1
|
Gudanis D, Zielińska K, Baranowski D, Kierzek R, Kozłowski P, Gdaniec Z. Impact of a Single Nucleotide Change or Non-Nucleoside Modifications in G-Rich Region on the Quadruplex-Duplex Hybrid Formation. Biomolecules 2021; 11:biom11081236. [PMID: 34439902 PMCID: PMC8392043 DOI: 10.3390/biom11081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/02/2022] Open
Abstract
In this paper, a method to discriminate between two target RNA sequences that differ by one nucleotide only is presented. The method relies on the formation of alternative structures, i.e., quadruplex–duplex hybrid (QDH) and duplex with dangling ends (Dss), after hybridization of DNA or RNA G-rich oligonucleotides with target sequences containing 5′–GGGCUGG–3′ or 5′–GGGCGGG–3′ fragments. Using biophysical methods, we studied the effect of oligonucleotide types (DNA, RNA), non-nucleotide modifications (aliphatic linkers or abasic), and covalently attached G4 ligand on the ability of G-rich oligonucleotides to assemble a G-quadruplex motif. We demonstrated that all examined non-nucleotide modifications could mimic the external loops in the G-quadruplex domain of QDH structures without affecting their stability. Additionally, some modifications, in particular the presence of two abasic residues in the G-rich oligonucleotide, can induce the formation of non-canonical QDH instead of the Dss structure upon hybridization to a target sequence containing the GGGCUGG motif. Our results offer new insight into the sequential requirements for the formation of G-quadruplexes and provide important data on the effects of non-nucleotide modifications on G-quadruplex formation.
Collapse
Affiliation(s)
- Dorota Gudanis
- Correspondence: (D.G.); (Z.G.); Tel.: +48-61-852-85-03 (ext. 1286) (D.G.)
| | | | | | | | | | - Zofia Gdaniec
- Correspondence: (D.G.); (Z.G.); Tel.: +48-61-852-85-03 (ext. 1286) (D.G.)
| |
Collapse
|
2
|
Varizhuk A, Ischenko D, Tsvetkov V, Novikov R, Kulemin N, Kaluzhny D, Vlasenok M, Naumov V, Smirnov I, Pozmogova G. The expanding repertoire of G4 DNA structures. Biochimie 2017; 135:54-62. [PMID: 28109719 DOI: 10.1016/j.biochi.2017.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 11/17/2022]
Abstract
The definition of DNA and RNA G-quadruplexes (G4s) has recently been broadened to include structures with certain defects: bulges, G-vacancies or mismatches. Despite the striking progress in computational methods for assessing G4 folding propensity, predicting G4s with defects remains problematic, reflecting the enhanced sequential diversity of these motifs. "Imperfect" G4 motifs, i.e., those containing interrupted or truncated G-runs, are typically omitted from genomic analyses. We report here studies of G4s with defects and compare these structures with classical ("perfect") quadruplexes. Thermal stabilities and ligand interactions are also discussed. We exploited a simple in-house computational tool for mining putative G4s with defects in the human genome. The obtained profiles of the genomic distribution of imperfect G4 motifs were analyzed. Collectively, our findings suggest that, similar to classical G4s, imperfect G4s could be considered as potential regulatory elements, pathology biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anna Varizhuk
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Engenlhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - Dmitry Ischenko
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Vladimir Tsvetkov
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Department of Molecular Virology, FSBI Research Institute of Influenza, Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - Roman Novikov
- Engenlhardt Institute of Molecular Biology, 119991 Moscow, Russia; N.D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Nikolay Kulemin
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Dmitry Kaluzhny
- Engenlhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - Maria Vlasenok
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Vladimir Naumov
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia
| | - Igor Smirnov
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia
| | - Galina Pozmogova
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia.
| |
Collapse
|
3
|
Esposito V, Pepe A, Filosa R, Mayol L, Virgilio A, Galeone A. A novel pyrimidine tetrad contributing to stabilize tetramolecular G-quadruplex structures. Org Biomol Chem 2016; 14:2938-43. [DOI: 10.1039/c5ob02358k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Amino-2′-deoxyuridine forms an eight hydrogen-bonded tetrad stabilizing a parallel G-quadruplex structure more efficiently than tetrads formed by 5-bromo-2′-deoxyuridine and thymidine.
Collapse
Affiliation(s)
- V. Esposito
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Pepe
- Department of Science
- University of Basilicata
- Potenza
- Italy
| | - R. Filosa
- Department of Experimental Medicine
- Second University of Naples
- 80138 Napoli
- Italy
| | - L. Mayol
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Virgilio
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Galeone
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| |
Collapse
|
4
|
D'Atri V, Borbone N, Amato J, Gabelica V, D'Errico S, Piccialli G, Mayol L, Oliviero G. DNA-based nanostructures: The effect of the base sequence on octamer formation from d(XGGYGGT) tetramolecular G-quadruplexes. Biochimie 2013; 99:119-28. [PMID: 24316277 DOI: 10.1016/j.biochi.2013.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022]
Abstract
In a previous work we have demonstrated that the DNA sequence CGGTGGT folds into a higher order G-quadruplex structure (2Q), obtained by the 5'-5' stacking of two unusual G(:C):G(:C):G(:C):G(:C) planar octads belonging to two identical tetra-stranded parallel quadruplexes, when annealed in the presence of ammonium or potassium ions. In the present paper, we discuss the role played by the title nucleosides X and Y (where X and Y stand for A, C, G, or T) on the formation and stability of 2Q structures formed by the XGGYGGT oligodeoxynucleotides. We found that the above mentioned dimerization pathway is not peculiar to the CGGTGGT sequence, but is possible for all the remaining CGGYGGT sequences (with Y = A, C, or G). Furthermore, we have found that the TGGAGGT sequence, despite the absence of the 5'-ending C, is also capable of forming a 2Q-like higher order quadruplex by using a slightly different dimerization interface, as characterized by NMR spectroscopy. To the best of our knowledge, this is the first characterization of a quadruplex multimer formed by an oligodeoxynucleotide presenting a thymine at its 5'-end. Examples of such structures were observed previously only in crystals and in the presence of non-physiological cations. Our results expand the repertoire of DNA quadruplex nanostructures of chosen length and add further complexity to the structural polymorphism of G-rich DNA sequences.
Collapse
Affiliation(s)
- Valentina D'Atri
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Jussara Amato
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Valérie Gabelica
- Univ. Bordeaux, IECB, ARNA Laboratory, F-33600 Pessac, France; INSERM, U869, ARNA laboratory, F-33000 Bordeaux, France
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giorgia Oliviero
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
5
|
Borbone N, Amato J, Oliviero G, D'Atri V, Gabelica V, De Pauw E, Piccialli G, Mayol L. d(CGGTGGT) forms an octameric parallel G-quadruplex via stacking of unusual G(:C):G(:C):G(:C):G(:C) octads. Nucleic Acids Res 2011; 39:7848-57. [PMID: 21715378 PMCID: PMC3177218 DOI: 10.1093/nar/gkr489] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among non-canonical DNA secondary structures, G-quadruplexes are currently widely studied because of their probable involvement in many pivotal biological roles, and for their potential use in nanotechnology. The overall quadruplex scaffold can exhibit several morphologies through intramolecular or intermolecular organization of G-rich oligodeoxyribonucleic acid strands. In particular, several G-rich strands can form higher order assemblies by multimerization between several G-quadruplex units. Here, we report on the identification of a novel dimerization pathway. Our Nuclear magnetic resonance, circular dichroism, UV, gel electrophoresis and mass spectrometry studies on the DNA sequence dCGGTGGT demonstrate that this sequence forms an octamer when annealed in presence of K+ or NH4+ ions, through the 5′-5′ stacking of two tetramolecular G-quadruplex subunits via unusual G(:C):G(:C):G(:C):G(:C) octads.
Collapse
Affiliation(s)
- Nicola Borbone
- Dipartimento di Chimica delle Sostanze Naturali, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Evstigneev MP, Parkinson JA, Lantushenko AO, Kostjukov VV, Pahomov VI. Hexamer oligonucleotide topology and assembly under solution phase NMR and theoretical modeling scrutiny. Biopolymers 2010; 93:1023-38. [PMID: 20623667 DOI: 10.1002/bip.21515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The entire family of noncomplementary hexamer oligodeoxyribonucleotides d(GCXYGC) (X and Y = A, G, C, or T) were assessed for topological indicators and equilibrium thermodynamics using a priori molecular modeling and solution phase NMR spectroscopy. Feasible modeled hairpin structures formed a basis from which solution structure and equilibria for each oligonucleotide were considered. ¹H and ³¹P variable temperature-dependent (VT) and concentration-dependent NMR data, NMR signal assignments, and diffusion parameters led to d(GCGAGC) and d(GCGGGC) being understood as exceptions within the family in terms of self-association and topological character. A mean diffusion coefficient D(298 K) = (2.0 ± 0.07) × 10⁻¹⁰ m² s⁻¹ was evaluated across all hexamers except for d(GCGAGC) (D(298 K) = 1.7 × 10⁻¹⁰ m² s⁻¹) and d(GCGGGC) (D(298 K) = 1.2 × 10⁻¹⁰ m² s⁻¹). Melting under VT analysis (T(m) = 323 K) combined with supporting NMR evidence confirmed d(GCGAGC) as the shortest tandem sheared GA mismatched duplex. Diffusion measurements were used to conclude that d(GCGGGC) preferentially exists as the shortest stable quadruplex structure. Thermodynamic analysis of all data led to the assertion that, with the exception of XY = GA and GG, the remaining noncomplementary oligonucleotides adopt equilibria between monomer and duplex, contributed largely by monomer random-coil forms. Contrastingly, d(GCGAGC) showed preference for tandem sheared GA mismatch duplex formation with an association constant K = 3.9 × 10⁵M⁻¹. No direct evidence was acquired for hairpin formation in any instance although its potential existence is considered possible for d(GCGAGC) on the basis of molecular modeling studies.
Collapse
Affiliation(s)
- Maxim P Evstigneev
- Sevastopol National Technical University, Department of Physics, Sevastopol 99053, Ukraine.
| | | | | | | | | |
Collapse
|
7
|
Oliviero G, Borbone N, Amato J, D'Errico S, Galeone A, Piccialli G, Varra M, Mayol L. Synthesis of quadruplex-forming tetra-end-linked oligonucleotides: effects of the linker size on quadruplex topology and stability. Biopolymers 2009; 91:466-77. [PMID: 19189376 DOI: 10.1002/bip.21153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
G-quadruplexes are characteristic structural arrangements of guanine-rich DNA sequences that abound in regions with relevant biological significance. These structures are highly polymorphic differing in the number and polarity of the strands, loop composition, and conformation. Furthermore, the cation species present in solution strongly influence the topology of the G-quadruplexes. Recently, we reported the synthesis and structural studies of new G-quadruplex forming oligodeoxynucleotides (ODNs) in which the 3'- and/or the 5'-ends of four ODN strands are linked together by a non-nucleotidic tetra-end-linker (TEL). These TEL-ODN analogs having the sequence TGGGGT are able to form parallel G-quadruplexes characterized by a remarkable high thermal stability. We report here an investigation about the influence of the reduction of the TEL size on the molecularity, topology, and stability of the resulting TEL-G-quadruplexes using a combination of circular dichroism (CD), CD melting, (1)H NMR spectroscopy, gel electrophoresis, and molecular modeling data. We found that all TEL-(TGGGGT)(4) analogs, regardless the TEL size and the structural orientation of the ODN branches, formed parallel TEL-G-quadruplexes. The molecular modeling studies appear to be consistent with the experimental CD and NMR data revealing that the G-quadruplexes formed by TEL-ODNs having the longer TEL (L1-4) are more stable than the corresponding G-quadruplexes having the shorter TEL (S1-4). The relative stability of S1-4 was also reported. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 466-477, 2009.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Webba da Silva M. NMR methods for studying quadruplex nucleic acids. Methods 2008; 43:264-77. [PMID: 17967697 DOI: 10.1016/j.ymeth.2007.05.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy has traditionally played a central role in examining quadruplex structure, dynamics, and interactions. Here, an overview is given of the methods currently applied to structural, dynamics, thermodynamics, and kinetics studies of nucleic acid quadruplexes and associated cations.
Collapse
Affiliation(s)
- Mateus Webba da Silva
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, UK.
| |
Collapse
|