1
|
Ušaj M, Pavlin M, Kandušer M. Feasibility Study for the Use of Gene Electrotransfer and Cell Electrofusion as a Single-Step Technique for the Generation of Activated Cancer Cell Vaccines. J Membr Biol 2024; 257:377-389. [PMID: 39133276 PMCID: PMC11584437 DOI: 10.1007/s00232-024-00320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024]
Abstract
Cell-based therapies hold great potential for cancer immunotherapy. This approach is based on manipulation of dendritic cells to activate immune system against specific cancer antigens. For the development of an effective cell vaccine platform, gene transfer, and cell fusion have been used for modification of dendritic or tumor cells to express immune (co)stimulatory signals and to load dendritic cells with tumor antigens. Both, gene transfer and cell fusion can be achieved by single technique, a cell membrane electroporation. The cell membrane exposed to external electric field becomes temporarily permeable, enabling introduction of genetic material, and also fusogenic, enabling the fusion of cells in the close contact. We tested the feasability of combining gene electrotransfer and electrofusion into a single-step technique and evaluated the effects of electroporation buffer, pulse parameters, and cell membrane fluidity for single or combined method of gene delivery or cell fusdion. We determined the percentage of fused cells expressing green fluorescence protein (GFP) in a murine cell model of melanoma B16F1, cell line used in our previous studies. Our results suggest that gene electrotransfer and cell electrofusion can be applied in a single step. The percentage of viable hybrid cells expressing GFP depends on electric pulse parameters and the composition of the electroporation buffer. Furthermore, our results suggest that cell membrane fluidity is not related to the efficiency of the gene electrotransfer and electrofusion. The protocol is compatible with microfluidic devices, however further optimization of electric pulse parameters and buffers is still needed.
Collapse
Affiliation(s)
- Marko Ušaj
- Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
- Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Maša Kandušer
- Institute for Pharmacy, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Hawlina S, Chowdhury HH, Smrkolj T, Zorec R. Dendritic cell-based vaccine prolongs survival and time to next therapy independently of the vaccine cell number. Biol Direct 2022; 17:5. [PMID: 35197090 PMCID: PMC8864901 DOI: 10.1186/s13062-022-00318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
In 2009, new EU legislation regulating advanced therapy medicinal products (ATMPs), consisting of gene therapy, tissue engineering and cell-based medicines, was introduced. Although less than 20 ATMPs were authorized since that time, the awarding of the Nobel Prize for Physiology or Medicine in 2018 revived interest in developing new cancer immunotherapies involving significant manipulation of the patient's own immune cells, including lymphocytes and dendritic cells. The lymphocytes are mainly thought to directly affect tumour cells, dendritic cells are involved in indirect mechanisms by antigen presentation to other leukocytes orchestrating the immune response. It is the latter cells that are the focus of this brief review. Based on the recent results of our study treating patients with castration-resistant prostate cancer (CRPC) with an immunohybridoma cell construct (termed aHyC), produced by electrofusion of autologous tumour and dendritic cells, we compare their effectiveness with a matched documented control group of patients. The results revealed that cancer-specific survival and the time to next in-line therapy (TTNT) were both significantly prolonged versus controls. When patients were observed for longer periods since the time of diagnosis of CRPC, 20% of patients had not yet progressed to the next in-line therapy even though the time under observation was ~ 80 months. Interestingly, analysis of survival of patients revealed that the effectiveness of treatment was independent of the number of cells in the vaccine used for treatment. It is concluded that autologous dendritic cell-based immunotherapy is a new possibility to treat not only CRPC but also other solid tumours.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia
| | - Tomaž Smrkolj
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Marjanovič I, Kandušer M, Miklavčič D, Keber MM, Pavlin M. Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency. J Membr Biol 2014; 247:1259-67. [PMID: 25146882 DOI: 10.1007/s00232-014-9714-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
Collapse
Affiliation(s)
- Igor Marjanovič
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
5
|
Usaj M, Flisar K, Miklavcic D, Kanduser M. Electrofusion of B16-F1 and CHO cells: The comparison of the pulse first and contact first protocols. Bioelectrochemistry 2013; 89:34-41. [DOI: 10.1016/j.bioelechem.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 06/24/2012] [Accepted: 09/03/2012] [Indexed: 01/25/2023]
|
6
|
Usaj M, Kanduser M. The Systematic Study of the Electroporation and Electrofusion of B16-F1 and CHO Cells in Isotonic and Hypotonic Buffer. J Membr Biol 2012; 245:583-90. [DOI: 10.1007/s00232-012-9470-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/24/2012] [Indexed: 12/30/2022]
|
7
|
Pedrazzoli F, Chrysantzas I, Dezzani L, Rosti V, Vincitorio M, Sitar G. Cell fusion in tumor progression: the isolation of cell fusion products by physical methods. Cancer Cell Int 2011; 11:32. [PMID: 21933375 PMCID: PMC3187729 DOI: 10.1186/1475-2867-11-32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 09/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell fusion induced by polyethylene glycol (PEG) is an efficient but poorly controlled procedure for obtaining somatic cell hybrids used in gene mapping, monoclonal antibody production, and tumour immunotherapy. Genetic selection techniques and fluorescent cell sorting are usually employed to isolate cell fusion products, but both procedures have several drawbacks. RESULTS Here we describe a simple improvement in PEG-mediated cell fusion that was obtained by modifying the standard single-step procedure. We found that the use of two PEG undertreatments obtains a better yield of cell fusion products than the standard method, and most of these products are bi- or trinucleated polykaryocytes. Fusion rate was quantified using fluorescent cell staining microscopy. We used this improved cell fusion and cell isolation method to compare giant cells obtained in vitro and giant cells obtained in vivo from patients with Hodgkin's disease and erythroleukemia. CONCLUSIONS In the present study we show how to improve PEG-mediated cell fusion and that cell separation by velocity sedimentation offers a simple alternative for the efficient purification of cell fusion products and to investigate giant cell formation in tumor development.
Collapse
Affiliation(s)
- Filippo Pedrazzoli
- Department of Internal Medicine IRCCS Policlinico San Matteo, viale Golgi 19, Pavia 27100 Italy and University of Pavia, Strada Nuova, Pavia 27100; Italy
| | - Iraklis Chrysantzas
- Department of Internal Medicine IRCCS Policlinico San Matteo, viale Golgi 19, Pavia 27100 Italy and University of Pavia, Strada Nuova, Pavia 27100; Italy
| | - Luca Dezzani
- Department of Internal Medicine IRCCS Policlinico San Matteo, viale Golgi 19, Pavia 27100 Italy and University of Pavia, Strada Nuova, Pavia 27100; Italy
| | - Vittorio Rosti
- Department of Internal Medicine IRCCS Policlinico San Matteo, viale Golgi 19, Pavia 27100 Italy and University of Pavia, Strada Nuova, Pavia 27100; Italy
| | - Massimo Vincitorio
- Department of Internal Medicine IRCCS Policlinico San Matteo, viale Golgi 19, Pavia 27100 Italy and University of Pavia, Strada Nuova, Pavia 27100; Italy
| | - Giammaria Sitar
- Department of Internal Medicine IRCCS Policlinico San Matteo, viale Golgi 19, Pavia 27100 Italy and University of Pavia, Strada Nuova, Pavia 27100; Italy
| |
Collapse
|
8
|
Ušaj M, Trontelj K, Miklavčič D, Kandušer M. Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. J Membr Biol 2010; 236:107-16. [DOI: 10.1007/s00232-010-9272-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
|
9
|
Kondo N, Miyauchi K, Meng F, Iwamoto A, Matsuda Z. Conformational changes of the HIV-1 envelope protein during membrane fusion are inhibited by the replacement of its membrane-spanning domain. J Biol Chem 2010; 285:14681-8. [PMID: 20197275 DOI: 10.1074/jbc.m109.067090] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To help understand the dynamic nature of membrane fusion induced by the human immunodeficiency virus-1 (HIV-1) envelope protein, we developed a new cell-based real-time assay system employing a pair of novel reporter proteins. The reporter proteins consist of a pair of split Renilla luciferase (spRL) fused to split green fluorescent protein (spGFP). The spGFP modules were chosen not only to compensate weak self-association of spRL but also to provide visual reporter signals during membrane fusion. Use of this reporter together with a membrane permeable substrate for Renilla luciferase achieved a simple real-time monitoring of membrane fusion using live cells. We analyzed the HIV-1 envelope mutants whose membrane-spanning domains were replaced with that of glycophorin A or vesicular stomatitis virus G-protein. These mutants showed a slower kinetics of membrane fusion. The analysis of membrane fusion in the presence of fusion inhibitors, soluble CD4 and C34, revealed that these replacements prolonged the period during which the mutants were sensitive to the inhibitors, as compared with the wild type. These results suggest that the mutations within the membrane-spanning domains exerted an allosteric effect on the HIV-1 envelope protein, probably affecting the receptor-induced conformational changes of the ectodomain of the protein.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
10
|
Gong J, Koido S, Calderwood SK. Cell fusion: from hybridoma to dendritic cell-based vaccine. Expert Rev Vaccines 2008; 7:1055-68. [PMID: 18767954 DOI: 10.1586/14760584.7.7.1055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The deployment of dendritic cell (DC) and tumor cell fusions is increasing in tumor immunotherapy. In animal and human studies, fusion cell vaccines have been shown to possess the elements essential for processing and presenting tumor antigens to host immune cells, for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens. Moreover, fusion cell vaccines provide protection against challenge with tumor cells and mediate regression of established tumors. Despite these unique features of fusion cell vaccines and the observation of tumor eradication in animal studies, limited success has occurred in clinical trials. This article reviews the methods used for optimizing the preparation and selection of DC-tumor fusion cells and analyzes factors influencing the success or failure of fusion cell-mediated immunotherapy. In addition, we discuss the challenges facing effective fusion cell vaccine production, including factors in preparation, selection and quality control of fusion cell vaccines, as well as approaches for enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Jianlin Gong
- Department of Medicine, Boston University Medical School, Boston, MA 02118, USA.
| | | | | |
Collapse
|
11
|
Monitoring lysosomal fusion in electrofused hybridoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:483-90. [PMID: 17996722 DOI: 10.1016/j.bbamem.2007.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/17/2007] [Accepted: 10/11/2007] [Indexed: 11/21/2022]
Abstract
Dendritic and tumor cells are fused to produce hybridoma cells, which are considered to be used as cellular vaccines to treat cancer. Previous strategies for hybridoma cell production were based on the quantification of the electrofusion yield by labeling the cytoplasm of both parental cell types. However, a better physiological strategy would be to label subcellular structures related directly to the antigen presentation process. Therefore, we here electrofused the same amount of CHO cells stained with red and green fluorescent dextrans and have monitored the yield of hybridoma cell formation by measuring the fusion of red and green late endocytic organelles that are involved in antigen presentation. By using confocal microscopy, the level of fused, fluorescently labelled late endocytic compartments in a single hybridoma cell was determined. The results demonstrate that organellar fusion occurs in hybridomas, which is time- and temperature-dependent. This approach therefore provides a new method for the hybridoma cell vaccine evaluation, which is based on the intracellular physiological mechanism of antigen presentation.
Collapse
|
12
|
Zhang Y, Ma B, Zhou Y, Zhang M, Qiu X, Sui Y, Zhang X, Ma B, Fan Q. Dendritic cells fused with allogeneic breast cancer cell line induce tumor antigen-specific CTL responses against autologous breast cancer cells. Breast Cancer Res Treat 2006; 105:277-86. [PMID: 17187233 DOI: 10.1007/s10549-006-9457-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/13/2006] [Indexed: 01/31/2023]
Abstract
Dendritic cell (DC)/tumor cell fusion vaccine has been revealed as a promising tool for the antitumor immunotherapy. Previous research has shown that fusion hybrids of human DCs and autologous tumor cells can induce cytotoxic T lymphocyte (CTL) responses against autologous tumor cells in animal models and human clinical trials. However, a major restriction factor for the clinical use is the difficulty for preparation of sufficient amount of autologous tumor cells especially for the patients with metastasis cancer whose primary tumor lesion is not clear or has been resected. In this study, allogeneic breast cancer cell line MCF-7 cells were electrofused to autologous DCs from patient with breast cancer as a strategy to deliver shared breast cancer antigens to DCs. Fusion cells generated by autologous DCs and allogeneic MCF-7 were able to induce autologous T lymphocytes proliferation, high levels of IFN-gamma production and CTL responses. CTLs induced by DCs/allogeneic MCF-7 fusion cells were able to kill autologous breast cancer cells in an antigen specific and HLA restriction manner. Our study may provide the experiment basis for the use of allogeneic breast cancer cell line in the DC/tumor cell fusion cell vaccination strategy.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center of Orthopaedic Surgery, Orthopaedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Huerta L, López-Balderas N, Larralde C, Lamoyi E. Discriminating in vitro cell fusion from cell aggregation by flow cytometry combined with fluorescence resonance energy transfer. J Virol Methods 2006; 138:17-23. [PMID: 16934339 DOI: 10.1016/j.jviromet.2006.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 07/08/2006] [Accepted: 07/13/2006] [Indexed: 11/23/2022]
Abstract
Expression of fusion proteins in the plasma membrane enables cells to bind and fuse with surrounding cells to form syncytia. Cell fusion can have important functional outcomes for the interacting cells, as syncytia formation does in AIDS pathogenesis. Studies on cell fusion would be facilitated by a quantitative method able to discriminate between cellular aggregates and bona fide fused cells in a cell population. Flow cytometry with fluorescence resonance energy transfer is applied here for analyzing fusion of HIV-1 envelope-expressing cells with CD4+ Jurkat cells. Fusion partners were labeled with the vital lipophilic fluorescent probes DiO (green) and DiI (red) and FRET is manifested by an enhancement of the DiI red fluorescence intensity in double fluorescent cells, thus allowing discrimination between fused and aggregated cells. The inhibitory effect of anti-CD4 monoclonal antibodies and the inhibitory peptide T-20 upon cell fusion were readily quantified by this technique. This method allows the distinction of fused and aggregated cells even when they are at low frequencies.
Collapse
Affiliation(s)
- Leonor Huerta
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Distrito Federal, C.P. 04510, Mexico.
| | | | | | | |
Collapse
|
14
|
Cheong SC, Blangenois I, Franssen JD, Servais C, Phan V, Trakatelli M, Bruyns C, Vile R, Velu T, Brandenburger A. Generation of cell hybrids via a fusogenic cell line. J Gene Med 2006; 8:919-28. [PMID: 16602137 DOI: 10.1002/jgm.906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hybrids obtained by fusion between tumour cells (TC) and dendritic cells (DC) have been proposed as anti-tumour vaccines because of their potential to combine the expression of tumour-associated antigens with efficient antigen presentation. The classical methods used for fusion, polyethylene glycol (PEG) and electrofusion, are cytotoxic and generate cell debris that can be taken up by DC rendering the identification of true hybrids difficult. METHODS We have established a stable cell line expressing a viral fusogenic membrane glycoprotein (FMG) that is not itself susceptible to fusion. This cell line has been used to generate hybrids and to evaluate the relevance of tools used for hybrid detection. RESULTS This FMG-expressing cell line promotes fusion between autologous or allogeneic TC and DC in any combination, generating 'tri-parental hybrids'. At least 20% of TC are found to be integrated into hybrids. CONCLUSIONS It is speculated that this tri-parental hybrid approach offers new possibilities to further modulate the anti-tumour effect of the DC/TC hybrids since it allows the expression of relevant immunostimulatory molecules by appropriate engineering of the fusogenic cell line.
Collapse
Affiliation(s)
- Siew Chiat Cheong
- Laboratory of Experimental and Cellular Cancerology, Université Libre de Bruxelles, IRIBHM-IBMM, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xiao H, Li X, Zou H, Yang L, Wang Y, Wang H, Le XC. CE-LIF coupled with flow cytometry for high-throughput quantitation of fluorophores in single intact cells. Electrophoresis 2006; 27:3452-9. [PMID: 16944459 DOI: 10.1002/elps.200500536] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report a method of coupled CE-LIF detection with flow cytometry for high-throughput determination and quantitation of fluorophores in single intact K562/S (KS) cells. The membrane properties of KS cell including fluophore transport rate and apparent permeability coefficient were further quantitatively characterized. The method has advantages for accurate quantitation and unique capacity of high-throughput analysis. The strategy will be useful for the quantitation of fluorophores in the intact cells, such as measurement of multidrug resistance, quantitation of specific protein expression, and quantitative characterization of protein and enzyme functions.
Collapse
Affiliation(s)
- Hua Xiao
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Sukhorukov VL, Reuss R, Endter JM, Fehrmann S, Katsen-Globa A, Gessner P, Steinbach A, Müller KJ, Karpas A, Zimmermann U, Zimmermann H. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem Biophys Res Commun 2006; 346:829-39. [PMID: 16780801 DOI: 10.1016/j.bbrc.2006.05.193] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 05/29/2006] [Indexed: 11/25/2022]
Abstract
Electrofusion of tumour and dendritic cells (DCs) is a promising approach for production of DC-based anti-tumour vaccines. Although human DCs are well characterised immunologically, little is known about their biophysical properties, including dielectric and osmotic parameters, both of which are essential for the development of efficient electrofusion protocols. In the present study, human DCs from the peripheral blood along with a tumour cell line used as a model fusion partner were examined by means of time-resolved cell volumetry and electrorotation. Based on the biophysical cell data, the electrofusion protocol could be rapidly optimised with respect to the sugar composition of the fusion medium, duration of hypotonic treatment, frequency range for stable cell alignment, and field strengths of breakdown pulses triggering membrane fusion. The hypotonic electrofusion consistently gave a tumour-DC hybrid rate of up to 19%, as determined by counting dually labelled fluorescent hybrids in a microscope. This fusion rate is nearly twice as high as that usually reported in the literature for isotonic media. The experimental findings and biophysical approach presented here are generally useful for the development of efficient electrofusion protocols, especially for rare and valuable human cells.
Collapse
Affiliation(s)
- Vladimir L Sukhorukov
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|