1
|
Riva F, Muzio M. Updates on Toll-Like Receptor 10 Research. Eur J Immunol 2025; 55:e202551840. [PMID: 40346761 PMCID: PMC12064872 DOI: 10.1002/eji.202551840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/12/2025]
Abstract
Toll-like receptors (TLRs) are transmembrane proteins that share sequence similarity and biological function as they are responsible for the innate immune response to exogenous or endogenous molecular patterns. Distinct ligands are recognized by the leucine-rich repeats regions and trigger an inflammatory signal into the cell thanks to the TIR domain of TLR. TLR10 shares the same structural organization but shows a unique expression pattern and functional activity yet to be fully elucidated. In this review, we summarize the literature on TLR10 expression and cellular localization. Several polymorphisms were reported for the TLR10 gene that is present in most mammalians and arose from gene duplication of an ancestral TLR1-like gene. Accordingly, TLR10 was shown to act as TLR1 in terms of TLR2 interaction and TLR1/2 ligands recognition; however, in contrast to all the other TLRs it could also trigger anti-inflammatory signaling and was responsive to several unrelated microbial components. In this review, we will describe key steps and recent updates on TLR10 research highlighting common or divergent findings, in humans and animals.
Collapse
Affiliation(s)
- Federica Riva
- Department of Veterinary Medicine and Animal SciencesUniversità degli Studi di MilanoLodiItaly
| | - Marta Muzio
- Cell signaling UnitDivision of Experimental oncology, IRCCS San Raffaele Scientific InstituteMilanoItaly
| |
Collapse
|
2
|
Knez Š, Narat M, Ogorevc J. TLR10 overexpression modulates immune response in A549 lung epithelial cells challenged with SARS-CoV-2 S and N proteins. Front Immunol 2025; 15:1490478. [PMID: 39902041 PMCID: PMC11788150 DOI: 10.3389/fimmu.2024.1490478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Toll-like receptors (TLRs) play an important role in the recognition of viral particles and activation of the innate immune system, but their role in SARS-CoV-2 infection is still poorly characterized. In the present study, we investigated the role of Toll-like receptor 10 (TLR10) in modulating the immune response during SARS-CoV-2 infection. The results showed that overexpression of TLR10 in A549 lung epithelial cells, immunostimulated with SARS-CoV-2 proteins S and N mainly downregulated proinflammatory cytokines and interferons and affected gene expression in the cocultured THP-1 monocytes. Our results suggest that TLR10 could mediate the extent of SARS-CoV-2 infection by downregulating the release of inflammatory cytokines and chemokines such as CXCL10, IL6, IL8, and IFNβ. Modulation of TLR10 expression could have implications for the treatment of patients with severe COVID-19, in whom excessive inflammation leading to the development of acute respiratory distress syndrome (ARDS) is a key feature. However, further research is needed to fully understand the impact of modulating TLR10 expression on the antiviral response and the overall balance of the immune response during SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Jernej Ogorevc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Abstract
Toll like receptors (TLRs) are the most studied pattern recognition receptors (PRRs) as they connect the innate to the acquired immune response. To date, there are ten human TLRs which are expressed either on the plasma membrane or on the endosomes. TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 are plasma membrane TLRs that recognise extracellular components of pathogens, whereas TLR3, TLR7, TLR8 and TLR9 are located on endosomes where they recognise foreign nucleic acids. Of these TLRs, TLR10 is the latest human TLR to be discovered and its function and ligands are still unclear. TLR10 is the only known member of TLR family that can elicit anti-inflammatory effect. TLR10 can inhibit other TLRs by competing with stimulatory TLRs, dimerising with TLR1, TLR2 and TLR6, and by inducing PI3K/Akt to produce IL-1Ra. There is controversy on the function of TLR10 as an anti-inflammatory TLR as initial studies on TLR10 revealed it to promote inflammation. Herein, we review the detailed functions of TLR10 in immunity and give an account of how and when TLR10 can act on both sides of the inflammatory spectrum.
Collapse
|
4
|
Su SB, Tao L, Deng ZP, Chen W, Qin SY, Jiang HX. TLR10: Insights, controversies and potential utility as a therapeutic target. Scand J Immunol 2020; 93:e12988. [PMID: 33047375 DOI: 10.1111/sji.12988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
The Toll-like receptor (TLR) family acts as a bridge connecting innate and acquired immunity. TLR10 remains one of the least understood members of this family. Some studies have examined TLR10 ligands, dimerization of TLR10 with other TLRs, and downstream signalling pathways and functions, but they have often arrived at conflicting conclusions. TLR10 can induce the production of proinflammatory cytokines by forming homodimers with itself or heterodimers with TLR1 or other TLRs, but it can also inhibit proinflammatory responses when co-expressed with TLR2 or potentially other TLRs. Mutations in the Toll/Interleukin 1 receptor (TIR) domain of TLR10 alter its signalling activity. Polymorphisms in the TLR10 gene can change the balance between pro- and anti-inflammatory responses and hence modulate the susceptibility to infection and autoimmune diseases. Understanding the full range of TLR10 ligands and functions may allow the receptor to be exploited as a therapeutic target in inflammation- or immune-related diseases. Here, we summarize recent findings on the pro- and anti-inflammatory roles of TLR10 and the molecular pathways in which it is implicated. Our goal is to pave the way for future studies of the only orphan TLR thought to have strong potential as a target in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Si-Biao Su
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Tao
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ze-Ping Deng
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen Chen
- Department of Academic Affairs, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan-Yu Qin
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Ainouze M, Rochefort P, Parroche P, Roblot G, Tout I, Briat F, Zannetti C, Marotel M, Goutagny N, Auron P, Traverse-Glehen A, Lunel-Potencier A, Golfier F, Masson M, Robitaille A, Tommasino M, Carreira C, Walzer T, Henry T, Zanier K, Trave G, Hasan UA. Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1β. PLoS Pathog 2018; 14:e1007158. [PMID: 30089163 PMCID: PMC6124776 DOI: 10.1371/journal.ppat.1007158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/05/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block innate immune responses and to persist in the host. However, to avoid viral persistence, the immune response attempts to clear the infection. IL-1β is a powerful cytokine produced when viral motifs are sensed by innate receptors that are members of the inflammasome family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway remains unknown. Here, we show that infection of human keratinocytes with HPV16 induced the secretion of IL-1β. Yet, upon expression of the viral early genes, IL-1β transcription was blocked. We went on to show that expression of the viral oncoprotein E6 in human keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1β promoter activity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1β. Our findings reveal a struggle between oncoviral persistence and host immunity; which is centered on IL-1β regulation.
Collapse
Affiliation(s)
- Michelle Ainouze
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Pauline Rochefort
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Peggy Parroche
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Guillaume Roblot
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Issam Tout
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - François Briat
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Claudia Zannetti
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Marie Marotel
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Nadege Goutagny
- Cancer Research Centre of Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Philip Auron
- Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Alexandra Traverse-Glehen
- Hospices Civils de Lyon, France
- Cancer Research Centre of Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | | | | | | | | | | | | | - Thierry Walzer
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Thomas Henry
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | | | | | - Uzma Ayesha Hasan
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| |
Collapse
|
6
|
Parroche P, Roblot G, Le Calvez-Kelm F, Tout I, Marotel M, Malfroy M, Durand G, McKay J, Ainouze M, Carreira C, Allatif O, Traverse-Glehen A, Mendiola M, Pozo-Kreilinger JJ, Caux C, Tommasino M, Goutagny N, Hasan UA. TLR9 re-expression in cancer cells extends the S-phase and stabilizes p16(INK4a) protein expression. Oncogenesis 2016; 5:e244. [PMID: 27454079 PMCID: PMC4972902 DOI: 10.1038/oncsis.2016.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral or cell damage-associated DNA, which initiates innate immune responses. We have previously shown that TLR9 expression is downregulated in several viral induced cancers including HPV16-induced cervical neoplasia. Findings supported that downregulation of TLR9 expression is involved in loss of anti-viral innate immunity allowing an efficient viral replication. Here we investigated the role of TLR9 in altering the growth of transformed epithelial cells. Re-introducing TLR9 under the control of an exogenous promoter in cervical or head and neck cancer patient-derived cells reduced cell proliferation, colony formation and prevented independent growth of cells under soft agar. Neither TLR3, 7, nor the TLR adapter protein MyD88 expression had any effect on cell proliferation, indicating that TLR9 has a unique role in controlling cell growth. The reduction of cell growth was not due to apoptosis or necrosis, yet we observed that cells expressing TLR9 were slower in entering the S-phase of the cell cycle. Microarray-based gene expression profiling analysis highlighted a strong interferon (IFN) signature in TLR9-expressing head and neck cancer cells, with an increase in IFN-type I and IL-29 expression (IFN-type III), yet neither IFN-type I nor IL-29 production was responsible for the block in cell growth. We observed that the protein half-life of p16(INK4a) was increased in TLR9-expressing cells. Taken together, these data show for the first time that TLR9 affects the cell cycle by regulating p16(INK4a) post-translational modifications and highlights the role of TLR9 in the events that lead to carcinogenesis.
Collapse
Affiliation(s)
- P Parroche
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - G Roblot
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - F Le Calvez-Kelm
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - I Tout
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - M Marotel
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - M Malfroy
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - G Durand
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - J McKay
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - M Ainouze
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - C Carreira
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - O Allatif
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | | | - M Mendiola
- Molecular Pathology and Therapeutic Targets Group, Research Insitute (IdiPAZ), La Paz University Hospital, Madrid, Spain and Molecular Pathology Diagnostics Unit, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | | | - C Caux
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - M Tommasino
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - N Goutagny
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - U A Hasan
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| |
Collapse
|
7
|
Zannetti C, Roblot G, Charrier E, Ainouze M, Tout I, Briat F, Isorce N, Faure-Dupuy S, Michelet M, Marotel M, Kati S, Schulz TF, Rivoire M, Traverse-Glehen A, Luangsay S, Alatiff O, Henry T, Walzer T, Durantel D, Hasan U. Characterization of the Inflammasome in Human Kupffer Cells in Response to Synthetic Agonists and Pathogens. THE JOURNAL OF IMMUNOLOGY 2016; 197:356-67. [PMID: 27226092 DOI: 10.4049/jimmunol.1502301] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/27/2016] [Indexed: 12/12/2022]
Abstract
The liver is the largest gland in the human body and functions as an innate immune organ. Liver macrophages called Kupffer cells (KC) constitute the largest group of macrophages in the human body. Innate immune responses involving KC represent the first line of defense against pathogens in the liver. Human monocyte-derived macrophages have been used to characterize inflammasome responses that lead to the release of the proinflammatory cytokines IL-1β and IL-18, but it has not yet been determined whether human KC contain functional inflammasomes. We show, to our knowledge for the first time, that KC express genes and proteins that make up several different inflammasome complexes. Moreover, activation of KC in response to the absent in melanoma 2 (AIM2) inflammasome led to the production of IL-1β and IL-18, which activated IL-8 transcription and hepatic NK cell activity, respectively. Other inflammasome responses were also activated in response to selected bacteria and viruses. However, hepatitis B virus inhibited the AIM2 inflammasome by reducing the mRNA stability of IFN regulatory factor 7, which regulated AIM2 transcription. These data demonstrate the production of IL-1β and IL-18 in KC, suggesting that KC contain functional inflammasomes that could be important players in the innate immune response following certain infections of the liver. We think our findings could potentially aid therapeutic approaches against chronic liver diseases that activate the inflammasome.
Collapse
Affiliation(s)
- Claudia Zannetti
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - Guillaume Roblot
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - Emily Charrier
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - Michelle Ainouze
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - Issam Tout
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - François Briat
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - Nathalie Isorce
- Centre de Recherche en Cancérologie-Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon 69008, France
| | - Suzanne Faure-Dupuy
- Centre de Recherche en Cancérologie-Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon 69008, France
| | - Maud Michelet
- Centre de Recherche en Cancérologie-Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon 69008, France
| | - Marie Marotel
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - Semra Kati
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany; and
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany; and
| | - Michel Rivoire
- Centre de Recherche en Cancérologie-Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon 69008, France
| | | | - Souphalone Luangsay
- Centre de Recherche en Cancérologie-Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon 69008, France
| | - Omran Alatiff
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - Thomas Henry
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France
| | - David Durantel
- Centre de Recherche en Cancérologie-Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon 69008, France
| | - Uzma Hasan
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, CNRS-UMR5308, Hospices Civils de Lyon, Lyon 69000, France;
| |
Collapse
|
8
|
Darfour-Oduro KA, Megens HJ, Roca AL, Groenen MAM, Schook LB. Evolutionary patterns of Toll-like receptor signaling pathway genes in the Suidae. BMC Evol Biol 2016; 16:33. [PMID: 26860534 PMCID: PMC4748524 DOI: 10.1186/s12862-016-0602-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/28/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The Toll-like receptor (TLR) signaling pathway constitutes an essential component of the innate immune system. Highly conserved proteins, indicative of their critical roles in host survival, characterize this pathway. Selective constraints could vary depending on the gene's position within the pathway as TLR signaling is a sequential process and that genes downstream of the TLRs may be more selectively constrained to ensure efficient immune responses given the important role of downstream genes in the signaling process. Thus, we investigated whether gene position influenced protein evolution in the TLR signaling pathway of the Suidae. The members of the Suidae examined included the European Sus scrofa (wild boar), Asian Sus scrofa (wild boar), Sus verrucosus, Sus celebensis, Sus scebifrons, Sus barbatus, Babyrousa babyrussa, Potamochoerus larvatus, Potamochoerus porcus and Phacochoerus africanus. RESULTS A total of 33 TLR signaling pathway genes in the Suidae were retrieved from resequencing data. The evolutionary parameter ω (dn/ds) had an overall mean of 0.1668 across genes, indicating high functional conservation within the TLR signaling pathway. A significant relationship was inferred for the network parameters gene position, number of protein-protein interactions, protein length and the evolutionary parameter dn (nonsynonymous substitutions) such that downstream genes had lower nonsynonymous substitution rates, more interactors and shorter protein length than upstream genes. Gene position was significantly correlated with the number of protein-protein interactions and protein length. Thus, the polarity in the selective constraint along the TLR signaling pathway was due to the number of molecules a protein interacted with and the protein's length. CONCLUSION Results indicate that the level of selective constraints on genes within the TLR signaling pathway of the Suidae is dependent on the gene's position and network parameters. In particular, downstream genes evolve more slowly as a result of being highly connected and having shorter protein lengths. These findings highlight the critical role of gene network parameters in gene evolution.
Collapse
Affiliation(s)
- Kwame A Darfour-Oduro
- Department of Animal Sciences, University of Illinois, at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois, at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Lawrence B Schook
- Department of Animal Sciences, University of Illinois, at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,University of Illinois Cancer Center, Chicago, Illinois, 60612, USA.
| |
Collapse
|
9
|
Dowling JK, Dellacasagrande J. Toll-Like Receptors: Ligands, Cell-Based Models, and Readouts for Receptor Action. Methods Mol Biol 2016; 1390:3-27. [PMID: 26803619 DOI: 10.1007/978-1-4939-3335-8_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter details Toll-like receptors (TLRs) and the tools available to study their biology in vitro. Key parameters to consider before exploring TLR action such as receptor localization, signaling pathways, nature of ligands and cellular expression are introduced. Cellular models (i.e., host cells and readouts) based on the use of cell lines, primary cells, or whole blood are presented. The use of modified TLRs to circumvent some technical problems is also discussed.
Collapse
Affiliation(s)
- Jennifer K Dowling
- Hudson Institute of Medical Research, Monash University, 27-31 Wright St., Clayton, Melbourne, VIC, 3168, Australia.
| | | |
Collapse
|
10
|
Mineev KS, Goncharuk SA, Arseniev AS. Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: An NMR structural study. FEBS Lett 2014; 588:3802-7. [DOI: 10.1016/j.febslet.2014.08.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
|
11
|
Hasan UA, Zannetti C, Parroche P, Goutagny N, Malfroy M, Roblot G, Carreira C, Hussain I, Müller M, Taylor-Papadimitriou J, Picard D, Sylla BS, Trinchieri G, Medzhitov R, Tommasino M. The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. ACTA ACUST UNITED AC 2013; 210:1369-87. [PMID: 23752229 PMCID: PMC3698525 DOI: 10.1084/jem.20122394] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HPV16-positive cervical cancer lesions contain NFκB–ERα nuclear complexes to repress the TLR9 promoter. Human papillomavirus type 16 (HPV16) and other oncogenic viruses have been reported to deregulate immunity by suppressing the function of the double-stranded DNA innate sensor TLR9. However, the mechanisms leading to these events remain to be elucidated. We show that infection of human epithelial cells with HPV16 promotes the formation of an inhibitory transcriptional complex containing NF-κBp50–p65 and ERα induced by the E7 oncoprotein. The E7-mediated transcriptional complex also recruited the histone demethylase JARID1B and histone deacetylase HDAC1. The entire complex bound to a specific region on the TLR9 promoter, which resulted in decreased methylation and acetylation of histones upstream of the TLR9 transcriptional start site. The involvement of NF-κB and ERα in the TLR9 down-regulation by HPV16 E7 was fully confirmed in cervical tissues from human patients. Importantly, we present evidence that the HPV16-induced TLR9 down-regulation affects the interferon response which negatively regulates viral infection. Our studies highlight a novel HPV16-mediated mechanism that combines epigenetic and transcriptional events to suppress a key innate immune sensor.
Collapse
Affiliation(s)
- Uzma A Hasan
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon 69008, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Godfroy JI, Roostan M, Moroz YS, Korendovych IV, Yin H. Isolated Toll-like receptor transmembrane domains are capable of oligomerization. PLoS One 2012; 7:e48875. [PMID: 23155421 PMCID: PMC3498381 DOI: 10.1371/journal.pone.0048875] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.
Collapse
Affiliation(s)
- James I. Godfroy
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Mohammad Roostan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Yurii S. Moroz
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
13
|
Cafri G, Amram E, Rinott G, Koifman G, Fishman S, Keisari Y, Tzehoval E, Margalit A, Eisenbach L, Gross G. Coupling presentation of MHC class I peptides to constitutive activation of antigen-presenting cells through the product of a single gene. Int Immunol 2011; 23:453-61. [PMID: 21652516 DOI: 10.1093/intimm/dxr033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Priming of naive CD8 T cells by dendritic cells (DCs) entails both effective antigen presentation on MHC class I products and co-stimulatory signaling. Their optimal coupling is a major goal in the development of CTL-inducing vaccines. We recently reported that a membranal derivative of the invariant MHC-I light chain, β(2)-microglobulin (β(2)m), markedly stabilizes MHC-I molecules and can serve as a universal platform for exceptional presentation of genetically linked peptides. To test whether it is possible to equip the resulting MHC-I complexes with an inherent ability to activate antigen-presenting cells, we engrafted the intracellular Toll/IL-1 receptor domain of mouse Toll-like receptor (TLR) 4 or TLR2 onto the peptide-β(2)m scaffold. We evaluated the level of peptide presentation and status of cell activation conferred by such constructs in stably transfected mouse RAW264.7 macrophages and mRNA-transfected mouse DC2.4 DCs. We show that the encoded peptide-β(2)m-TLR polypeptides are expressed at the cell surface, pair with endogenous heavy chains, stabilize MHC-I products, prompt efficient peptide-specific T-cell recognition and confer a constitutively activated phenotype on the transfected cells, as judged by the up-regulation of pro-inflammatory genes and surface co-stimulatory molecules. Our results provide evidence that the product of a single recombinant gene can couple MHC peptide presentation to TLR-mediated signaling and offer a safe, economical and highly versatile modality for a novel category of genetic CTL-inducing vaccines.
Collapse
Affiliation(s)
- Gal Cafri
- Laboratory of Immunology, MIGAL Research Institute, Kiryat Shmona, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Panter G, Jerala R. The ectodomain of the Toll-like receptor 4 prevents constitutive receptor activation. J Biol Chem 2011; 286:23334-44. [PMID: 21543336 DOI: 10.1074/jbc.m110.205419] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is involved in activation of the innate immune response in a large number of different diseases. Despite numerous studies, the role of separate domains of TLR4 in the regulation of receptor activation is poorly understood. Replacement of the TLR4 ectodomain with LPS-binding proteins MD-2 or CD14 resulted in a robust ligand-independent constitutive activation comparable with the maximal stimulation of the receptor with LPS. The same effect was achieved by the replacement of the ectodomain with a monomeric fluorescent protein or a 24-kDa gyrase B fragment. This demonstrates an intrinsic dimerization propensity of the transmembrane and cytoplasmic domains of TLR4 and reveals a previously unknown function of the ectodomain in inhibiting spontaneous receptor dimerization. Constitutive activation was abolished by the replacement of the ectodomain by a bulkier protein ovalbumin. N-terminal deletion variants of TLR4 revealed that the smallest segment of the ectodomain that already prevents constitutive activity comprises only 90 residues (542 to 631) of the total 608 residues. We conclude that TLR4 represents a receptor with a low threshold of activation that can be rapidly activated by the release of inhibition exerted by its ectodomain. This is important for the sensitivity of TLR4 to activation by different agonists. The TLR4 ectodomain has multiple roles in enabling ligand regulated activation, providing proper localization while serving as an inhibitor to prevent spontaneous, ligand-independent dimerization.
Collapse
Affiliation(s)
- Gabriela Panter
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
15
|
Govindaraj RG, Manavalan B, Lee G, Choi S. Molecular modeling-based evaluation of hTLR10 and identification of potential ligands in Toll-like receptor signaling. PLoS One 2010; 5:e12713. [PMID: 20877634 PMCID: PMC2943521 DOI: 10.1371/journal.pone.0012713] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 08/22/2010] [Indexed: 01/08/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogens based on distinct molecular signatures. The human (h)TLR1, 2, 6 and 10 belong to the hTLR1 subfamilies, which are localized in the extracellular regions and activated in response to diverse ligand molecules. Due to the unavailability of the hTLR10 crystal structure, the understanding of its homo and heterodimerization with hTLR2 and hTLR1 and the ligand responsible for its activation is limited. To improve our understanding of the TLR10 receptor-ligand interaction, we used homology modeling to construct a three dimensional (3D) structure of hTLR10 and refined the model through molecular dynamics (MD) simulations. We utilized the optimized structures for the molecular docking in order to identify the potential site of interactions between the homo and heterodimer (hTLR10/2 and hTLR10/1). The docked complexes were then used for interaction with ligands (Pam(3)CSK(4) and PamCysPamSK(4)) using MOE-Dock and ASEDock. Our docking studies have shown the binding orientations of hTLR10 heterodimer to be similar with other TLR2 family members. However, the binding orientation of hTLR10 homodimer is different from the heterodimer due to the presence of negative charged surfaces at the LRR11-14, thereby providing a specific cavity for ligand binding. Moreover, the multiple protein-ligand docking approach revealed that Pam(3)CSK(4) might be the ligand for the hTLR10/2 complex and PamCysPamSK(4,) a di-acylated peptide, might activate hTLR10/1 hetero and hTLR10 homodimer. Therefore, the current modeled complexes can be a useful tool for further experimental studies on TLR biology.
Collapse
Affiliation(s)
| | | | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
16
|
Dellacasagrande J. Ligands, cell-based models, and readouts required for Toll-like receptor action. Methods Mol Biol 2009; 517:15-32. [PMID: 19378025 DOI: 10.1007/978-1-59745-541-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.
Collapse
Affiliation(s)
- Jérôme Dellacasagrande
- OPSONA Therapeutics Ltd., Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland.
| |
Collapse
|
17
|
Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 2008; 16:1170-80. [PMID: 18431362 DOI: 10.1038/mt.2008.77] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of the dendritic cell (DC) vaccination protocols that are currently in use could be improved by providing the DCs with a more potent maturation signal. We therefore investigated whether the T-cell stimulatory capacity of human monocyte-derived DCs could be increased by co-electroporation with different combinations of CD40L, CD70, and constitutively active toll-like receptor 4 (caTLR4) encoding mRNA. We show that immature DCs electroporated with CD40L and/or caTLR4 mRNA, but not those electroporated with CD70 mRNA, acquire a mature phenotype along with an enhanced secretion of several cytokines/chemokines. Moreover, these DCs are very potent in inducing naive CD4(+) T cells to differentiate into interferon-gamma (IFN-gamma)-secreting type 1 T helper (Th1) cells. Further, we assessed the capacity of the electroporated DCs to activate naive HLA-A2-restricted MelanA-specific CD8(+) T cells without the addition of any exogenous cytokines. When all three molecules were combined, a >500-fold increase in MelanA-specific CD8(+) T cells was observed when compared with immature DCs, and a >200-fold increase when compared with cytokine cocktail-matured DCs. In correlation, we found a marked increase in cytolytic and IFN-gamma/tumor necrosis factor-alpha (TNF-alpha) secreting CD8(+) T cells. Our data indicate that immature DCs genetically modified to express stimulating molecules can induce tumor antigen-specific T cells in vitro and could prove to be a significant improvement over DCs matured with the methods currently in use.
Collapse
|
18
|
Chen YC, Giovannucci E, Kraft P, Lazarus R, Hunter DJ. Association between Toll-Like Receptor Gene Cluster (TLR6, TLR1, and TLR10) and Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:1982-9. [DOI: 10.1158/1055-9965.epi-07-0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Hasan UA, Caux C, Perrot I, Doffin AC, Menetrier-Caux C, Trinchieri G, Tommasino M, Vlach J. Cell proliferation and survival induced by Toll-like receptors is antagonized by type I IFNs. Proc Natl Acad Sci U S A 2007; 104:8047-52. [PMID: 17463087 PMCID: PMC1876569 DOI: 10.1073/pnas.0700664104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TRIF is an adaptor protein associated with the signaling by Toll-like receptor (TLR)3 and TLR4 for the induction of type I IFNs. Here, we demonstrate a mechanism by which TLR signaling controls cell proliferation and survival. We show that TLR3 and TLR4 can induce cell cycle entry via TRIF, which targets the cell cycle inhibitor p27(kip1) for relocalization, phosphorylation by cyclin/cdk complexes, and proteasome degradation. These events are antagonized by type I IFN induced by the TRIF pathway. Furthermore, in human dendritic cells treated with TLR3, TLR4, or TLR5 ligands, we demonstrate that IFN signaling modulates p27(kip1) degradation and apoptosis, identifying an immunoregulatory "switching" function of type I IFNs. These findings reveal a previously uncharacterized function of TLR signaling in cell proliferation and survival.
Collapse
Affiliation(s)
- Uzma A Hasan
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, Mansour M, Vincent I, Gissmann L, Iftner T, Sideri M, Stubenrauch F, Tommasino M. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. THE JOURNAL OF IMMUNOLOGY 2007; 178:3186-97. [PMID: 17312167 DOI: 10.4049/jimmunol.178.5.3186] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cervical cancer development is linked to the persistent infection by high-risk mucosal human papillomaviruses (HPVs) types. The E6 and E7 major oncoproteins from this dsDNA virus play a key role in the deregulation of the cell cycle, apoptosis, and adaptive immune surveillance. In this study, we show for the first time that HPV type 16 (HPV16), the most carcinogenic type among the high-risk subgroup, interferes with innate immunity by affecting the expression of TLRs. Infection of human primary keratinocytes with HPV16 E6 and E7 recombinant retroviruses inhibits TLR9 transcription and hence functional loss of TLR9-regulated pathways. Similar findings were achieved in HPV16-positive cancer-derived cell lines and primary cervical cancers, demonstrating that this event occurs also in an in vivo context. Interestingly, E6 and E7 from the low-risk HPV type 6 are unable to down-regulate the TLR9 promoter. In addition, E6 and E7 from the high-risk HPV type 18, which are known to persist less competently in the host than HPV16, have reduced efficiency compared with HPV16 in inhibiting TLR9 transcription. Furthermore, a CpG motif derived from the HPV16 E6 DNA sequence activated TLR9, indicating this virus is able to initiate innate responses via the receptor it later down-regulates. This study reveals a novel mechanism used by HPV16 to suppress the host immune response by deregulating the TLR9 transcript, providing evidence that abolishing innate responses may be a crucial step involved in the carcinogenic events mediated by HPVs.
Collapse
Affiliation(s)
- Uzma A Hasan
- International Agency for Research on Cancer-World Health Organization, 150 Cours Albert-Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
de Bouteiller O, Merck E, Hasan UA, Hubac S, Benguigui B, Trinchieri G, Bates EEM, Caux C. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J Biol Chem 2005; 280:38133-45. [PMID: 16144834 DOI: 10.1074/jbc.m507163200] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies involving Toll-like receptor 3 (TLR3)-deficient mice suggest that this receptor binds double-stranded RNA. In the present study, we analyzed ligand/receptor interactions and receptor-proximal events leading to TLR3 activation. The mutagenesis approach showed that certain cysteine residues and glycosylation in TLR3 amino-terminal leucine-rich repeats were necessary for ligand-induced signaling. Furthermore, inactive mutants had a dominant negative effect, suggesting that the signaling module is a multimer. We constructed a chimeric molecule fusing the amino-terminal ectodomain of TLR3 to the transmembrane and carboxyl terminal domains of CD32a containing an immunoreceptor tyrosine-based motif. Expression of TLR3-CD32 in HEK293T cells and the myeloid cell line U937 resulted in surface localization of the receptor, whereas the nonrecombinant molecule was intracellularly localized. The synthetic double-stranded RNAs poly(I-C) and poly(A-U) induced calcium mobilization in a TLR3-CD32 stably transfected U937 clone but not in control cells transfected with other constructs. An anti-TLR3 antibody also induced Ca(2+) flux but only when cross-linked by a secondary anti-immunoglobulin antibody, confirming that multimerization by the ligand is a requirement for signaling. The inhibitors of lysosome maturation, bafilomycin and chloroquine, inhibited the poly(I-C)-induced biological response in immune cells, showing that TLR3 interacted with its ligand in acidic subcellular compartments. Furthermore, TLR3-CD32 activation with poly(I-C) was only observed within a narrow pH window (pH 5.7-6.7), whereas anti-TLR3-mediated Ca(2+) flux was pH-insensitive. The importance of an acidic pH for TLR3-ligand interaction becomes critical when using oligomeric poly(I-C) (15-40-mers). These observations demonstrate that engagement of TLR3 by poly(I-C) at an acidic pH, probably in early phagolysosomes or endosomes, induces receptor aggregation leading to signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/chemistry
- Antirheumatic Agents/pharmacology
- Base Sequence
- Binding Sites
- Blotting, Western
- Calcium/metabolism
- Cell Line
- Cell Membrane/metabolism
- Cell Separation
- Chloroquine/chemistry
- Cross-Linking Reagents/pharmacology
- Cysteine/chemistry
- Cysteine/metabolism
- Cytokines/metabolism
- DNA/metabolism
- Dendritic Cells/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Endosomes/metabolism
- Enzyme Inhibitors/pharmacology
- Flow Cytometry
- Genes, Dominant
- Genes, Reporter
- Glycosylation
- Humans
- Hydrogen-Ion Concentration
- Leucine/chemistry
- Leukocytes, Mononuclear/metabolism
- Ligands
- Luciferases/metabolism
- Lysosomes/chemistry
- Lysosomes/metabolism
- Macrolides/pharmacology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- NF-kappa B/metabolism
- Phagosomes/chemistry
- Protein Binding
- Protein Structure, Tertiary
- Receptors, IgG/biosynthesis
- Receptors, IgG/chemistry
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Toll-Like Receptor 3/chemistry
- Toll-Like Receptor 3/metabolism
- Transfection
- Tyrosine/chemistry
- U937 Cells
Collapse
Affiliation(s)
- Odette de Bouteiller
- Laboratory for Immunological Research, Schering-Plough Research Institute, 27 Chemin des Peupliers, 69571 Dardilly Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hasan UA, Trinchieri G, Vlach J. Toll-like receptor signaling stimulates cell cycle entry and progression in fibroblasts. J Biol Chem 2005; 280:20620-7. [PMID: 15788393 DOI: 10.1074/jbc.m500877200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Toll-like receptors (TLRs) are proteins involved in recognition of foreign pathogen-associated molecular patterns and activation of processes leading to innate immune recognition. We show that stimulation of fibroblasts with a TLR5 ligand, flagellin, can induce proliferation of serum-starved cells or prevent cell cycle exit upon serum withdrawal independently of autologous growth factor secretion. Other TLR ligands, such as poly(I:C) and lipopolysaccharide, can have a similar effect only if the action of type I interferons is blocked. Flagellin stimulation can prevent cell cycle arrest induced by overexpression of exogenous cyclin-dependent kinase inhibitor p27. Stimulation of TLR5 and overexpression of MyD88, but not TRIF, TIRAP, or TRAM, result in p27 degradation, which can be suppressed by dominant negative Akt and mutation of the p27 C-terminal Thr(187) site. These data provide evidence for a nonimmune and cell autonomous role of TLR signaling, whereby TLR stimulation provides a positive signal for cell division.
Collapse
Affiliation(s)
- Uzma A Hasan
- Schering-Plough, Laboratory for Immunological Research, 27 Chemin des Peupliers, B.P.11, 69571 Dardilly Cedex, France.
| | | | | |
Collapse
|
23
|
Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Brière F, Vlach J, Lebecque S, Trinchieri G, Bates EEM. Human TLR10 Is a Functional Receptor, Expressed by B Cells and Plasmacytoid Dendritic Cells, Which Activates Gene Transcription through MyD88. THE JOURNAL OF IMMUNOLOGY 2005; 174:2942-50. [PMID: 15728506 DOI: 10.4049/jimmunol.174.5.2942] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human TLR10 is an orphan member of the TLR family. Genomic studies indicate that TLR10 is in a locus that also contains TLR1 and TLR6, two receptors known to function as coreceptors for TLR2. We have shown that TLR10 was not only able to homodimerize but also heterodimerized with TLRs 1 and 2. In addition, unlike TLR1 and TLR6, TLR10 was expressed in a highly restricted fashion as a highly N-glycosylated protein, which we detected in B cell lines, B cells from peripheral blood, and plasmacytoid dendritic cells from tonsil. We were also able to detect TLR10 in a CD1a(+) DC subset derived from CD34(+) progenitor cells which resemble Langerhans cells in the epidermis. Although we were unable to identify a specific ligand for TLR10, by using a recombinant CD4TLR10 molecule we also demonstrated that TLR10 directly associates with MyD88, the common Toll IL-1 receptor domain adapter. Additionally, we have characterized regions in the Toll IL-1 receptor domain of TLR10 that are essential in the activation of promoters from certain inflammatory cytokines. Even though TLR10 expression has not been detected in mice, we have identified a partial genomic sequence of the TLR10 gene that was present but nonfunctional and disrupted by a retroviral insertion in all mouse strains tested. However, a complete TLR10 sequence could be detected in the rat genome, indicating that a functional copy may be preserved in this species.
Collapse
Affiliation(s)
- Uzma Hasan
- Schering-Plough Research Institute, Laboratory for Immunological Research, Dardilly, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|