1
|
Sugiyama JI, Tokunaga Y, Hishida M, Tanaka M, Takeuchi K, Satoh D, Imashimizu M. Nonthermal acceleration of protein hydration by sub-terahertz irradiation. Nat Commun 2023; 14:2825. [PMID: 37217486 DOI: 10.1038/s41467-023-38462-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The collective intermolecular dynamics of protein and water molecules, which overlap in the sub-terahertz (THz) frequency region, are relevant for expressing protein functions but remain largely unknown. This study used dielectric relaxation (DR) measurements to investigate how externally applied sub-THz electromagnetic fields perturb the rapid collective dynamics and influence the considerably slower chemical processes in protein-water systems. We analyzed an aqueous lysozyme solution, whose hydration is not thermally equilibrated. By detecting time-lapse differences in microwave DR, we demonstrated that sub-THz irradiation gradually decreases the dielectric permittivity of the lysozyme solution by reducing the orientational polarization of water molecules. Comprehensive analysis combining THz and nuclear magnetic resonance spectroscopies suggested that the gradual decrease in the dielectric permittivity is not induced by heating but is due to a slow shift toward the hydrophobic hydration structure in lysozyme. Our findings can be used to investigate hydration-mediated protein functions based on sub-THz irradiation.
Collapse
Affiliation(s)
- Jun-Ichi Sugiyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan
| | - Yuji Tokunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Masahito Tanaka
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Satoh
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan.
| |
Collapse
|
2
|
Yoshida K, Uchiyama H, Yamaguchi T. Structure and dynamical properties of hydrated F-actin investigated by X-ray scattering. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Ozawa K, Taomori H, Hoshida M, Kunita I, Sakurazawa S, Honda H. Millimeter-sized belt-like pattern formation of actin filaments in solution by interacting with surface myosin in vitro. Biophys Physicobiol 2019; 16:1-8. [PMID: 30775198 PMCID: PMC6373424 DOI: 10.2142/biophysico.16.0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/14/2018] [Indexed: 12/01/2022] Open
Abstract
The movements of single actin filaments along a myosin-fixed glass surface were observed under a conventional fluorescence microscope. Although random at a low concentration, moving directions of filaments were aligned by the presence of over 1.0 mg/mL of unlabeled filaments. We found that actin filaments when at the intermediate concentrations ranging from 0.1 to 1.0 mg/mL, formed winding belt-like patterns and moved in a two-directional manner along the belts. These patterns were spread over a millimeter range and found to have bulged on the glass in a three-dimensional manner. Filaments did not get closer than about 37.5 nm to each other within each belt-pattern. The average width and the curvature radius of the pattern did not apparently change even when the range of actin concentrations was between 0.05 and 1.0 mg/mL or the sliding velocity between 1.2 and 3.2 μm/sec. However, when the length of filaments was shortened by ultrasonic treatments or the addition of gelsolin molecules, the curvature radius became small from 100 to 60 μm. These results indicate that this belt-forming nature of actin filaments may be due to some inter-filament interactions.
Collapse
Affiliation(s)
- Kentaro Ozawa
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Hirotaka Taomori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masayuki Hoshida
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Ituki Kunita
- Department of Information Engineering, University of the Ryukyus, Nakagami-gun, Okinawa 903-0213, Japan
| | - Sigeru Sakurazawa
- School of System Information Science, Department of Complex and Intelligent Systems, Future University Hakodate, Hakodate, Hokkaido 041-8655, Japan
| | - Hajime Honda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
4
|
Anghelina M, Butt O, Moldovan L, Petrache HI, Moldovan NI. Solvent isotope effect on leukocytes disintegration after large mechanical deformations. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aafd0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Abstract
Members of the MYC family of proto-oncogenes are the most commonly deregulated genes in all human cancers. MYC proteins drive an increase in cellular proliferation and facilitate multiple aspects of tumor initiation and progression, thereby controlling all hallmarks of cancer. MYC's ability to drive metabolic reprogramming of tumor cells leading to biomass accumulation and cellular proliferation is the most studied function of these oncogenes. MYC also regulates tumor progression and is often implicated in resistance to chemotherapy and in metastasis. While most oncogenic functions of MYC are attributed to its role as a transcription factor, more recently, new roles of MYC as a pro-survival factor in the cytoplasm suggest a previously unappreciated diversity in MYC's roles in cancer progression. This review will focus on the role of MYC in invasion and will discuss the canonical functions of MYC in Epithelial to Mesenchymal Transition and the cytoplasmic functions of MYC-nick in collective migration.
Collapse
Affiliation(s)
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Suzuki M, Mogami G, Ohsugi H, Watanabe T, Matubayasi N. Physical driving force of actomyosin motility based on the hydration effect. Cytoskeleton (Hoboken) 2017; 74:512-527. [PMID: 29087038 DOI: 10.1002/cm.21417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
Abstract
We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.,Biological and Molecular Dynamics, Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - George Mogami
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hideyuki Ohsugi
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Takahiro Watanabe
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
7
|
Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken) 2017; 74:450-464. [PMID: 28681410 DOI: 10.1002/cm.21384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
Regulatory systems in living cells are highly organized, enabling cells to response to various changes in their environments. Actin polymerization and depolymerization are crucial to establish cytoskeletal networks to maintain muscle contraction, cell motility, cell division, adhesion, organism development and more. To share and promote the biophysical understanding of such mechanisms in living creatures, the "Now in Actin Study: -Motor protein research reaching a new stage-" symposium was organized at Nagoya University, Japan on 12 and 13, December 2016. The organizers invited emeritus professor of Nagoya and Osaka Universities Fumio Oosawa and leading scientists worldwide as keynote speakers, in addition to poster presentations on cell motility studies by many researchers. Studies employing various biophysical, biochemical, cell and molecular biological and mathematical approaches provided the latest understanding of mechanisms of cell motility functions driven by actin, microtubules, actin-binding proteins, and other motor proteins.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Suzuki M, Imao A, Mogami G, Chishima R, Watanabe T, Yamaguchi T, Morimoto N, Wazawa T. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions. J Phys Chem B 2016; 120:6917-28. [PMID: 27332748 DOI: 10.1021/acs.jpcb.6b02584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (<fw: DR frequency of bulk solvent, 17 GHz at 20 °C) and hypermobile water (HMW) with DR frequency f1 (>fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Materials Processing, Graduate School of Engineering, Tohoku University , 6-6-02 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , Sendai, Miyagi 980-8578, Japan
| | - Asato Imao
- Department of Materials Processing, Graduate School of Engineering, Tohoku University , 6-6-02 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - George Mogami
- Department of Materials Processing, Graduate School of Engineering, Tohoku University , 6-6-02 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , Sendai, Miyagi 980-8578, Japan
| | - Ryotaro Chishima
- Department of Materials Processing, Graduate School of Engineering, Tohoku University , 6-6-02 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Takahiro Watanabe
- Department of Materials Processing, Graduate School of Engineering, Tohoku University , 6-6-02 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Takaya Yamaguchi
- Department of Materials Processing, Graduate School of Engineering, Tohoku University , 6-6-02 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University , 6-6-02 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Tetsuichi Wazawa
- Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research, Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
9
|
Matsuo T, Arata T, Oda T, Nakajima K, Ohira-Kawamura S, Kikuchi T, Fujiwara S. Difference in the hydration water mobility around F-actin and myosin subfragment-1 studied by quasielastic neutron scattering. Biochem Biophys Rep 2016; 6:220-225. [PMID: 28955880 PMCID: PMC5600338 DOI: 10.1016/j.bbrep.2016.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/28/2022] Open
Abstract
Hydration water is essential for a protein to perform its biological function properly. In this study, the dynamics of hydration water around F-actin and myosin subfragment-1 (S1), which are the partner proteins playing a major role in various cellular functions related to cell motility including muscle contraction, was characterized by incoherent quasielastic neutron scattering (QENS). The QENS measurements on the D2O- and H2O-solution samples of F-actin and S1 provided the spectra of hydration water, from which the translational diffusion coefficient (DT), the residence time (τT), and the rotational correlation time (τR) were evaluated. The DT value of the hydration water of S1 was found to be much smaller than that of the hydration water of F-actin while the τT values were similar between S1 and F-actin. On the other hand, the τR values of the hydration water of S1 was found to be larger than that of the hydration water of F-actin. It was also found that the DT and τR values of the hydration water of F-actin are similar to those of bulk water. These results suggest a significant difference in mobility of the hydration water between S1 and F-actin: S1 has the typical hydration water, the mobility of which is reduced compared with that of bulk water, while F-actin has the unique hydration water, the mobility of which is close to that of bulk water rather than the typical hydration water around proteins. Hydration water dynamics of F-actin and myosin S1 was studied by neutron scattering. Both translational and rotational motions are higher for F-actin hydration water. Mobility of F-actin hydration water is close to that of bulk water. High mobility of F-actin hydration water would promote the actomyosin interaction.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Toshiaki Arata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Toshiro Oda
- Graduate School of Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kenji Nakajima
- Neutron Science Section, J-PARC Center, Tokai, Ibaraki 319-1195, Japan
| | | | - Tatsuya Kikuchi
- Neutron Science Section, J-PARC Center, Tokai, Ibaraki 319-1195, Japan
| | - Satoru Fujiwara
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
10
|
Suzuki M. What is “hypermobile” water?: detected in alkali halide, adenosine phosphate, and F-actin solutions by high-resolution microwave dielectric spectroscopy. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-5024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Experimental observation by high-resolution microwave dielectric spectroscopy of hydration properties of alkali halide ions, adenosine phosphate ions, and F-actin revealed the existence of hypermobile water (HMW) molecules around those solutes. To understand the molecular process of HMW, two theoretical approaches are reviewed here. One is based on a statistical mechanical approach to analyze the rotational freedom of water molecules around a charged particle. Another approach reports direct calculation of dielectric relaxation process of water molecules around an ion. Experimentally observed HMW molecules are theoretically explained with the significance of multi-correlations among an ion and water molecules.
Collapse
|
11
|
Kuffel A, Zielkiewicz J. Properties of water in the region between a tubulin dimer and a single motor head of kinesin. Phys Chem Chem Phys 2013; 15:4527-37. [PMID: 23420044 DOI: 10.1039/c3cp43828g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A kinesin is a molecular motor that can perform movement on a microtubule track in a stepping-like manner. This motion is connected with processes of association and dissociation of kinesin and tubulin. Water is an important participant in these kinds of molecular interactions. This is why we have decided to investigate the dynamical and structural properties of water in the region between the kinesin catalytic domain and the tubulin dimer. Using the molecular dynamics method, we found that these properties are different from the ones of bulk water. The changes in structure and dynamics are visible for water beyond the first solvation layers, even for the longest analyzed distance between proteins equal to 2.0 nm. However, these changes are not always enhanced compared to the situation when only one protein surface is present. One factor that distinguishes the investigated situation from the one with a single protein is the presence of an additional electric field originating from the second protein. The tendency of vectors of dipole moments of water molecules between the proteins to follow the vectors of electric field generated by the proteins causes a distortion of the water-water hydrogen bond network. It has been shown that this distortion affects the properties of water in this region: it induces structural changes in solvation water, and leads to increased water density and increased stiffness of the water structure.
Collapse
Affiliation(s)
- Anna Kuffel
- Department of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | |
Collapse
|
12
|
Matsuo T, Arata T, Oda T, Fujiwara S. Difference in hydration structures between F-actin and myosin subfragment-1 detected by small-angle X-ray and neutron scattering. Biophysics (Nagoya-shi) 2013; 9:99-106. [PMID: 27493547 PMCID: PMC4629667 DOI: 10.2142/biophysics.9.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 12/01/2022] Open
Abstract
Hydration structures around F-actin and myosin subfragment-1 (S1), which play central roles as counterparts in muscle contraction, were investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The radius of gyration of chymotryptic S1 was evaluated to be 41.3±1.1 Å for SAXS, 40.1±3.0 Å for SANS in H2O, and 37.8±0.8 Å for SANS in D2O, respectively. The values of the cross-sectional radius of gyration of F-actin were 25.4±0.03 Å for SAXS, 23.4±2.4 Å for SANS in H2O, and 22.6 ± 0.6 Å for SANS in D2O, respectively. These differences arise from different contributions of the hydration shell to the scattering curves. Analysis by model calculations showed that the hydration shell of S1 has the average density 10–15% higher than bulk water, being the typical hydration shell. On the other hand, the hydration shell of F-actin has the average density more than 19% higher than bulk water, indicating that F-actin has a denser, unusual hydration structure. The results indicate a difference in the hydration structures around F-actin and S1. The unusual hydration structure around F-actin may have the structural property of so-called “hyper-mobile water” around F-actin.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Toshiaki Arata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Toshiro Oda
- RIKEN SPring-8 Center, RIKEN Harima Institute, Sayo-gun, Hyogo 679-5148, Japan
| | - Satoru Fujiwara
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| |
Collapse
|
13
|
Kubota Y, Yoshimori A, Matubayasi N, Suzuki M, Akiyama R. Molecular dynamics study of fast dielectric relaxation of water around a molecular-sized ion. J Chem Phys 2012; 137:224502. [DOI: 10.1063/1.4769972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Kumemoto R, Yusa K, Shibayama T, Hatori K. Trimethylamine N-oxide suppresses the activity of the actomyosin motor. Biochim Biophys Acta Gen Subj 2012; 1820:1597-604. [DOI: 10.1016/j.bbagen.2012.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
15
|
Kuffel A, Zielkiewicz J. The importance of the shape of the protein–water interface of a kinesin motor domain for dynamics of the surface atoms of the protein. Phys Chem Chem Phys 2012; 14:5561-9. [DOI: 10.1039/c2cp40105c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Lenormand G, Millet E, Park CY, Hardin CC, Butler JP, Moldovan NI, Fredberg JJ. Dynamics of the cytoskeleton: how much does water matter? PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:061918. [PMID: 21797414 PMCID: PMC3879600 DOI: 10.1103/physreve.83.061918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/20/2011] [Indexed: 05/21/2023]
Abstract
The principal constituent of the living cell is water. The role of the hydration shell and bulk H(2)O solvent is well recognized in the dynamics of isolated proteins, but the role of water in the dynamics of the integrated living cytoskeleton (CSK) remains obscure. Here we report a direct connection of dynamics of water to dynamics of the integrated CSK. The latter are known to be scale-free and to hinge upon a frequency f(0) that is roughly invariant across cell types. Although f(0) is comparable in magnitude to the rotational relaxation frequency of water (gigahertz range), the physical basis of f(0) remains unknown. Using the human airway smooth muscle cell as a model system, we show here that replacing water acutely with deuterium oxide impacts CSK dynamics in major ways, slowing CSK remodeling dynamics appreciably, and lowering f(0) by up to four orders of magnitude. Although these observations do not distinguish contributions of bulk solvent versus hydration shell, they suggest a unifying hypothesis, namely, that dynamics of integrated CSK networks are slaved in a direct fashion to fluctuations arising in intracellular water.
Collapse
Affiliation(s)
- Guillaume Lenormand
- School of Public Health, Harvard University, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kumemoto R, Hosogoe Y, Nomura N, Hatori K. Effects of urea and guanidine hydrochloride on the sliding movement of actin filaments with ATP hydrolysis by myosin molecules. J Biochem 2011; 149:713-20. [PMID: 21324985 DOI: 10.1093/jb/mvr020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To evaluate the role of the hydration layer on the protein surface of actomyosin, we compared the effects of urea and guanidine-HCl on the sliding velocities and ATPase activities of the actin-heavy meromyosin (HMM) system. Both chemicals denature proteins, but only urea perturbs the hydration layer. Both the sliding velocity of actin filaments and actin-activated ATPase activity decreased with increasing urea concentrations. The sliding movement was completely inhibited at 1.0 M urea, while actin filaments were bound to HMM molecules fixed on the glass surface. Guanidine-HCl (0-0.05 M) drastically decreased both the sliding velocity and ATPase activation of acto-HMM complexes. Under this condition, actin filaments almost detached from HMM molecules. In contrast, the ATPase activity of HMM without actin filaments was almost independent of urea concentrations <1.0 M and guanidine-HCl concentrations <0.05 M. An increase in urea concentrations up to 2.0 M partly induced changes in the ternary structure of HMM molecules, while the actin filaments were stable in this concentration range. Hydration changes around such actomyosin complexes may alter both the stability of part of the myosin molecules, and the affinity for force transmission between actin filaments and myosin heads.
Collapse
Affiliation(s)
- Ryusei Kumemoto
- Department of Bio-System Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Japan
| | | | | | | |
Collapse
|
18
|
Hyper-mobility of water around actin filaments revealed using pulse-field gradient spin-echo 1H NMR and fluorescence spectroscopy. Biochem Biophys Res Commun 2011; 404:985-90. [DOI: 10.1016/j.bbrc.2010.12.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/15/2022]
|
19
|
Mogami G, Wazawa T, Morimoto N, Kodama T, Suzuki M. Hydration properties of adenosine phosphate series as studied by microwave dielectric spectroscopy. Biophys Chem 2010; 154:1-7. [PMID: 21167630 DOI: 10.1016/j.bpc.2010.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 11/13/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
Hydration properties of adenine nucleotides and orthophosphate (Pi) in aqueous solutions adjusted to pH=8 with NaOH were studied by high-resolution microwave dielectric relaxation (DR) spectroscopy at 20 °C. The dielectric spectra were analyzed using a mixture theory combined with a least-squares Debye decomposition method. Solutions of Pi and adenine nucleotides showed qualitatively similar dielectric properties described by two Debye components. One component was characterized by a relaxation frequency (f(c)=18.8-19.7 GHz) significantly higher than that of bulk water (17 GHz) and the other by a much lower f(c) (6.4-7.6 GHz), which are referred to here as hyper-mobile water and constrained water, respectively. By contrast, a hydration shell of only the latter type was found for adenosine (f(c)~6.7 GHz). The present results indicate that phosphoryl groups are mostly responsible for affecting the structure of the water surrounding the adenine nucleotides by forming one constrained water layer and an additional three or four layers of hyper-mobile water.
Collapse
Affiliation(s)
- George Mogami
- Laboratory of Biomaterials Physical Chemistry, Department of Materials Processing, Graduate School of Engineering, Tohoku University, CREST/JST, 6-6-02 Aoba, Aramaki-aza, Aoba-Ku, Sendai, Miyagi 980-8579, Japan
| | | | | | | | | |
Collapse
|
20
|
Wazawa T, Miyazaki T, Sambongi Y, Suzuki M. Hydration analysis of Pseudomonas aeruginosa cytochrome c551 upon acid unfolding by dielectric relaxation spectroscopy. Biophys Chem 2010; 151:160-9. [DOI: 10.1016/j.bpc.2010.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
21
|
Puolanne E, Halonen M. Theoretical aspects of water-holding in meat. Meat Sci 2010; 86:151-65. [DOI: 10.1016/j.meatsci.2010.04.038] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/21/2010] [Accepted: 04/29/2010] [Indexed: 11/15/2022]
|
22
|
Kinoshita M, Suzuki M. A statistical-mechanical analysis on the hypermobile water around a large solute with high surface charge density. J Chem Phys 2009; 130:014707. [DOI: 10.1063/1.3054354] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Furukawa H, Kuwabara R, Tanaka Y, Kurokawa T, Na YH, Osada Y, Gong JP. Tear Velocity Dependence of High-Strength Double Network Gels in Comparison with Fast and Slow Relaxation Modes Observed by Scanning Microscopic Light Scattering. Macromolecules 2008. [DOI: 10.1021/ma800821j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hidemitsu Furukawa
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Rikimaru Kuwabara
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshimi Tanaka
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takayuki Kurokawa
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yang-Ho Na
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshihito Osada
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jian Ping Gong
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
24
|
Kanzaki N, Uyeda TQP, Onuma K. Intermolecular interaction of actin revealed by a dynamic light scattering technique. J Phys Chem B 2007; 110:2881-7. [PMID: 16471898 DOI: 10.1021/jp054865g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intermolecular interaction force of actin was studied by a dynamic light scattering technique. The mutual diffusion coefficients (D) of monomeric actin were accurately determined in a G-buffer with a low concentration of KCl from 0 to 10 mM. The translational diffusion coefficient was obtained as D(0) = (87 +/- 3) x 10(-12) m(2).s(-1) at 25 degrees C and pH 7.4, which gives a hydrodynamic radius of monomeric actin of r(H) = 2.8 +/- 0.1 nm. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, assuming electrostatic and van der Waals potentials, failed to describe the change in interaction parameter (lambda) with KCl concentration, but the extended DLVO theory succeeded if an additional repulsive potential was assumed. The Hamaker constant of actin in the Ca(2+)-ATP bound state was determined for the first time as A(H) = 10.4 +/- 0.6 k(B)T.
Collapse
Affiliation(s)
- Noriko Kanzaki
- Institute for Human Science and Biomedical Engineering, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 6, Tsukuba 305-8566, Japan.
| | | | | |
Collapse
|
25
|
Ogami A, Miyazaki H, Niisato N, Sugimoto T, Marunaka Y. UT-B1 urea transporter plays a noble role as active water transporter in C6 glial cells. Biochem Biophys Res Commun 2006; 351:619-24. [PMID: 17081500 DOI: 10.1016/j.bbrc.2006.10.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 10/13/2006] [Indexed: 01/25/2023]
Abstract
Since our experimental results suggest that UT-B1 functions as active water transporter against osmotic gradient in C6 glial cells, we report here for the first time the evidence for the active water transport. Exposure of C6 cells to a hyperosmotic solution containing glycerol or sucrose produced cell shrinkage due to water efflux according to osmotic gradient for water movement. On the other hand, C6 cells show cell swelling against osmotic gradient for water movement just after exposure to a hyperosmotic solution containing urea, indicating that water influx against osmotic gradient for water movement is accelerated by urea; i.e., urea performs active water transport. A specific inhibitor of UT-B, pCMBS, blocked the urea-induced swelling. The urea-induced cell swelling was significantly suppressed in the siRNA-induced UT-B1-knockdown C6 cells. Taken together, these observations indicate that UT-B1 acts as an active water transporter, providing a new model on active water transport.
Collapse
Affiliation(s)
- Aya Ogami
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602 8566, Japan
| | | | | | | | | |
Collapse
|
26
|
Raschke TM. Water structure and interactions with protein surfaces. Curr Opin Struct Biol 2006; 16:152-9. [PMID: 16546375 DOI: 10.1016/j.sbi.2006.03.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/27/2006] [Accepted: 03/06/2006] [Indexed: 11/29/2022]
Abstract
The structure of liquid water and its interaction with biological molecules is a very active area of experimental and theoretical research. The chemically complex surfaces of protein molecules alter the structure of the surrounding layer of hydrating water molecules. The dynamics of hydration water can be detected by a series of experimental techniques, which show that hydration waters typically have slower correlation times than water in bulk. Specific water-mediated interactions in protein complexes have been studied in detail, and these interactions have been incorporated into potential energy functions for protein folding and design. The subtle changes in the structure of hydration water have been investigated by theoretical studies.
Collapse
Affiliation(s)
- Tanya M Raschke
- Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Abstract
Water was called by Szent-Gyorgi "life's mater and matrix, mother and medium." This chapter considers both aspects of his statement. Many astrobiologists argue that some, if not all, of Earth's water arrived during cometary bombardments. Amorphous water ices of comets possibly facilitated organization of complex organic molecules, kick-starting prebiotic evolution. In Gaian theory, Earth retains its water as a consequence of biological activity. The cell cytomatrix is a proteinaceous matrix/lattice incorporating the cytoskeleton, a pervasive, holistic superstructural network that integrates metabolic pathways. Enzymes of metabolic pathways are ordered in supramolecular clusters (metabolons) associated with cytoskeleton and/or membranes. Metabolic intermediates are microchanneled through metabolons without entering a bulk aqueous phase. Rather than being free in solution, even major signaling ions are probably clustered in association with the cytomatrix. Chloroplasts and mitochondria, like bacteria and archaea, also contain a cytoskeletal lattice, metabolons, and channel metabolites. Eukaryotic metabolism is mathematically a scale-free or small-world network. Enzyme clusters of bacterial origin are incorporated at a pathway level that is architecturally archaean. The eucaryotic cell may be a product of serial endosymbiosis, a chimera. Cell cytoplasm is approximately 80% water. Water is indisputably a conserved structural element of proteins, essential to their folding, specificity, ligand binding, and to enzyme catalysis. The vast literature of organized cell water has long argued that the cytomatrix and cell water are an entire system, a continuum, or gestalt. Alternatives are offered to mainstream explanations of cell electric potentials, ion channel, enzyme, and motor protein function, in terms of high-order cooperative systems of ions, water, and macromolecules. This chapter describes some prominent concepts of organized cell water, including vicinal water network theory, the association-induction hypothesis, wave-cluster theory, phase-gel transition theories, and theories of low- and high-density water polymorphs.
Collapse
Affiliation(s)
- V A Shepherd
- Department of Biophysics, School of Physics, The University of NSW NSW 2052, Sydney, Australia
| |
Collapse
|
28
|
Siddique MSP, Mogami G, Miyazaki T, Katayama E, Uyeda TQP, Suzuki M. Cooperative structural change of actin filaments interacting with activated myosin motor domain, detected with copolymers of pyrene-labeled actin and acto-S1 chimera protein. Biochem Biophys Res Commun 2005; 337:1185-91. [PMID: 16226711 DOI: 10.1016/j.bbrc.2005.09.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Accepted: 09/26/2005] [Indexed: 11/30/2022]
Abstract
Acto-S1 chimera proteins CP24 and CP18 carry the entire actin sequence, inserted in loop 2 of the motor domain of Dictyostelium myosin II, and have MgATPase activity close to that of natural Dictyostelium actomyosin [M.S.P. Siddique, T. Miyazaki, E. Katayama, T.Q.P. Uyeda, M. Suzuki, Evidence against essential roles of subdomain 1 of actin in actomyosin sliding movements, Biochem. Biophys. Res. Commun. 332 (2005) 474-481]. Here, we examined and detected cooperative structural change of actin filaments accompanying interaction with myosin motor domain in the presence of ATP using copolymer filaments consisting of pyrene-labeled skeletal actin (SA) and either CP24 or CP18. Upon addition of ATP, the fluorescence intensity increased over the range from 380 to 480nm using 365-nm excitation. The relative increases of fluorescence intensity at 390nm were 14%, 46%, and 77% for the copolymer filaments with the CP24 to actin molar ratios of 0.0625, 0.143, and 0.333, respectively, and demonstrated a sigmoid behavior. Stoichiometric analysis indicates that each CP24 molecule appears to affect four actin molecules, on average, in SA-CP24 copolymers, and each CP18 molecule appears to affect three actin molecules in SA-CP18 copolymers.
Collapse
Affiliation(s)
- Md Shahjahan P Siddique
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 6-6-02, Sendai 980-8579, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Laudadio RE, Millet EJ, Fabry B, An SS, Butler JP, Fredberg JJ. Rat airway smooth muscle cell during actin modulation: rheology and glassy dynamics. Am J Physiol Cell Physiol 2005; 289:C1388-95. [PMID: 16120653 DOI: 10.1152/ajpcell.00060.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although changes of cytoskeleton (CSK) stiffness and friction can be induced by diverse interventions, all mechanical changes reported to date can be scaled onto master relationships that appear to be universal. To assess the limits of the applicability of those master relationships, we focused in the present study on actin and used a panel of actin-manipulating drugs that is much wider than any used previously. We focused on the cultured rat airway smooth muscle (ASM) cell as a model system. Cells were treated with agents that directly modulate the polymerization (jasplakinolide, cytochalasin D, and latrunculin A), branching (genistein), and cross linking (phallacidin and phalloidin oleate) of the actin lattice. Contractile (serotonin, 5-HT) and relaxing (dibutyryl adenosine 3',5'-cyclic monophosphate, DBcAMP) agonists and a myosin inhibitor (ML-7) were also tested for comparison, because these agents may change the structure of actin indirectly. Using optical magnetic twisting cytometry, we measured elastic and frictional moduli before and after treatment with each agent. Stiffness increased with frequency as a weak power law, and changes of friction paralleled those of stiffness until they approached a Newtonian viscous limit. Despite large differences in the mechanism of action among the interventions, all data collapsed onto master curves that depended on a single parameter. In the context of soft glassy systems, that parameter would correspond to an effective temperature of the cytoskeletal matrix and reflect the effects of molecular crowding and associated molecular trapping. These master relationships demonstrate that when the mechanical properties of the cell change, they are constrained to do so along a special trajectory. Because mechanical characteristics of the cell shadow underlying molecular events, these results imply special constraints on the protein-protein interactions that dominate CSK mechanical properties.
Collapse
Affiliation(s)
- Rachel E Laudadio
- Harvard School of Public Health, Bldg. 1, Rm. 317, 665 Huntington Ave., Boston, MA 02115-6021, USA
| | | | | | | | | | | |
Collapse
|
30
|
Siddique MSP, Miyazaki T, Katayama E, Uyeda TQP, Suzuki M. Evidence against essential roles for subdomain 1 of actin in actomyosin sliding movements. Biochem Biophys Res Commun 2005; 332:474-81. [PMID: 15910751 DOI: 10.1016/j.bbrc.2005.04.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 04/29/2005] [Indexed: 11/30/2022]
Abstract
We have engineered acto-S1chimera proteins carrying the entire actin inserted in loop 2 of the motor domain of Dictyostelium myosin II with 24 or 18 residue-linkers (CP24 and CP18, respectively). These proteins were capable of self-polymerization as well as copolymerization with skeletal actin and exhibited rigor-like structures. The MgATPase rate of CP24-skeletal actin copolymer was 1.06 s(-1), which is slightly less than the V(max) of Dictyostelium S1. Homopolymer filaments of skeletal actin, CP24, and CP18 moved at 4.7+/-0.6, 2.9+/-0.6, and 4.1+/-0.8 microm/s (mean+/-SD), respectively, on coverslips coated with skeletal myosin at 27 degrees C. Statistically thermodynamic considerations suggest that the S1 portion of chimera protein mostly resides on subdomain 1 (SD-1) of the actin portion even in the presence of ATP. This and the fact that filaments of CP18 with shorter linkers moved faster than CP24 filaments suggest that SD-1 might not be as essential as conventionally presumed for actomyosin sliding interactions.
Collapse
Affiliation(s)
- Md Shahjahan P Siddique
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 6-6-02, Sendai 980-8579, Japan
| | | | | | | | | |
Collapse
|