1
|
Shahmoradi Ghahe S, Drabikowski K, Stasiak M, Topf U. Identification of a Non-canonical Function of Prefoldin Subunit 5 in Proteasome Assembly. J Mol Biol 2024; 436:168838. [PMID: 39490918 DOI: 10.1016/j.jmb.2024.168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The prefoldin complex is a heterohexameric, evolutionarily conserved co-chaperone that assists in folding of polypeptides downstream of the protein translation machinery. Loss of prefoldin function leads to impaired solubility of cellular proteins. The degradation of proteins by the proteasome is an integral part of protein homeostasis. Failure of regulated protein degradation can lead to the accumulation of misfolded and defective proteins. We show that prefoldin subunit 5 is required for proteasome activity by contributing to the assembly of the 26S proteasome. In particular, we found that absence of the prefoldin subunit 5 impairs formation of the Rpt ring subcomplex of the proteasome. Concomitant deletion of PFD5 and HSM3, a chaperone for assembly of the ATPase subunits comprising the Rpt ring, exacerbates this effect, suggesting a synergistic relationship between the two factors in proteasome assembly. Thus, our findings reveal a regulatory mechanism wherein prefoldin subunit 5 plays a crucial role in maintaining proteasome integrity, thereby influencing the degradation of proteins.
Collapse
Affiliation(s)
- Somayeh Shahmoradi Ghahe
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Krzysztof Drabikowski
- Laboratory of Biological Chemistry of Metal Ions, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Stasiak
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Ju D, Wu S, Li L, Xie Y. Ubiquitylation-independent cotranslational degradation of dihydrofolate reductase and ubiquitin. Biochem Biophys Res Commun 2024; 702:149651. [PMID: 38350414 DOI: 10.1016/j.bbrc.2024.149651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Nascent proteins are degraded during or immediately after synthesis, a process called cotranslational protein degradation (CTPD). Although CTPD was observed decades ago, it has never been fully explored mechanistically and functionally. We show here that dihydrofolate reductase (DHFR) and ubiquitin (Ub), two stable proteins widely used in protein degradation studies, are actually subject to CTPD. Unlike canonical posttranslational protein degradation, CTPD of DHFR and Ub does not require prior ubiquitylation. Our data also suggest that protein expression level and N-terminal folding pattern may be two critical determinants for CTPD. Thus, this study reveals that CTPD plays a role in regulating the homeostasis of long-lived proteins and provides insights into the mechanism of CTPD.
Collapse
Affiliation(s)
- Donghong Ju
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shichao Wu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Li
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Youming Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Chow EWL, Song Y, Chen J, Xu X, Wang J, Chen K, Gao J, Wang Y. The transcription factor Rpn4 activates its own transcription and induces efflux pump expression to confer fluconazole resistance in Candida auris. mBio 2023; 14:e0268823. [PMID: 38014938 PMCID: PMC10746192 DOI: 10.1128/mbio.02688-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Candida auris is a recently emerged pathogenic fungus of grave concern globally due to its resistance to conventional antifungals. This study takes a whole-genome approach to explore how C. auris overcomes growth inhibition imposed by the common antifungal drug fluconazole. We focused on gene disruptions caused by a "jumping genetic element" called transposon, leading to fluconazole resistance. We identified mutations in two genes, each encoding a component of the Ubr2/Mub1 ubiquitin-ligase complex, which marks the transcription regulator Rpn4 for degradation. When either protein is absent, stable Rpn4 accumulates in the cell. We found that Rpn4 activates the expression of itself as well as the main drug efflux pump gene CDR1 by binding to a PACE element in the promoter. Furthermore, we identified an amino acid change in Ubr2 in many resistant clinical isolates, contributing to Rpn4 stabilization and increased fluconazole resistance.
Collapse
Affiliation(s)
- Eve W. L. Chow
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yabing Song
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinxin Chen
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Xu
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Kun Chen
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Sekaran S, Park S. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2. J Biol Chem 2023; 299:102870. [PMID: 36621624 PMCID: PMC9922823 DOI: 10.1016/j.jbc.2023.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The proteasome holoenzyme is a complex molecular machine that degrades most proteins. In the proteasome holoenzyme, six distinct ATPase subunits (Rpt1 through Rpt6) enable protein degradation by injecting protein substrates into it. Individual Rpt subunits assemble into a heterohexameric "Rpt ring" in a stepwise manner, by binding to their cognate chaperones. Completion of the heterohexameric Rpt ring correlates with release of a specific chaperone, Nas2; however, it is unclear whether and how this event may ensure proper Rpt ring assembly. Here, we examined the action of Nas2 by capturing the poorly characterized penultimate step of heterohexameric Rpt ring assembly. For this, we used a heterologous Escherichia coli system coexpressing all Rpt subunits and assembly chaperones as well as Saccharomyces cerevisiae to track Nas2 actions during endogenous Rpt ring assembly. We show that Nas2 uses steric hindrance to block premature progression of the penultimate step into the final step of Rpt ring assembly. Importantly, Nas2 can activate an assembly checkpoint via its steric activity, when the last ATPase subunit, Rpt1, cannot be added in a timely manner. This checkpoint can be relieved via Nas2 release, when Nas2 recognizes proper addition of Rpt1 to one side of its cognate Rpt5, and ATP hydrolysis by Rpt4 on the other side of Rpt5, allowing completion of Rpt ring assembly. Our findings reveal dual criteria for Nas2 release, as a mechanism to ensure both the composition and functional competence of a newly assembled proteasomal ATPase, to generate the proteasome holoenzyme.
Collapse
Affiliation(s)
- Suganya Sekaran
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Soyeon Park
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
5
|
Paxman J, Zhou Z, O'Laughlin R, Liu Y, Li Y, Tian W, Su H, Jiang Y, Holness SE, Stasiowski E, Tsimring LS, Pillus L, Hasty J, Hao N. Age-dependent aggregation of ribosomal RNA-binding proteins links deterioration in chromatin stability with challenges to proteostasis. eLife 2022; 11:e75978. [PMID: 36194205 PMCID: PMC9578700 DOI: 10.7554/elife.75978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of Saccharomyces cerevisiae, a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes.
Collapse
Affiliation(s)
- Julie Paxman
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Zhen Zhou
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Richard O'Laughlin
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Yuting Liu
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yang Li
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Wanying Tian
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Hetian Su
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yanfei Jiang
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Shayna E Holness
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Elizabeth Stasiowski
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Lorraine Pillus
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- UCSD Moores Cancer Center, University of California San, DiegoLa JollaUnited States
| | - Jeff Hasty
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Nan Hao
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
6
|
Nahar A, Sokolova V, Sekaran S, Orth JD, Park S. Assembly checkpoint of the proteasome regulatory particle is activated by coordinated actions of proteasomal ATPase chaperones. Cell Rep 2022; 39:110918. [PMID: 35675778 PMCID: PMC9214829 DOI: 10.1016/j.celrep.2022.110918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
The proteasome holoenzyme regulates the cellular proteome via degrading most proteins. In its 19-subunit regulatory particle (RP), a heterohexameric ATPase enables protein degradation by injecting protein substrates into the core peptidase. RP assembly utilizes "checkpoints," where multiple dedicated chaperones bind to specific ATPase subunits and control the addition of other subunits. Here, we find that the RP assembly checkpoint relies on two common features of the chaperones. Individual chaperones can distinguish an RP, in which their cognate ATPase persists in the ATP-bound state. Chaperones then together modulate ATPase activity to facilitate RP subunit rearrangements for switching to an active, substrate-processing state in the resulting proteasome holoenzyme. Thus, chaperones may sense ATP binding and hydrolysis as a readout for the quality of the RP complex to generate a functional proteasome holoenzyme. Our findings provide a basis to potentially exploit the assembly checkpoints in situations with known deregulation of proteasomal ATPase chaperones.
Collapse
Affiliation(s)
- Asrafun Nahar
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA
| | - Vladyslava Sokolova
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA
| | - Suganya Sekaran
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA
| | - James D Orth
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA
| | - Soyeon Park
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA.
| |
Collapse
|
7
|
Han JJW, Nguyen CD, Thrasher JP, DeGuzman A, Chan JY. The Nrf1 transcription factor is induced by patulin and protects against patulin cytotoxicity. Toxicology 2022; 471:153173. [PMID: 35367319 PMCID: PMC9522914 DOI: 10.1016/j.tox.2022.153173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
Patulin is a mycotoxin produced by a variety of molds that is found in various food products. The adverse health effects associated with exposure to patulin has led to many investigations into the biological basis driving the toxicity of patulin. Nevertheless, the mechanisms through which mammalian cells resists patulin-mediated toxicity is poorly understood. Here, we show that loss of the Nrf1 transcription factor renders cells sensitive to the acute cytotoxic effects of patulin. Nrf1 deficiency leads to accumulation of ubiquitinated proteins and protein aggregates in response to patulin exposure. Nrf1 expression is induced by patulin, and activation of proteasome genes by patulin is Nrf1-dependent. These findings suggest the Nrf1 transcription factor plays a crucial role in modulating cellular stress response against patulin cytotoxicity.
Collapse
Affiliation(s)
- John J W Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Carolyn D Nguyen
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Julianna P Thrasher
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Anna DeGuzman
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Chaudhary A, Singh D. In-silico analysis of the regulatory region of effector protein genes in Verticillium dahliae. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kats I, Reinbold C, Kschonsak M, Khmelinskii A, Armbruster L, Ruppert T, Knop M. Up-regulation of ubiquitin-proteasome activity upon loss of NatA-dependent N-terminal acetylation. Life Sci Alliance 2021; 5:5/2/e202000730. [PMID: 34764209 PMCID: PMC8605321 DOI: 10.26508/lsa.202000730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Inactivation of N-terminal acetyltransferase A is found to alter Rpn4 as well as E3 ligase abundance, causing up-regulation of Ubiquitin–proteasome activity. In this context, Tom1 is also identified as a novel chain-elongating enzyme of the UFD-pathway. N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin–independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.
Collapse
Affiliation(s)
- Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Reinbold
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marc Kschonsak
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Laura Armbruster
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
10
|
Cheng CL, Wong MK, Hochstrasser M. Yeast Nst1 is a novel component of P-bodies and is a specific suppressor of proteasome base assembly defects. Mol Biol Cell 2021; 32:ar6. [PMID: 34347506 PMCID: PMC8684758 DOI: 10.1091/mbc.e21-04-0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/02/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022] Open
Abstract
Proteasome assembly utilizes multiple dedicated assembly chaperones and is regulated by signaling pathways that respond to diverse stress conditions. To discover new factors influencing proteasome base assembly, we screened a tiled high-copy yeast genomic library to identify dosage suppressors of a temperature-sensitive proteasome regulatory particle (RP) base mutant. The screen identified negative salt tolerance 1 (Nst1), a protein that when overexpressed specifically suppressed the temperature sensitivity and proteasome-assembly defects of multiple base mutants. Nst1 overexpression reduced cytosolic RP ATPase (Rpt) aggregates in nas6Δ rpn14Δ cells, which lack two RP assembly chaperones. Nst1 is highly polar and predicted to have numerous intrinsically disordered regions, characteristics commonly found in proteins that can segregate into membraneless condensates. In agreement with this, both endogenous and overexpressed Nst1 could form cytosolic puncta that colocalized with processing body (P-body) components. Consistent with the accumulation of translationally inactive mRNAs in P-bodies, Nst1 overexpression inhibited global protein translation in nas6Δ rpn14Δ cells. Translational inhibition is known to suppress aggregation and proteasome assembly defects in base mutants under heat stress. Our data indicate that Nst1 is a previously overlooked P-body component that, when expressed at elevated levels inhibits translation, prevents Rpt subunit aggregation and rescues proteasome assembly under stress conditions.
Collapse
Affiliation(s)
| | | | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry and
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
11
|
Waite KA, Burris A, Roelofs J. Tagging the proteasome active site β5 causes tag specific phenotypes in yeast. Sci Rep 2020; 10:18133. [PMID: 33093623 PMCID: PMC7582879 DOI: 10.1038/s41598-020-75126-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The efficient and timely degradation of proteins is crucial for many cellular processes and to maintain general proteostasis. The proteasome, a complex multisubunit protease, plays a critical role in protein degradation. Therefore, it is important to understand the assembly, regulation, and localization of proteasome complexes in the cell under different conditions. Fluorescent tags are often utilized to study proteasomes. A GFP-tag on the β5 subunit, one of the core particle (CP) subunits with catalytic activity, has been shown to be incorporated into proteasomes and commonly used by the field. We report here that a tag on this subunit results in aberrant phenotypes that are not observed when several other CP subunits are tagged. These phenotypes appear in combination with other proteasome mutations and include poor growth, and, more significantly, altered 26S proteasome localization. In strains defective for autophagy, β5-GFP tagged proteasomes, unlike other CP tags, localize to granules upon nitrogen starvation. These granules are reflective of previously described proteasome storage granules but display unique properties. This suggests proteasomes with a β5-GFP tag are specifically recognized and sequestered depending on physiological conditions. In all, our data indicate the intricacy of tagging proteasomes, and possibly, large complexes in general.
Collapse
Affiliation(s)
- Kenrick A Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA.,Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS, 66506, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA.
| |
Collapse
|
12
|
Karpov DS, Lysov YP, Karpov VL. Evolution of the System of Coordinate Regulation of Proteasomal Gene Expression in the Yeast Class Saccharomycetes. Mol Biol 2019. [DOI: 10.1134/s0026893319060086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang H, Schippers JHM. The Role and Regulation of Autophagy and the Proteasome During Aging and Senescence in Plants. Genes (Basel) 2019; 10:genes10040267. [PMID: 30987024 PMCID: PMC6523301 DOI: 10.3390/genes10040267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Aging and senescence in plants has a major impact on agriculture, such as in crop yield, the value of ornamental crops, and the shelf life of vegetables and fruits. Senescence represents the final developmental phase of the leaf and inevitably results in the death of the organ. Still, the process is completely under the control of the plant. Plants use their protein degradation systems to maintain proteostasis and transport or salvage nutrients from senescing organs to develop reproductive parts. Herein, we present an overview of current knowledge about the main protein degradation pathways in plants during senescence: The proteasome and autophagy. Although both pathways degrade proteins, autophagy appears to prevent aging, while the proteasome functions as a positive regulator of senescence.
Collapse
Affiliation(s)
- Haojie Wang
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
14
|
Zhang T, Galdieri L, Hasek J, Vancura A. Yeast phospholipase C is required for stability of casein kinase I Yck2p and expression of hexose transporters. FEMS Microbiol Lett 2017; 364:4566517. [PMID: 29087456 DOI: 10.1093/femsle/fnx227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/25/2017] [Indexed: 11/12/2022] Open
Abstract
Phospholipase C (Plc1p) in Saccharomyces cerevisiae is required for normal degradation of repressor Mth1p and expression of the HXT genes encoding cell membrane transporters of glucose. Plc1p is also required for normal localization of glucose transporters to the cell membrane. Consequently, plc1Δ cells display histone hypoacetylation and transcriptional defects due to reduced uptake and metabolism of glucose to acetyl-CoA, a substrate for histone acetyltransferases. In the presence of glucose, Mth1p is phosphorylated by casein kinase I Yck1/2p, ubiquitinated by the SCFGrr1 complex and degraded by the proteasome. Here, we show that while Plc1p does not affect the function of the SCFGrr1 complex or the proteasome, it is required for normal protein level of Yck2p. Since stability of Yck1/2p is regulated by a glucose-dependent mechanism, PLC1 inactivation results in destabilization of Yck1/2p and defect in Mth1p degradation. Based on our results and published data, we propose a model in which plc1Δ mutation causes increased internalization of glucose transporters, decreased transport of glucose into the cells, and consequently decreased stability of Yck1/2p, increased stability of Mth1p and decreased expression of the HXT genes.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Luciano Galdieri
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology CAS, v.v.i., Videnska 1083, Prague 14220, Czech Republic
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
15
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Guerra-Moreno A, Hanna J. Induction of proteotoxic stress by the mycotoxin patulin. Toxicol Lett 2017; 276:85-91. [PMID: 28529145 DOI: 10.1016/j.toxlet.2017.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 05/14/2017] [Indexed: 01/04/2023]
Abstract
Patulin is a naturally occurring mycotoxin produced by a number of molds and may contaminate a wide variety of food products. In practice, patulin's main societal relevance concerns apple juice and its products. Multiple advisory bodies, including the U.S. Food and Drug Administration and the World Health Organization, recommend that producers monitor and limit patulin levels in apple juice products. The mechanism of patulin toxicity remains largely unknown. Here we show that patulin induces proteotoxic stress in the yeast S. cerevisiae. The transcription factor Rpn4 controls the abundance of the proteasome, the complex multisubunit protease that destroys proteins, including misfolded proteins. Rpn4 protein is strongly induced by patulin, and Rpn4 levels normalize over time, consistent with homeostatic regulation. A rpn4Δ mutant is highly sensitive to patulin, confirming the physiologic relevance of this response. Rpn4 is known to be regulated both transcriptionally and post-translationally. Patulin induces both pathways of regulation, but the post-transcriptional pathway predominates in controlling Rpn4 protein levels. These results indicate that proteotoxicity represents a major aspect of patulin toxicity. They not only have implications for patulin detoxification but in addition suggest the possibility of some potentially useful patulin applications.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
17
|
Kirilenko BM, Grineva EN, Karpov DS, Karpov VL. Inhibition of the expression of proteasomal genes Saccharomyces cerevisiae by artificial transcriptional repressor. Mol Biol 2016. [DOI: 10.1134/s0026893316040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Grineva EN, Leinsoo AT, Spasskaya DS, Karpov DS, Karpov VL. Functional analysis of Rpn4-like proteins from Komagataella (Pichia) pastoris and Yarrowia lipolytica on a genetic background of Saccharomyces cerevisiae. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815070029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Kovács L, Nagy O, Pál M, Udvardy A, Popescu O, Deák P. Role of the deubiquitylating enzyme DmUsp5 in coupling ubiquitin equilibrium to development and apoptosis in Drosophila melanogaster. PLoS One 2015; 10:e0120875. [PMID: 25806519 PMCID: PMC4373725 DOI: 10.1371/journal.pone.0120875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/27/2015] [Indexed: 01/07/2023] Open
Abstract
Protein ubiquitylation is a dynamic process that affects the function and stability of proteins and controls essential cellular processes ranging from cell proliferation to cell death. This process is regulated through the balanced action of E3 ubiquitin ligases and deubiquitylating enzymes (DUB) which conjugate ubiquitins to, and remove them from target proteins, respectively. Our genetic analysis has revealed that the deubiquitylating enzyme DmUsp5 is required for maintenance of the ubiquitin equilibrium, cell survival and normal development in Drosophila. Loss of the DmUsp5 function leads to late larval lethality accompanied by the induction of apoptosis. Detailed analyses at a cellular level demonstrated that DmUsp5 mutants carry multiple abnormalities, including a drop in the free monoubiquitin level, the excessive accumulation of free polyubiquitins, polyubiquitylated proteins and subunits of the 26S proteasome. A shortage in free ubiquitins results in the induction of a ubiquitin stress response previously described only in the unicellular budding yeast. It is characterized by the induction of the proteasome-associated deubiquitylase DmUsp14 and sensitivity to cycloheximide. Removal of DmUsp5 also activates the pro-apoptotic machinery thereby resulting in widespread apoptosis, indicative of an anti-apoptotic role of DmUsp5. Collectively, the pleiotropic effects of a loss of DmUsp5 function can be explained in terms of the existence of a limited pool of free monoubiquitins which makes the ubiquitin-dependent processes mutually interdependent.
Collapse
Affiliation(s)
- Levente Kovács
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Olga Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Margit Pál
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Octavian Popescu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Péter Deák
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
20
|
Shirozu R, Yashiroda H, Murata S. Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett 2015; 589:933-40. [PMID: 25747386 DOI: 10.1016/j.febslet.2015.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/29/2022]
Abstract
The proteasome is an essential, 66-subunit protease that mediates ubiquitin-dependent proteolysis. The transcription factor Rpn4 regulates concerted expression of proteasome subunits to increase the proteasome by recognizing nonamer proteasome-associated control element (PACE) elements on the promoter regions. However, the genes for proteasome assembly chaperones and some of the subunits have no PACEs. Here we identified a minimal hexamer "PACE-core" sequence that responds to Rpn4. PACE-cores are found in many genes related to proteasome function including the assembly chaperones, but cannot substitute for PACE of the subunits. Our results add a new layer of complexity in transcriptional regulation of genes involved in protein degradation.
Collapse
Affiliation(s)
- Ryohei Shirozu
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
Patananan AN, Capri J, Whitelegge JP, Clarke SG. Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae. J Biol Chem 2014; 289:16936-53. [PMID: 24764295 DOI: 10.1074/jbc.m114.564385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50-300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.
Collapse
Affiliation(s)
- Alexander N Patananan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and
| | - Joseph Capri
- the Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Julian P Whitelegge
- the Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and
| |
Collapse
|
22
|
Ha SW, Ju D, Xie Y. Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation. J Biol Chem 2013; 289:2701-10. [PMID: 24338021 DOI: 10.1074/jbc.m113.524926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cotranslational protein degradation plays an important role in protein quality control and proteostasis. Although ubiquitylation has been suggested to signal cotranslational degradation of nascent polypeptides, cotranslational ubiquitylation occurs at a low level, suggesting the existence of an alternative route for delivery of nascent polypeptides to the proteasome. Here we report that the nuclear import factor Srp1 (also known as importin α or karyopherin α) is required for ubiquitin-independent cotranslational degradation of the transcription factor Rpn4. We further demonstrate that cotranslational protein degradation is generally impaired in the srp1-49 mutant. Srp1 binds nascent polypeptides emerging from the ribosome. The association of proteasomes with polysomes is weakened in srp1-49. The interaction between Srp1 and the proteasome is mediated by Sts1, a multicopy suppressor of srp1-49. The srp1-49 and sts1-2 mutants are hypersensitive to stressors that promote protein misfolding, underscoring the physiological function of Srp1 and Sts1 in degradation of misfolded nascent polypeptides. This study unveils a previously unknown role for Srp1 and Sts1 in cotranslational protein degradation and suggests a novel model whereby Srp1 and Sts1 cooperate to couple proteasomes to ribosome-bound nascent polypeptides.
Collapse
Affiliation(s)
- Seung-Wook Ha
- From the Karmanos Cancer Institute, Department of Oncology, and Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
23
|
Schmidt M, Finley D. Regulation of proteasome activity in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:13-25. [PMID: 23994620 DOI: 10.1016/j.bbamcr.2013.08.012] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Marion Schmidt
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
24
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kunjappu MJ, Hochstrasser M. Assembly of the 20S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:2-12. [PMID: 23507199 DOI: 10.1016/j.bbamcr.2013.03.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Mary J Kunjappu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue P.O. Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
26
|
The Mub1/Ubr2 ubiquitin ligase complex regulates the conserved Dsn1 kinetochore protein. PLoS Genet 2013; 9:e1003216. [PMID: 23408894 PMCID: PMC3567142 DOI: 10.1371/journal.pgen.1003216] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/19/2012] [Indexed: 01/17/2023] Open
Abstract
The kinetochore is the macromolecular complex that assembles onto centromeric DNA and orchestrates the segregation of duplicated chromosomes. More than 60 components make up the budding yeast kinetochore, including inner kinetochore proteins that bind to centromeric chromatin and outer proteins that directly interact with microtubules. However, little is known about how these components assemble into a functional kinetochore and whether there are quality control mechanisms that monitor kinetochore integrity. We previously developed a method to isolate kinetochore particles via purification of the conserved Dsn1 kinetochore protein. We find that the Mub1/Ubr2 ubiquitin ligase complex associates with kinetochore particles through the CENP-CMif2 protein. Although Mub1/Ubr2 are not stable kinetochore components in vivo, they regulate the levels of the conserved outer kinetochore protein Dsn1 via ubiquitylation. Strikingly, a deletion of Mub1/Ubr2 restores the levels and viability of a mutant Dsn1 protein, reminiscent of quality control systems that target aberrant proteins for degradation. Consistent with this, Mub1/Ubr2 help to maintain viability when kinetochores are defective. Together, our data identify a previously unknown regulatory mechanism for the conserved Dsn1 kinetochore protein. We propose that Mub1/Ubr2 are part of a quality control system that monitors kinetochore integrity, thus ensuring genomic stability. The flawless execution of cell division is essential to the survival of all organisms. The loss or gain of a single chromosome, the state called aneuploidy, is a hallmark of cancer cells and is the leading cause of spontaneous miscarriages and hereditary birth defects. Segregation is mediated by the kinetochore, the macromolecular complex that assembles on each chromosome and attaches to spindle microtubules to pull chromosomes to opposite poles when cells divide. It is therefore critical to understand how kinetochores are assembled and maintained. Here, we find that the levels of a conserved kinetochore protein are regulated by proteolysis. We propose that cells have quality control systems that ensure kinetochore integrity and thus genome stability.
Collapse
|
27
|
Penney M, Samejima I, Wilkinson CR, McInerny CJ, Mathiassen SG, Wallace M, Toda T, Hartmann-Petersen R, Gordon C. Fission yeast 26S proteasome mutants are multi-drug resistant due to stabilization of the Pap1 transcription factor. PLoS One 2012; 7:e50796. [PMID: 23209828 PMCID: PMC3507774 DOI: 10.1371/journal.pone.0050796] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/25/2012] [Indexed: 01/12/2023] Open
Abstract
Here we report the result of a genetic screen for mutants resistant to the microtubule poison methyl benzimidazol-2-yl carbamate (MBC) that were also temperature sensitive for growth. In total the isolated mutants were distributed in ten complementation groups. Cloning experiments revealed that most of the mutants were in essential genes encoding various 26S proteasome subunits. We found that the proteasome mutants are multi-drug resistant due to stabilization of the stress-activated transcription factor Pap1. We show that the ubiquitylation and ultimately the degradation of Pap1 depend on the Rhp6/Ubc2 E2 ubiquitin conjugating enzyme and the Ubr1 E3 ubiquitin-protein ligase. Accordingly, mutants lacking Rhp6 or Ubr1 display drug-resistant phenotypes.
Collapse
Affiliation(s)
- Mary Penney
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Itaru Samejima
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Caroline R. Wilkinson
- Cell Regulation Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, United Kingdom
| | - Christopher J. McInerny
- Division of Molecular and Cellular Biology, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Søs G. Mathiassen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mairi Wallace
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | | - Colin Gordon
- Medical Research Council, Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
29
|
Yan C, Chen Z, Li H, Zhang G, Li F, Duerksen-Hughes PJ, Zhu X, Yang J. Nuclear proteome analysis of benzo(a)pyrene-treated HeLa cells. Mutat Res 2012; 731:75-84. [PMID: 22138005 DOI: 10.1016/j.mrfmmm.2011.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/03/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Previously, we employed a proteomics-based 2-D gel electrophoresis assay to show that exposure to 10μM benzo(a)pyrene (BaP) during a 24 h frame can lead to changes in nuclear protein expression and alternative splicing. To further expand our knowledge about the DNA damage response (DDR) induced by BaP, we investigated the nuclear protein expression profiles in HeLa cells treated with different concentrations of BaP (0.1, 1, and 10μM) using this proteomics-based 2-D gel electrophoresis assay. We found 125 differentially expressed proteins in BaP-treated cells compared to control cells. Among them, 79 (63.2%) were down-regulated, 46 (36.8%) were up-regulated; 8 showed changes in the 1μM and 10μM BaP-treated groups, 2 in the 0.1μM and 10μM BaP-treated groups, 4 in the 0.1μM and 1μM BaP-treated groups, and only one showed changes in all three groups. Fifty protein spots were chosen for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and of these, 39 were identified, including subunits of the 26S proteasome and Annexin A1. The functions of some identified proteins were further examined and the results showed that they might be involved in BaP-induced DDR. Taken together, these data indicate that proteomics is a valuable approach in the study of environmental chemical-host interactions, and the identified proteins could provide new leads for better understanding BaP-induced mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Chunlan Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Xu H, Fu J, Ha SW, Ju D, Zheng J, Li L, Xie Y. The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:818-25. [PMID: 22285817 DOI: 10.1016/j.bbamcr.2012.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 01/04/2023]
Abstract
Protein degradation by the proteasome plays an important role in all major cellular pathways. Aberrant proteasome activity is associated with numerous human diseases including cancer and neurological disorders, but the underlying mechanism is virtually unclear. At least part of the reason for this is due to lack of understanding of the regulation of human proteasome genes. In this study, we found that a large set of human proteasome genes carry the CCAAT box in their promoters. We further demonstrated that the basal expression of these CCAAT box-containing proteasome genes is regulated by the transcription factor NF-Y. Knockdown of NF-YA, an essential subunit of NF-Y, reduced proteasome gene expression and compromised the cellular proteasome activity. In addition, we showed that knockdown of NF-YA sensitized breast cancer cells to the proteasome inhibitor MG132. This study unveils a new role for NF-Y in the regulation of human proteasome genes and suggests that NF-Y may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Haiming Xu
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Chondrogianni N, Gonos ES. Structure and Function of the Ubiquitin–Proteasome System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:41-74. [DOI: 10.1016/b978-0-12-397863-9.00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami CJ, Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy BK, Schmidt M. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1002253. [PMID: 21931558 PMCID: PMC3169524 DOI: 10.1371/journal.pgen.1002253] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/06/2011] [Indexed: 12/23/2022] Open
Abstract
Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS). Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS–related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS) and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct from known longevity pathways and raise the possibility that interventions to promote enhanced proteasome function will have beneficial effects on longevity and age-related disease in humans. The ubiquitin/proteasome system (UPS) is an integral part of the machinery that maintains cellular protein homeostasis and represents the major pathway for specific protein degradation in the cytoplasm and nuclei of eukaryotic cells. Its proteolytic capacity declines with age. In parallel, substrate load for the UPS increases in aging cells due to accumulated protein damage. This imbalance is thought to be an origin for the frequently observed accumulation of protein aggregates in aged cells and is thought to contribute to age-related cellular dysfunction. In this study, we investigated the impact of proteasome capacity on replicative lifespan in Saccharomyces cerevisiae using a genetic system that allows manipulation of UPS abundance at the transcriptional level. The results obtained reveal a positive correlation between proteasome capacity and longevity, with reduced lifespan in cells with low proteasome abundance or activity and strong lifespan extension upon up-regulation of the UPS in a mechanism that is at least partially independent of known yeast longevity modulating pathways. The same correlation is observed for oxidative and protein stress tolerance and clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, suggesting that lifespan extension by increased proteasome capacity is caused by improved protein homeostasis.
Collapse
Affiliation(s)
- Undine Kruegel
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Brett Robison
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute, Novato, California, United States of America
| | - Thomas Dange
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Günther Kahlert
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Joe R. Delaney
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Soumya Kotireddy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | | | | | - Christopher J. Murakami
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Jennifer Schleit
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - George Sutphin
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Daniel Carr
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Krisztina Tar
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Gunnar Dittmar
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (MS); (BKK); (MK)
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute, Novato, California, United States of America
- * E-mail: (MS); (BKK); (MK)
| | - Marion Schmidt
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (MS); (BKK); (MK)
| |
Collapse
|
33
|
Spasskaya DS, Karpov DS, Karpov VL. Escherichia coli Dam-methylase as a molecular tool for mapping binding sites of the yeast transcription factor Rpn4. Mol Biol 2011. [DOI: 10.1134/s0026893311030186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Gomez TA, Kolawa N, Gee M, Sweredoski MJ, Deshaies RJ. Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. BMC Biol 2011; 9:33. [PMID: 21627799 PMCID: PMC3126750 DOI: 10.1186/1741-7007-9-33] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background The proteasome is a multi-subunit protein machine that is the final destination for cellular proteins that have been marked for degradation via an ubiquitin (Ub) chain appendage. These ubiquitylated proteins either bind directly to the intrinsic proteasome ubiqutin chain receptors Rpn10, Rpn13, or Rpt5, or are shuttled to the proteasome by Rad23, Dsk2, or Ddi1. The latter proteins share an Ub association domain (UBA) for binding poly-Ub chains and an Ub-like-domain (UBL) for binding to the proteasome. It has been proposed that shuttling receptors dock on the proteasome via Rpn1, but the precise nature of the docking site remains poorly defined. Results To shed light on the recruitment of shuttling receptors to the proteasome, we performed both site-directed mutagenesis and genetic screening to identify mutations in Rpn1 that disrupt its binding to UBA-UBL proteins. Here we demonstrate that delivery of Ub conjugates and docking of Ddi1 (and to a lesser extent Dsk2) to the proteasome are strongly impaired by an aspartic acid to alanine point mutation in the highly-conserved D517 residue of Rpn1. Moreover, degradation of the Ddi1-dependent proteasome substrate, Ufo1, is blocked in rpn1-D517A yeast cells. By contrast, Rad23 recruitment to the proteasome is not affected by rpn1-D517A. Conclusions These studies provide insight into the mechanism by which the UBA-UBL protein Ddi1 is recruited to the proteasome to enable Ub-dependent degradation of its ligands. Our studies suggest that different UBA-UBL proteins are recruited to the proteasome by distinct mechanisms.
Collapse
Affiliation(s)
- Tara A Gomez
- Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
35
|
Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 2011; 30:2520-31. [PMID: 21587205 PMCID: PMC3155297 DOI: 10.1038/emboj.2011.162] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/02/2011] [Indexed: 12/14/2022] Open
Abstract
Ageing is driven by the inexorable and stochastic accumulation of damage in biomolecules vital for proper cellular function. Although this process is fundamentally haphazard and uncontrollable, senescent decline and ageing is broadly influenced by genetic and extrinsic factors. Numerous gene mutations and treatments have been shown to extend the lifespan of diverse organisms ranging from the unicellular Saccharomyces cerevisiae to primates. It is becoming increasingly apparent that most such interventions ultimately interface with cellular stress response mechanisms, suggesting that longevity is intimately related to the ability of the organism to effectively cope with both intrinsic and extrinsic stress. Here, we survey the molecular mechanisms that link ageing to main stress response pathways, and mediate age-related changes in the effectiveness of the response to stress. We also discuss how each pathway contributes to modulate the ageing process. A better understanding of the dynamics and reciprocal interplay between stress responses and ageing is critical for the development of novel therapeutic strategies that exploit endogenous stress combat pathways against age-associated pathologies.
Collapse
|
36
|
Xie Y. Feedback regulation of proteasome gene expression and its implications in cancer therapy. Cancer Metastasis Rev 2011; 29:687-93. [PMID: 20835843 DOI: 10.1007/s10555-010-9255-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteasomal protein degradation is one of the major regulatory mechanisms in the cell. Aberrant proteasome activity is directly related to the pathogenesis of many human diseases including cancers. How proteasome homeostasis is controlled is a fundamental question toward our understanding of proteasome dysregulation in cancer cells. The recent discovery of the Rpn4-proteasome negative feedback circuit provides mechanistic insight into the regulation of proteasome gene expression. This finding also has important implications in cancer therapy that uses small molecule inhibitors to target the proteasome.
Collapse
Affiliation(s)
- Youming Xie
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E Warren Ave, Detroit, MI 48201, USA.
| |
Collapse
|
37
|
Xie Y. Structure, Assembly and Homeostatic Regulation of the 26S Proteasome. J Mol Cell Biol 2010; 2:308-17. [DOI: 10.1093/jmcb/mjq030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. BIOCHEMISTRY (MOSCOW) 2010; 74:1411-42. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special "label" can get into it. A polyubiquitin chain plays the role of the "label": degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the "labeled" molecule, it is released and labels another molecule. This process has been named "Ub-dependent protein degradation". In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers' attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
39
|
Ju D, Wang X, Ha SW, Fu J, Xie Y. Inhibition of proteasomal degradation of rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks. PLoS One 2010; 5:e9877. [PMID: 20376190 PMCID: PMC2848573 DOI: 10.1371/journal.pone.0009877] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/04/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. The integrity of the Rpn4-proteasome feedback loop is critical for cell viability under stressed conditions. We have demonstrated that inhibition of Rpn4 degradation sensitizes cells to DNA damage, particularly in response to high doses of DNA damaging agents. The underlying mechanism, however, remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Using yeast genetics and biochemical approach we show that inhibition of Rpn4 degradation displays a synthetic growth defect with deletion of the MEC1 checkpoint gene and sensitizes several checkpoint mutants to DNA damage. In addition, inhibition of Rpn4 degradation leads to a defect in repair of double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ). The expression levels of several key NHEJ genes are downregulated and the recruitment of Yku70 to a DSB is reduced by inhibition of Rpn4 degradation. We find that Rpn4 and the proteasome are recruited to a DSB, suggesting their direct participation in NHEJ. Inhibition of Rpn4 degradation may result in a concomitant delay of release of Rpn4 and the proteasome from a DSB. CONCLUSION/SIGNIFICANCE This study provides the first evidence for the role of proteasomal degradation of Rpn4 in NHEJ.
Collapse
Affiliation(s)
- Donghong Ju
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Xiaogang Wang
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Seung-Wook Ha
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jiejun Fu
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Youming Xie
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
40
|
Ssz1 restores endoplasmic reticulum-associated protein degradation in cells expressing defective cdc48-ufd1-npl4 complex by upregulating cdc48. Genetics 2009; 184:695-706. [PMID: 20038635 DOI: 10.1534/genetics.109.111419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway eliminates aberrant proteins from the ER. The key role of Cdc48p-Ufd1p-Npl4p is indicated by impaired ERAD in Saccharomyces cerevisiae with mutations in any of this complex's genes. We identified SSZ1 in genetic screens for cdc48-10 suppressors and show that it upregulates Cdc48p via the pleiotropic drug resistance (PDR) network. A pSSZ1 plasmid restored impaired ERAD-M of 6myc-Hmg2 in cdc48-10, ufd1-2, and npl4-1, while SSZ1 deletion had no effect. Ssz1p activates Pdr1p, the PDR master regulator. Indeed, plasmids of PDR1 or its target gene RPN4 increased cdc48-10p levels and restored ERAD-M in cdc48-10. Rpn4p regulates transcription of proteasome subunits and CDC48, thus RPN4 deletion abolished ERAD. However, the diminished proteasome level in Deltarpn4 was sufficient for degrading a cytosolic substrate, whereas the impaired ERAD-M was the result of diminished Cdc48p and was restored by expression of pCDC48. The corrected ERAD-M in the hypomorphic strains of the Cdc48 partners ufd1-2 and npl4-1 by the pCDC48 plasmid, and in cdc48-10 cells by the pcdc48-10 plasmid, combined with the finding that neither pSSZ1 nor pcdc48-10 restored ERAD-L of CPY*-HA, support our conclusion that Ssz1p suppressing effects is brought about by upregulating Cdc48p.
Collapse
|
41
|
Proteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics 2009; 184:335-42. [PMID: 19933873 DOI: 10.1534/genetics.109.112227] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback loop in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. In addition to the proteasome genes, Rpn4 regulates numerous other genes involved in a wide range of cellular pathways. Therefore, the Rpn4-proteasome negative feedback circuit not only controls proteasome abundance, but also gauges the expression of other Rpn4 target genes. Our previous work has shown that Rpn4-induced gene expression is critical for cell viability under stressed conditions. Here we investigate whether proteasomal degradation of Rpn4 is also important for cell survival in response to stress. To this end, we generate a stabilized Rpn4 mutant (Rpn4*) that retains its transcription activity. We find that expression of Rpn4* severely reduces cell viability in response to various genotoxic and proteotoxic agents. This detrimental effect can be eliminated by a point mutation that abolishes the transcription activity of Rpn4*, suggesting that overexpression of some Rpn4 target genes weakens the cell's ability to cope with stress. Moreover, we demonstrate that inhibition of Rpn4 degradation causes synthetic growth defects when combined with proteasome impairment resulting from mutation of a proteasome gene or accumulation of misfolded endoplasmic reticulum membrane proteins. Rpn4 thus represents an important stress-responsive mediator whose degradation as well as availability are critical for cell survival under stressed conditions.
Collapse
|
42
|
Ju D, Xu H, Wang X, Xie Y. The transcription activation domain of Rpn4 is separate from its degrons. Int J Biochem Cell Biol 2009; 42:282-6. [PMID: 19914394 DOI: 10.1016/j.biocel.2009.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/17/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022]
Abstract
The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the transcription activator Rpn4 upregulates the proteasome genes and is rapidly degraded by the assembled proteasome. In addition to the proteasome genes, Rpn4 regulates numerous other genes involved in a wide variety of cellular processes. However, the transcription activation domain of Rpn4 remains largely unclear. Here we locate a major transactivation domain of Rpn4 in the N-terminal region between residues 118 and 210. Interestingly, this domain is separate from its degradation signals (degrons), suggesting that functional overlap of sequences that activate transcription and signal degradation may not be as common as previously thought. We further demonstrate that the intracellular proteasome activity is correlated with the transactivation potency of Rpn4. This study provides important information for further understanding the biological functions of Rpn4 and the proteasome system.
Collapse
Affiliation(s)
- Donghong Ju
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E. Warren Avenue, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
43
|
Karpov DS, Preobrazhenskaya OV, Karpov VL. Expression regulation of the proteasomal genes in eukaryotes. Mol Biol 2009. [DOI: 10.1134/s0026893309020058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Metzger MB, Michaelis S. Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Mol Biol Cell 2009; 20:1006-19. [PMID: 19073890 PMCID: PMC2633399 DOI: 10.1091/mbc.e08-02-0140] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 10/16/2008] [Accepted: 12/02/2008] [Indexed: 11/11/2022] Open
Abstract
ER quality control (ERQC) prevents the exit of misfolded secretory and membrane proteins from the ER. A critical aspect of ERQC is a transcriptional response called the unfolded protein response (UPR), which up-regulates genes that enable cells to cope with misfolded, ER-retained proteins. In this study, we compare the transcriptional responses in yeast resulting from the acute expression of misfolded proteins residing in three different cellular compartments (the ER lumen, membrane, and cytosol), and find that each elicits a distinct transcriptional response. The classical UPR response, here-designated UPR-L, is induced by the ER lumenal misfolded protein, CPY*. The UPR-Cyto response is induced by the cytosolic protein, VHL-L158P, and is characterized by a rapid, transient induction of cytosolic chaperones similar to the heat-shock response. In contrast, the misfolded membrane protein with a cystolic lesion, Ste6p*, elicits a unique response designated UPR-M/C, characterized by the modest induction of >20 genes regulated by Rpn4p, an activator of proteasomal genes. Independently, we identified several genes required for yeast viability during UPR-M/C stress, but not UPR-L or UPR-Cyto stress. Among these is RPN4, highlighting the importance of the Rpn4p-dependent response in tolerating UPR-M/C stress. Further analysis suggests the requirement for Rpn4p reflects severe impairment of the proteasome by UPR-M/C stress.
Collapse
Affiliation(s)
- Meredith Boyle Metzger
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
45
|
Wang X, Xu H, Ju D, Xie Y. Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics 2008; 180:1945-53. [PMID: 18832351 PMCID: PMC2600933 DOI: 10.1534/genetics.108.094524] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/16/2008] [Indexed: 11/18/2022] Open
Abstract
The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the transcription activator Rpn4 upregulates the proteasome genes and is rapidly degraded by the assembled proteasome. Previous studies have shown that rpn4Delta cells are sensitive to a variety of stresses. However, the contribution of the loss of Rpn4-induced proteasome expression to the rpn4Delta phenotypes remains unclear because Rpn4 controls numerous genes other than the proteasome genes. Here we construct a yeast strain in which one of the essential proteasome genes, PRE1, is no longer induced by Rpn4. We show that the active proteasome level is lower in this strain than in the wild-type counterpart. Moreover, we demonstrate that loss of Rpn4-induced proteasome expression leads to cell-cycle delay in G2/M and sensitizes cells to various stresses. To our knowledge, this is the first report that explicitly reveals the physiological function of Rpn4-induced proteasome expression. This study also provides a tool for understanding the interactions between proteasome homeostasis and other cellular processes.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 2000032, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Hipkiss AR. Error-protein metabolism and ageing. Biogerontology 2008; 10:523-9. [PMID: 18923917 DOI: 10.1007/s10522-008-9188-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/25/2008] [Indexed: 01/19/2023]
Abstract
Ageing and many associated pathologies are accompanied by accumulation of altered proteins. It is suggested that erroneous polypeptide biosynthesis, cytosolic and mitochondrial, is not an insignificant source of aberrant protein in growing and non-mitotic cells. It is proposed that (i) synthesis of sufficient proteases and chaperone proteins necessary for rapid elimination of altered proteins, from cytoplasmic and mitochondrial compartments, is related to cellular protein biosynthetic potential, and (ii) cells growing slowly, or not at all, automatically generate lower levels of protease/chaperone molecules than cells growing rapidly, due to decreased general rate of protein synthesis and lowered amount of error-protein produced per cell. Hence the increased vulnerability of mature organisms may be explained, at least in part, by the decline in constitutive protease/chaperone protein biosynthesis. Upregulation of mitochondria biogenesis, induced by dietary restriction or aerobic exercise, may also increase protease/chaperone protein synthesis, which would improve cellular ability to degrade both error-proteins and proteins damaged post-synthetically by reactive oxygen species etc. These proposals may help explain, in part, the latency of those age-related pathologies where altered proteins accumulate only late in life, and the beneficial effects of aerobic exercise and dietary restriction.
Collapse
Affiliation(s)
- Alan R Hipkiss
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Bart's and the London Queen Mary's School of Medicine and Dentistry, London, UK.
| |
Collapse
|
47
|
Mapping of yeast Rpn4p transactivation domains. FEBS Lett 2008; 582:3459-64. [DOI: 10.1016/j.febslet.2008.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/12/2008] [Accepted: 09/06/2008] [Indexed: 01/26/2023]
|
48
|
Karpov DS, Tyutyaeva VV, Beresten’ SF, Karpov VL. Mapping of the Rpn4p regions responsible for transcriptional activation of proteasome genes. Mol Biol 2008. [DOI: 10.1134/s0026893308030163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Karpov DS, Osipov SA, Preobrazhenskaya OV, Karpov VL. Rpn4p is a positive and negative transcriptional regulator of the ubiquitin-proteasome system. Mol Biol 2008. [DOI: 10.1134/s0026893308030151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Lee WC, Berry R, Hohenstein P, Davies J. siRNA as a tool for investigating organogenesis: The pitfalls and the promises. Organogenesis 2008; 4:176-81. [PMID: 19279730 PMCID: PMC2634977 DOI: 10.4161/org.4.3.6642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/20/2008] [Indexed: 12/31/2022] Open
Abstract
Removing the function of a specific gene from a developing organ, by making a 'knockout' mouse, is a powerful method for analyzing the molecular pathways that control organogenesis. The technique is expensive, though, in terms of time and money, and complex strategies for producing conditional knockouts are needed for genes that are essential for early development of the embryo, for which an unconditional knockout would be lethal before the organ of interest begins to form. Small interfering RNAs (siRNAs) offer a method of knocking down the expression of specific genes with no need for genomic manipulation. Almost as soon as they had been discovered, siRNAs began to be used to explore the molecular biology of mammalian cells in conventional, two-dimensional culture. They have now also been applied successfully, by several groups, to knock down specific genes in various organ rudiments developing in organ culture. This article reviews the basic technique of siRNA-mediated gene knockdown and how it is being applied to organ culture. It also reviews some of the current problems and challenges in the field, and the ways in which these problems are likely to be overcome.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Centre for Integrative Physiology; University of Edinburgh; Edinburgh UK
- Chang Gung Memorial Hospital; Kaohsiung Medical Centre; Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Rachel Berry
- Medical Research Council Human Genetics Unit; Edinburgh UK
| | | | - Jamie Davies
- Centre for Integrative Physiology; University of Edinburgh; Edinburgh UK
| |
Collapse
|