA and free RNA, in an unbiased way. We validated OOPS in HEK293, U2OS and MCF10A human cell lines, and show that 96% of proteins recovered were bound to RNA. We show that all long RNAs can be cross-linked to proteins, and recovered 1,838 RBPs, including 926 putative novel RBPs. OOPS is approximately 100-fold more efficient than existing methods and can enable analyses of dynamic RNA-protein interactions. We also characterize dynamic changes in RNA-protein interactions in mammalian cells following nocodazole arrest, and present a bacterial RNA-interactome for Escherichia coli. OOPS is compatible with downstream proteomics and RNA sequencing, and can be applied in any organism.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | | - Mie Monti
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Dan-Mircea Mirea
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | | | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Hashemi V, Masjedi A, Hazhir-Karzar B, Tanomand A, Shotorbani SS, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Anvari E, Baradaran B, Jadidi-Niaragh F. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J Cell Physiol 2018; 234:5478-5487. [PMID: 30417346 DOI: 10.1002/jcp.26912] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
RNA helicase p68 or DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) is a unique member of the highly conserved protein family, which is involved in a broad spectrum of biological processes, including transcription, translation, precursor messenger RNA processing or alternative splicing, and microRNA (miRNA) processing. It has been shown that p68 is necessary for cell growth and participates in the early development and maturation of some organs. Interestingly, p68 is a transcriptional coactivator of numerous oncogenic transcription factors, including nuclear factor-κβ (NF-κβ), estrogen receptor α (ERα), β-catenin, androgen receptor, Notch transcriptional activation complex, p53 and signal transducer, and activator of transcription 3 (STAT3). Recent studies on the role of p68 (DDX5) in multiple dysregulated cellular processes in various cancers and its abnormal expression indicate the importance of this factor in tumor development. Discussion of the precise role of p68 in cancer is complex and depends on the cellular microenvironment and interacting factors. In terms of the deregulated expression of p68 in breast cancer and the high prevalence of this cancer among women, it can be informative to review the precise function of this factor in the breast cancer. Therefore, an attempt will be made in this review to clarify the tumorigenic function of p68 in association with its targeting potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Vida Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Hazhir-Karzar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | | | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Dai TY, Cao L, Yang ZC, Li YS, Tan L, Ran XZ, Shi CM. P68 RNA helicase as a molecular target for cancer therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:64. [PMID: 25150365 PMCID: PMC4431487 DOI: 10.1186/s13046-014-0064-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/16/2014] [Indexed: 12/23/2022]
Abstract
The DEAD-box family of RNA helicase is known to be required in virtually all cellular processes involving RNA, and p68 is a prototypic one of the family. Reports have indicated that in addition to ATPase and RNA helicase ability, p68 can also function as a co-activator for transcription factors such as estrogen receptor alpha, tumor suppressor p53 and beta-catenin. More than that, post-translational modification of p68 including phosphorylation, acetylation, sumoylation, and ubiquitylation can regulate the coactivation effect. Furthermore, aberrant expression of p68 in cancers highlights that p68 plays an important role for tumorgenesis and development. In this review, we briefly introduce the function and modulation of p68 in cancer cells, and put forward envisagement about future study about p68.
Collapse
Affiliation(s)
- Ting-Yu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Liu Cao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Zi-Chen Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Ya-Shu Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Xin-Ze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Chun-Meng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Burnside K, Lembo A, Harrell MI, Gurney M, Xue L, BinhTran NT, Connelly JE, Jewell KA, Schmidt BZ, de Los Reyes M, Tao WA, Doran KS, Rajagopal L. Serine/threonine phosphatase Stp1 mediates post-transcriptional regulation of hemolysin, autolysis, and virulence of group B Streptococcus. J Biol Chem 2011; 286:44197-44210. [PMID: 22081606 DOI: 10.1074/jbc.m111.313486] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Elucidating how serine/threonine phosphatases regulate kinase function and bacterial virulence is critical for our ability to combat these infections. Group B streptococci (GBS) are β-hemolytic Gram-positive bacteria that cause invasive infections in humans. To adapt to environmental changes, GBS encodes signaling mechanisms comprising two component systems and eukaryotic-like enzymes. We have previously described the importance of the serine/threonine kinase Stk1 to GBS pathogenesis. However, how the presence or absence of the cognate serine/threonine phosphatase Stp1 affects Stk1 function and GBS virulence is not known. Here, we show that GBS deficient only in Stp1 expression are markedly reduced for their ability to cause systemic infections, exhibit decreased β-hemolysin/cytolysin activity, and show increased sensitivity to autolysis. Although transcription of genes important for β-hemolysin/cytolysin expression and export is similar to the wild type (WT), 294 genes (excluding stp1) showed altered expression in the stp1 mutant and included autolysin genes. Furthermore, phosphopeptide enrichment analysis identified that 35 serine/threonine phosphopeptides, corresponding to 27 proteins, were unique to the stp1 mutant. This included phosphorylation of ATP synthase, DNA and RNA helicases, and proteins important for cell division and protein synthesis. Collectively, our results indicate that Stp1 is important for appropriate regulation of Stk1 function, hemolysin activity, autolysis, and GBS virulence.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Annalisa Lembo
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Maria Isabel Harrell
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Michael Gurney
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Liang Xue
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Nguyen-Thao BinhTran
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - James E Connelly
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Kelsea A Jewell
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Byron Z Schmidt
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Melissa de Los Reyes
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Kelly S Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101.
| |
Collapse
|
6
|
Fuller-Pace FV, Moore HC. RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 2011; 7:239-51. [PMID: 21345143 DOI: 10.2217/fon.11.1] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DEAD box RNA helicases p68 (DDX5) and p72 (DDX17) play important roles in multiple cellular processes that are commonly dysregulated in cancers, including transcription, pre-mRNA processing/alternative splicing and miRNA processing. Although p68 and p72 appear to have some overlapping functions, they clearly also have distinct, nonredundant functions. Furthermore, their ability to interact with a variety of different factors and act as multifunctional proteins has the potential to impact on several different processes, and alterations in expression or function of p68 and/or p72 could have profound implications for cancer development. However, their roles are likely to be context-dependent and both proteins have been reported to have pro-proliferation or even oncogenic functions as well as antiproliferative or tumor cosuppressor roles. Therefore, eludicating the precise role of these proteins in cancer is likely to be complex and to depend on the cellular environment and interacting factors. In this article, we review the many functions that have been attributed to p68 and p72 and discuss their potential roles in cancer development.
Collapse
Affiliation(s)
- Frances V Fuller-Pace
- Centre for Oncology & Molecular Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK.
| | | |
Collapse
|
7
|
Truong NT, Moncion A, Barouki R, Beaune P, de Waziers I. Regulatory sequence responsible for insulin destabilization of cytochrome P450 2B1 (CYP2B1) mRNA. Biochem J 2009; 388:227-35. [PMID: 15617513 PMCID: PMC1186711 DOI: 10.1042/bj20041510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diabetes has been reported to increase CYP2E1 (cytochrome P450) and CYP2B1 expression at both the mRNA and protein levels in rat livers. This increase has been attributed to mRNA stabilization and can be reversed by daily insulin treatment. In a previous study, we showed that this hormone directly down-regulates CYP2E1 and 2B1 expression through a post-transcriptional mechanism in rat hepatoma cell lines. We then aimed to identify the molecular mechanisms involved in this regulation. We first identified a 16-mer sequence that we later showed to be the actual functional target of insulin on the rat CYP2E1 mRNA. Similar work was performed with CYP2B1. We first investigated the presence of mRNA-protein interactions. Using cytoplasmic proteins of Fao cells treated or not with insulin (0.1 microM) and the full-length CYP2B1 mRNA as a probe, a major CYP2B1 RNA-protein complex was observed with RNase T1 protection experiments. With the use of different CYP2B1 mRNA probes and by means of competition experiments with antisense oligonucleotides, a protein fixation site was located on a 16-nt sequence in the 5' part of the coding region. This sequence has a hairpin loop structure, shows 80% sequence identity with a structure previously identified on CYP2E1 and is also responsible for the post-transcriptional effects of insulin on this mRNA. Protein(s) bound to both CYP2B1 and CYP2E1 sequences are cytosolic and have an apparent molecular mass of 60 kDa. The protein(s) that bind(s) to both these sequences and the insulin transduction signal involved in this regulation remain(s) to identified.
Collapse
Affiliation(s)
- Nhu-Traï Truong
- INSERM UMR-S490, Laboratoire de Toxicologie Moléculaire, Faculté de Médecine, 45 Rue des Saints Pères 75270, Paris Cedex 06, France
| | - Arlette Moncion
- INSERM UMR-S490, Laboratoire de Toxicologie Moléculaire, Faculté de Médecine, 45 Rue des Saints Pères 75270, Paris Cedex 06, France
| | - Robert Barouki
- INSERM UMR-S490, Laboratoire de Toxicologie Moléculaire, Faculté de Médecine, 45 Rue des Saints Pères 75270, Paris Cedex 06, France
| | - Philippe Beaune
- INSERM UMR-S490, Laboratoire de Toxicologie Moléculaire, Faculté de Médecine, 45 Rue des Saints Pères 75270, Paris Cedex 06, France
| | - Isabelle de Waziers
- INSERM UMR-S490, Laboratoire de Toxicologie Moléculaire, Faculté de Médecine, 45 Rue des Saints Pères 75270, Paris Cedex 06, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S, Heer R, Gaughan L, Leung HY, Elliott DJ, Fuller-Pace FV, Robson CN. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res 2008; 68:7938-46. [PMID: 18829551 PMCID: PMC2561211 DOI: 10.1158/0008-5472.can-08-0932] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The androgen receptor (AR) is a member of the nuclear steroid hormone receptor family and is thought to play an important role in the development of both androgen-dependent and androgen-independent prostatic malignancy. Elucidating roles by which cofactors regulate AR transcriptional activity may provide therapeutic advancement for prostate cancer (PCa). The DEAD box RNA helicase p68 (Ddx5) was identified as a novel AR-interacting protein by yeast two-hybrid screening, and we sought to examine the involvement of p68 in AR signaling and PCa. The p68-AR interaction was verified by colocalization of overexpressed protein by immunofluorescence and confirmed in vivo by coimmunoprecipitation in the PCa LNCaP cell line. Chromatin immunoprecipitation in the same cell line showed AR and p68 recruitment to the promoter region of the androgen-responsive prostate-specific antigen (PSA) gene. Luciferase reporter, minigene splicing assays, and RNA interference (RNAi) were used to examine a functional role of p68 in AR-regulated gene expression, whereby p68 targeted RNAi reduced AR-regulated PSA expression, and p68 enhanced AR-regulated repression of CD44 splicing (P = 0.008). Tyrosine phosphorylation of p68 was found to enhance coactivation of ligand-dependent transcription of AR-regulated luciferase reporters independent of ATP-binding. Finally, we observe increased frequency and expression of p68 in PCa compared with benign tissue using a comprehensive prostate tissue microarray (P = 0.003; P = 0.008). These findings implicate p68 as a novel AR transcriptional coactivator that is significantly overexpressed in PCa with a possible role in progression to hormone-refractory disease.
Collapse
Affiliation(s)
- Emma L Clark
- Northern Institute for Cancer Research and Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pradhan A, Hussain EM, Tuteja R. Characterization of replication fork and phosphorylation stimulated Plasmodium falciparum helicase 45. Gene 2008; 420:66-75. [DOI: 10.1016/j.gene.2008.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/29/2008] [Accepted: 05/01/2008] [Indexed: 12/14/2022]
|
10
|
Smalheiser NR. Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:678-81. [PMID: 18433727 DOI: 10.1016/j.bbagrm.2008.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 12/14/2022]
Abstract
For many microRNAs, in many normal tissues and in cancer cells, the cellular levels of mature microRNAs are not simply determined by transcription of microRNA genes. This mini-review will discuss how microRNA biogenesis and function can be regulated by various nuclear and cytoplasmic processing events, including emerging evidence that microRNA pathway components can be selectively regulated by control of their subcellular localization and by modifications that occur during dynamic cellular signaling. Finally, I will briefly summarize studies of microRNAs in synaptic fractions of adult mouse forebrain, which may serve as a model for other cell types as well.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry and Psychiatric Institute, University of Illinois-Chicago, 1601 W. Taylor Street MC912, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Turner AMW, Love CF, Alexander RW, Jones PG. Mutational analysis of the Escherichia coli DEAD box protein CsdA. J Bacteriol 2007; 189:2769-76. [PMID: 17259309 PMCID: PMC1855801 DOI: 10.1128/jb.01509-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli cold shock protein CsdA is a member of the DEAD box family of ATP-dependent RNA helicases, which share a core of nine conserved motifs. The DEAD (Asp-Glu-Ala-Asp) motif for which this family is named has been demonstrated to be essential for ATP hydrolysis. We show here that CsdA exhibits in vitro ATPase and helicase activities in the presence of short RNA duplexes with either 3' or 5' extensions at 15 degrees C. In contrast to wild-type CsdA, a DQAD variant of CsdA (Glu-157-->Gln) had no detectible helicase or ATPase activity at 15 degrees C in vitro. A plasmid encoding the DQAD variant was also unable to suppress the impaired growth of the csdA null mutant at 15 degrees C. Plasmid-encoded CsdADelta444, which lacks most of the carboxy-terminal extension, enhanced the growth of a csdA null mutant at 25 degrees C but not at 15 degrees C; this truncated protein also has limited in vitro activity at 15 degrees C. These results support the physiological function of CsdA as a DEAD box ATP-dependent RNA helicase at low temperature.
Collapse
Affiliation(s)
- Anne-Marie W Turner
- Department of Life Sciences, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | | | | | | |
Collapse
|
12
|
Yang L, Lin C, Liu ZR. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 2006; 127:139-55. [PMID: 17018282 DOI: 10.1016/j.cell.2006.08.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 04/26/2006] [Accepted: 08/01/2006] [Indexed: 12/27/2022]
Abstract
The nuclear p68 RNA helicase (referred to as p68) is a prototypical member of the DEAD box family of RNA helicases. The protein plays a very important role in early organ development. In the present study, we characterized the tyrosine phosphorylation of p68 under platelet-derived growth factor (PDGF) stimulation. We demonstrated that tyrosine phosphorylation of p68 at Y593 mediated PDGF-stimulated epithelial-mesenchymal transition (EMT). We showed that PDGF treatment led to phosphorylation of p68 at Y593 in the cell nucleus. The Y593-phosphorylated p68 (referred to as phosphor-p68) promotes beta-catenin nuclear translocation via a Wnt-independent pathway. The phosphor-p68 facilitates beta-catenin nuclear translocation by blocking phosphorylation of beta-catenin by GSK-3beta and displacing Axin from beta-catenin. The beta-catenin nuclear translocation and subsequent interaction with the LEF/TCF was required for the EMT process. These data demonstrated a novel mechanism of phosphor-p68 in mediating the growth factor-induced EMT and uncovered a new pathway to promote beta-catenin nuclear translocation.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
13
|
Yang L, Lin C, Liu ZR. Signaling to the DEAD box—Regulation of DEAD-box p68 RNA helicase by protein phosphorylations. Cell Signal 2005; 17:1495-504. [PMID: 15927448 DOI: 10.1016/j.cellsig.2005.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
P68 nuclear RNA helicase is essential for normal cell growth. The protein plays a very important role in cell development and proliferation. However, the molecular mechanism by which the p68 functions in cell developmental program is not clear. We previously observed that bacterially expressed his-p68 was phosphorylated at multiple sites including serine/threonine and tyrosine [L. Yang, Z.R. Liu, Protein Expr. Purif., 35: 327]. Here we report that p68 RNA helicase is phosphorylated at tyrosine residue(s) in HeLa cells. Phosphorylation of p68 at threonine or tyrosine residues responds differently to tumor necrosis factor alpha (TNF-alpha)induced cell signal. Kinase inhibition and in vitro kinase assays demonstrate that p68 RNA helicase is a cellular target of p38 MAP kinase. Phosphorylation of p68 affects the ATPase and RNA unwinding activities of the protein. In addition, we demonstrate here that phosphorylation of p68 RNA helicase controls the function of the protein in the pre-mRNA splicing process. Interestingly, phosphorylation at different amino acid residues exhibits different regulatory effects. The data suggest that function(s) of p68 RNA helicase may be subjected to the regulation of multiple cell signal pathways.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
14
|
Yang L, Lin C, Liu ZR. Phosphorylations of DEAD box p68 RNA helicase are associated with cancer development and cell proliferation. Mol Cancer Res 2005; 3:355-63. [PMID: 15972854 DOI: 10.1158/1541-7786.mcr-05-0022] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear p68 RNA helicase is essential for normal cell growth. The protein plays a very important role in early organ development and maturation. In our previous report, we showed that recombinant p68 RNA helicase was phosphorylated at serine/threonine and tyrosine residue(s). In the present study, we examined the phosphorylation status of p68 in six different cancer cell lines and compared the results with those in cells derived from the corresponding normal tissues. We showed here that p68 was phosphorylated at tyrosine residue(s) in all tested cancer cells but not in the corresponding normal cells/tissues. The tyrosyl phosphorylation of p68 also responded to platelet-derived growth factor. It is thus clear that p68 phosphorylation at tyrosine residue(s) is associated with abnormal cell proliferation and cancer development. The tyrosyl phosphorylation(s) was diminished if the cancer cells were treated with apoptosis agents, such as tumor necrosis factor-alpha, tumor necrosis factor-related apoptosis-inducer ligand, and STI-571. The tyrosyl phosphorylation of p68, however, was not affected by other anticancer drugs, such as piceatannol, etoposide, and taxol. The close correlation between p68 phosphorylations and cancer may provide a useful diagnostic marker and potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, 23 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
15
|
Vashisht AA, Pradhan A, Tuteja R, Tuteja N. Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:76-87. [PMID: 16167897 DOI: 10.1111/j.1365-313x.2005.02511.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Helicases are involved in the metabolism of nucleic acid; this is very sensitive to the abiotic stresses that reduce plant growth and productivity. However, the molecular targets responsible for this sensitivity have not been well studied. Here we report on the isolation and characterization of cold- and salinity stress-induced pea DNA helicase 47 (PDH47). The transcript of PDH47 was induced in both shoots and roots under cold (4 degrees C) and salinity (300 mm NaCl) stress, but there was no change in response to drought stress. Tissue-specific differential regulation was observed under heat (37 degrees C) stress. ABA treatment did not alter expression of PDH47 in shoots but induced its mRNA in roots, indicating a role for PDH47 in both the ABA-independent and ABA-dependent pathways in abiotic stress. The purified recombinant protein (47 kDa) contains ATP-dependent DNA and RNA helicase and DNA-dependent ATPase activities. With the help of photoaffinity labeling, PDH47 was labeled by [alpha-32P]-ATP. PDH47 is a unique bipolar helicase that contains both 3' to 5' and 5' to 3' directional helicase activities. Anti-PDH47 antibodies immunodeplete the activities of PDH47 and inhibit in vitro translation of protein. Furthermore, the PDH47 protein showed upregulation of protein synthesis. The activities of PDH47 are stimulated after phosphorylation by protein kinase C at Ser and Thr residues. Western blot analysis and in vivo immunostaining, followed by confocal microscopy, showed PDH47 to be localized in both the nucleus and cytosol. The discovery of cold- and salinity stress-induced DNA helicase should make an important contribution to a better understanding of DNA metabolism and stress signaling in plants. Its bipolar helicase activities may also be involved in distinct cellular processes in stressed conditions.
Collapse
Affiliation(s)
- Ajay Amar Vashisht
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|
16
|
Lin C, Yang L, Yang JJ, Huang Y, Liu ZR. ATPase/helicase activities of p68 RNA helicase are required for pre-mRNA splicing but not for assembly of the spliceosome. Mol Cell Biol 2005; 25:7484-93. [PMID: 16107697 PMCID: PMC1190289 DOI: 10.1128/mcb.25.17.7484-7493.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated that p68 RNA helicase, as an essential human splicing factor, acts at the U1 snRNA and 5' splice site (5'ss) duplex in the pre-mRNA splicing process. To further analyze the function of p68 in the spliceosome, we generated two p68 mutants (motif V, RGLD to LGLD, and motif VI, HRIGR to HLIGR). ATPase and RNA unwinding assays demonstrated that the mutations abolished the RNA-dependent ATPase activity and RNA unwinding activity. The function of p68 in the spliceosome was abolished by the mutations, and the mutations also inhibited the dissociation of U1 from the 5'ss, while the mutants still interacted with the U1-5'ss duplex. Interestingly, the nonactive p68 mutants did not prevent the transition from prespliceosome to the spliceosome. The data suggested that p68 RNA helicase might actively unwind the U1-5'ss duplex. The protein might also play a role in the U4.U6/U5 addition, which did not require the ATPase and RNA unwinding activities of p68. In addition, we present evidence here to demonstrate the functional role of p68 RNA helicase in the pre-mRNA splicing process in vivo. Our experiments also showed that p68 interacted with unspliced but not spliced mRNA in vivo.
Collapse
Affiliation(s)
- Chunru Lin
- Department of Biology, Georgia State University, University Plaza, Atlanta, 30303, USA
| | | | | | | | | |
Collapse
|
17
|
Pradhan A, Chauhan VS, Tuteja R. Plasmodium falciparum DNA helicase 60 is a schizont stage specific, bipolar and dual helicase stimulated by PKC phosphorylation. Mol Biochem Parasitol 2005; 144:133-41. [PMID: 16165232 DOI: 10.1016/j.molbiopara.2005.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/07/2005] [Accepted: 08/08/2005] [Indexed: 11/28/2022]
Abstract
The fundamental biology and the biochemical processes at different developmental stages of the malaria parasite Plasmodium falciparum have not been explored in detail. As a step toward understanding the various mechanisms engaged in nucleic acid metabolism of this pathogen, particularly the essential enzymes involved in nucleic acid unwinding, recently, we have reported the isolation of the first P. falciparum DEAD-box DNA helicase 60 (PfDH60), which contained striking homology with p68 protein [Pradhan A, Chauhan VS, Tuteja R. A novel 'DEAD-box' DNA helicase from Plasmodium falciparum is homologous to p68. Mol Biochem Parasitol 2005;140:55-60]. In this study, we show novel important properties of PfDH60. Immunofluorescence assay studies revealed that the peak expression of PfDH60 is mainly in the schizont stages of the development of P. falciparum, where DNA replication is active. Interestingly, this is a bipolar DNA helicase, which unwinds dsDNA in both the directions. PfDH60 can also unwind RNA-DNA and RNA-RNA duplexes. PfDH60 is phosphorylated by protein kinase C at the Ser and Thr residues. The helicase and ATPase activities of PfDH60 were stimulated after this phosphorylation. The cell-cycle dependent expression, bipolar translocation and dual nature collectively suggest that PfDH60 may be involved in the process of DNA replication and distinct cellular processes in the parasite and this study should make an important contribution in our better understanding of DNA metabolic pathways such as repair, recombination and replication.
Collapse
Affiliation(s)
- Arun Pradhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
18
|
Kodym R, Henöckl C, Fürweger C. Identification of the human DEAD-box protein p68 as a substrate of Tlk1. Biochem Biophys Res Commun 2005; 333:411-7. [PMID: 15950181 DOI: 10.1016/j.bbrc.2005.05.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 12/20/2022]
Abstract
The activity of the human protein kinase Tlk1 is down-regulated within minutes after exposure of cells to ionizing radiation. In order to identify signaling pathways which might be relevant in the radiation response of mammalian cells we screened nuclear proteins for substrates of Tlk1. Among several proteins one could be identified as p68 RNA helicase. Furthermore, it could be shown that Tlk1 phosphorylates immunoprecipitated p68. The phosphorylation of the C-terminal fragment of p68 by rTlk1 reduced its affinity to single stranded RNA in a gel shift assay. In addition, it could be demonstrated that increasing the Tlk1 activity in HT1080 cells by forced Tlk1 overexpression leads to an increased phosphorylation of endogenous p68, arguing that p68 might be a physiological substrate of Tlk1. These findings open the possibility that Tlk1 might participate in diverse biologic functions like cell growth and differentiation, pre-mRNA splicing, and transcriptional coactivation.
Collapse
Affiliation(s)
- Reinhard Kodym
- Department of Radiobiology, Clinic for Radiotherapy and Radiobiology, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|