1
|
Habeeb MA, Vishwakarma SK, Habeeb S, Khan AA. Current progress and emerging technologies for generating extrapancreatic functional insulin-producing cells. World J Transl Med 2022; 10:1-13. [DOI: 10.5528/wjtm.v10.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Md Aejaz Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Safwaan Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
2
|
Garrido-Utrilla A, Ayachi C, Friano ME, Atlija J, Balaji S, Napolitano T, Silvano S, Druelle N, Collombat P. Conversion of Gastrointestinal Somatostatin-Expressing D Cells Into Insulin-Producing Beta-Like Cells Upon Pax4 Misexpression. Front Endocrinol (Lausanne) 2022; 13:861922. [PMID: 35573999 PMCID: PMC9103212 DOI: 10.3389/fendo.2022.861922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes results from the autoimmune-mediated loss of insulin-producing beta-cells. Accordingly, important research efforts aim at regenerating these lost beta-cells by converting pre-existing endogenous cells. Following up on previous results demonstrating the conversion of pancreatic somatostatin delta-cells into beta-like cells upon Pax4 misexpression and acknowledging that somatostatin-expressing cells are highly represented in the gastrointestinal tract, one could wonder whether this Pax4-mediated conversion could also occur in the GI tract. We made use of transgenic mice misexpressing Pax4 in somatostatin cells (SSTCrePOE) to evaluate a putative Pax4-mediated D-to-beta-like cell conversion. Additionally, we implemented an ex vivo approach based on mice-derived gut organoids to assess the functionality of these neo-generated beta-like cells. Our results outlined the presence of insulin+ cells expressing several beta-cell markers in gastrointestinal tissues of SSTCrePOE animals. Further, using lineage tracing, we established that these cells arose from D cells. Lastly, functional tests on mice-derived gut organoids established the ability of neo-generated beta-like cells to release insulin upon stimulation. From this study, we conclude that the misexpression of Pax4 in D cells appears sufficient to convert these into functional beta-like cells, thus opening new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Anna Garrido-Utrilla
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Chaïma Ayachi
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Marika Elsa Friano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Josipa Atlija
- Department of Cryopreservation, Distribution, Typing and Animal Archiving, Centre National de la Recherche Scientifique-Unité d'Appui à la Recherche (CNRS-UAR) 44 Typage et Archivage d’Animaux Modèles (TAAM), Orléans, France
| | - Shruti Balaji
- PlantaCorp Gesellschaft mit beschränkter Haftung (GmbH), Hamburg, Germany
| | - Tiziana Napolitano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Serena Silvano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Noémie Druelle
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY, United States
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| | - Patrick Collombat
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| |
Collapse
|
3
|
Xu B, Yuan FZ, Lin L, Ye J, Fan BS, Zhang JY, Yang M, Jiang D, Jiang WB, Wang X, Yu JK. The Higher Inherent Therapeutic Potential of Biomaterial-Based hDPSCs and hEnSCs for Pancreas Diseases. Front Bioeng Biotechnol 2020; 8:636. [PMID: 32676499 PMCID: PMC7333240 DOI: 10.3389/fbioe.2020.00636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Human endometrial stem cells (hEnSCs), dental pulp stem cells (hDPSCs) and adipose tissue-derived stem cells (hADSCs) are considered to be the promising candidates for the treatment of pancreas diseases. The prognosis is better with in situ injection of mesenchymal stem cells (MSCs) to the damaged pancreas compared with intravenous injection. However, the clinical application of these cells are limited, due to poor engraftment of transplanted cells after delivery. On the other hand, understanding the role of the biomaterials in cell therapy is essential to promote the therapeutic effects of MSCs. Matrigel, a basement membrane matrix biomaterial, is rich in laminin and collagen IV. The aim of this study is to investigate the difference of biological characteristics of hEnSCs, hDPSCs and hADSCs in vitro and their survival situation with Matrigel post intrapancreatic transplantation in vivo. Our findings showed, firstly, there was no significant difference in morphology and immunophenotype of these MSCs. Secondly, the biological properties, including cell proliferation, the ability of adipogenic and osteogenic differentiation and the mRNA expression levels of pancreas development-related genes, have been showed distinct difference among these MSCs. Thirdly, Matrigel can improve the survival of MSCs in vivo, especially for Matrigel-based hDPSCs and Matrigel-based hEnSCs in pancreas parenchyma of SD rats. These results suggest that hDPSCs and hEnSCs are with the greater inherent therapeutic potential for pancreas diseases compared with hADSCs.
Collapse
Affiliation(s)
- Bingbing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Lin Lin
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Meng Yang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Wen-Bo Jiang
- Clinical Translational R&D Center of 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Current Status of Stem Cell Treatment for Type I Diabetes Mellitus. Tissue Eng Regen Med 2018; 15:699-709. [PMID: 30603589 DOI: 10.1007/s13770-018-0143-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a major health concern in current scenario which has been found to affect people of almost all ages. The disease has huge impact on global health; therefore, alternate methods apart from insulin injection are being explored to cure diabetes. Therefore, this review mainly focuses on the current status and therapeutic potential of stem cells mainly mesenchymal stem cells (MSCs) for Type 1 diabetes mellitus in preclinical animal models as well as humans. METHODS Current treatment for Type 1 diabetes mellitus mainly includes use of insulin which has its own limitations and also the underlying mechanism of diseases is still not explored. Therefore, alternate methods to cure diabetes are being explored. Stem cells are being investigated as an alternative therapy for treatment of various diseases including diabetes. Few preclinical studies have also been conducted using undifferentiated MSCs as well as in vitro MSCs differentiated into β islet cells. RESULTS These stem cell transplant studies have highlighted the benefits of MSCs, which have shown promising results. Few human trials using stem cells have also affirmed the potential of these cells in alleviating the symptoms. CONCLUSION Stem cell transplantation may prove to be a safe and effective treatment for patients with Type 1 diabetes mellitus.
Collapse
|
5
|
Zang L, Hao H, Liu J, Li Y, Han W, Mu Y. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetol Metab Syndr 2017; 9:36. [PMID: 28515792 PMCID: PMC5433043 DOI: 10.1186/s13098-017-0233-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), which is characterized by the combination of relative insulin deficiency and insulin resistance, cannot be reversed with existing therapeutic strategies. Transplantation of insulin-producing cells (IPCs) was once thought to be the most promising strategy for treating diabetes, but the pace from the laboratory to clinical application has been obstructed due to its drawbacks. Mesenchymal stem cells (MSCs) harbor differentiation potential, immunosuppressive properties, and anti-inflammatory effects, and they are considered an ideal candidate cell type for treatment of DM. MSC-related research has demonstrated exciting therapeutic effects in glycemic control both in vivo and in vitro, and these results now have been translated into clinical practice. However, some critical potential problems have emerged from current clinical trials. Multi-center, large-scale, double-blind, and placebo-controlled studies with strict supervision are required before MSC transplantation can become a routine therapeutic approach for T2DM. We briefly review the molecular mechanism of MSC treatment for T2DM as well as the merits and drawbacks identified in current clinical trials.
Collapse
Affiliation(s)
- Li Zang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Haojie Hao
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yijun Li
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, College of Life Science, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
6
|
Coccè V, Vitale A, Colombo S, Bonomi A, Sisto F, Ciusani E, Alessandri G, Parati E, Brambilla P, Brambilla M, La Porta CA, Pessina A. Human skin-derived fibroblasts used as a 'Trojan horse' for drug delivery. Clin Exp Dermatol 2016; 41:417-24. [PMID: 26899383 DOI: 10.1111/ced.12811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Drug toxicity currently represents the main challenge of tumour chemotherapy. Our group recently developed a new method for drug delivery inspired by the 'Trojan Horse' concept. Human mesenchymal stem cells (hMSCs) have been shown to play the role of new 'horses' in delivering anti-tumour agents, without involving any genetic manipulation. As human stromal dermal fibroblasts (hSDFs) represent an interesting alternative to hMSCs, being easy to isolate, they could be an ideal candidate for this kind of procedure. AIM To investigate whether hSDFs can take up and deliver paclitaxel (PTX) in sufficient concentrations to inhibit a very aggressive melanoma tumour (IgR39) in vitro. METHODS hSDFs were primed with high doses of PTX, and then the effect of drug delivery on IgR39 melanoma proliferation in vitro was evaluated using several assays (antiproliferation, transwell cocultures, rosette assays and colony growth assays). Furthermore, the cell cycle and PTX uptake/release mechanism of hSDFs were studied both under both normal and hypoxic conditions. RESULTS hSDFs incorporated PTX and then released it with unaffected pharmacological activity, inhibiting human IgR39 melanoma growth in vitro. The hypoxic conditions did not induce changes in cell cycle pattern and the uptake-release mechanism with PTX was not affected. CONCLUSIONS hSDFs can be used as a Trojan horse, as the released drug was functionally active. These results indicated that these cells could be used for clinical treatment as the drug was released into the cellular environment and the primed cells underwent apoptosis.
Collapse
Affiliation(s)
- V Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - A Vitale
- Department of Biosciences, Molecular Oncology Laboratory, University of Milan, Milan, Italy
| | - S Colombo
- Department of Biosciences, Molecular Oncology Laboratory, University of Milan, Milan, Italy
| | - A Bonomi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - F Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - E Ciusani
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - G Alessandri
- Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - E Parati
- Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - P Brambilla
- Department of Diagnostic Services, Desio and Vimercate's Hospital, Milan, Italy
| | - M Brambilla
- Department of Diagnostic Services, Desio and Vimercate's Hospital, Milan, Italy
| | - C A La Porta
- Department of Biosciences, Molecular Oncology Laboratory, University of Milan, Milan, Italy
| | - A Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Wan Y, Garner J, Wu N, Phillip L, Han Y, McDaniel K, Annable T, Zhou T, Francis H, Glaser S, Huang Q, Alpini G, Meng F. Role of stem cells during diabetic liver injury. J Cell Mol Med 2016; 20:195-203. [PMID: 26645107 PMCID: PMC4727564 DOI: 10.1111/jcmm.12723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non-alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β-cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti-inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.
Collapse
Affiliation(s)
- Ying Wan
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, Southern Medical University, Guangzhou, China
| | - Jessica Garner
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Nan Wu
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Levine Phillip
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Yuyan Han
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Tami Annable
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, Southern Medical University, Guangzhou, China
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| |
Collapse
|
8
|
Hashemian SJ, Kouhnavard M, Nasli-Esfahani E. Mesenchymal Stem Cells: Rising Concerns over Their Application in Treatment of Type One Diabetes Mellitus. J Diabetes Res 2015; 2015:675103. [PMID: 26576437 PMCID: PMC4630398 DOI: 10.1155/2015/675103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/17/2015] [Accepted: 01/18/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that leads to beta cell destruction and lowered insulin production. In recent years, stem cell therapies have opened up new horizons to treatment of diabetes mellitus. Among all kinds of stem cells, mesenchymal stem cells (MSCs) have been shown to be an interesting therapeutic option based on their immunomodulatory properties and differentiation potentials confirmed in various experimental and clinical trial studies. In this review, we discuss MSCs differential potentials in differentiation into insulin-producing cells (IPCs) from various sources and also have an overview on currently understood mechanisms through which MSCs exhibit their immunomodulatory effects. Other important issues that are provided in this review, due to their importance in the field of cell therapy, are genetic manipulations (as a new biotechnological method), routes of transplantation, combination of MSCs with other cell types, frequency of transplantation, and special considerations regarding diabetic patients' autologous MSCs transplantation. At the end, utilization of biomaterials either as encapsulation tools or as scaffolds to prevent immune rejection, preparation of tridimensional vascularized microenvironment, and completed or ongoing clinical trials using MSCs are discussed. Despite all unresolved concerns about clinical applications of MSCs, this group of stem cells still remains a promising therapeutic modality for treatment of diabetes.
Collapse
Affiliation(s)
- Seyed Jafar Hashemian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Seyed Jafar Hashemian:
| | - Marjan Kouhnavard
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Dave S. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: A new approach to treat type 1 diabetes. Adv Biomed Res 2014; 3:266. [PMID: 25625105 PMCID: PMC4298883 DOI: 10.4103/2277-9175.148247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/21/2013] [Indexed: 12/31/2022] Open
Abstract
The pathophysiology of type 1 diabetes mellitus (T1DM) is largely related to an innate defect in the immune system culminating in a loss of self-tolerance and destruction of the insulin-producing β-cells. Currently, there is no definitive cure for T1DM. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Stem cell therapy is a promising approach and specifically mesenchymal stem cells (MSCs) offer a promising possibility that deserves to be explored further. MSCs are multipotent, nonhematopoietic progenitors. They have been explored as an treatment option in tissue regeneration as well as potential of in vitro transdifferentiation into insulin-secreting cells. Thus, the major therapeutic goals for T1DM have been achieved in this way. The regenerative capabilities of MSCs have been a driving force to initiate studies testing their therapeutic effectiveness; their immunomodulatory properties have been equally exciting; which would appear capable of disabling immune dysregulation that leads to β-cell destruction in T1DM. Furthermore, MSCs can be cultured under specially defined conditions, their transdifferentiation can be directed toward the β-cell phenotype, and the formation of insulin-producing cells (IPCs) can be targeted. To date, the role of MSCs-derived IPC in T1DM–a unique approach with some positive findings–have been unexplored, but it is still in its very early phase. In this study, a new approach of MSCs-derived IPCs, as a potential therapeutic benefit for T1DM in experimental animal models as well as in humans has been summarized.
Collapse
Affiliation(s)
- Shruti Dave
- Department of Pathology, Laboratory Medicine, Transfusion Services and Immunohematology, Stem Cell Lab and Transplant Biology Research Centre, G. R. Doshi and K. M. Mehta Institute of Kidney Diseases and Research Centre-Dr. H. L. Trivedi Institute of Transplantation Sciences, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Sisto F, Bonomi A, Cavicchini L, Coccè V, Scaltrito MM, Bondiolotti G, Alessandri G, Parati E, Pessina A. Human mesenchymal stromal cells can uptake and release ciprofloxacin, acquiring in vitro anti-bacterial activity. Cytotherapy 2014; 16:181-90. [PMID: 24438899 DOI: 10.1016/j.jcyt.2013.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND AIMS Traditional antibiotic therapy is based on the oral or systemic injection of antibiotics that are often unable to stop a deep infection (eg, osteomyelitis). We studied whether or not bone marrow stromal cells (BM-MSCs) are able to uptake and release ciprofloxacin (CPX), a fluoroquinolone considered the drug of choice for the treatment of chronic osteomyelitis because of its favorable penetration into poorly vascularized sites of infection. METHODS Human bone marrow stromal cells (BM-MSCs) were primed with CPX (BM-MSCsCPX) according to a methodology previously standardized in our laboratory for paclitaxel (PTX). The anti-microbial activity of CPX released from BM-MSCs cells (BM-MSCsCPX-CM) or supernatant from cell lysate (BM-MSCsCPX-LYS) was evaluated by agar dilution and microdilution methods on three bacterial strains (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa). To investigate whether or not primed cells (BM-MSCsCPX) were able to directly act on the bacterial growth, co-colture was performed by mixing E. coli suspension to an increasing number of BM-MSCsCPX. The anti-bacterial activity was determined as number of BM-MSCsCPX that completely inhibited bacterial growth. RESULTS The results demonstrated that BM-MSCsCPX are able to uptake and then release CPX in the conditioned medium. The loaded antibiotic maintains its active form throughout the process as tested on bacteria. CONCLUSIONS Our findings suggest that CPX-loaded MSCs may represent an important device for carrying and delivering CPX (and perhaps other antibiotics) into infected deep microenvironments; they could be used for local application and by systemic infusion when their homing capacity into the bone is cleared.
Collapse
Affiliation(s)
- Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Arianna Bonomi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Loredana Cavicchini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | | | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | | | - Eugenio Parati
- Fondazione IRCCS, Neurological Institute Carlo Besta, Milan, Italy
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy.
| |
Collapse
|
11
|
Cell-based regenerative strategies for treatment of diabetic skin wounds, a comparative study between human umbilical cord blood-mononuclear cells and calves' blood haemodialysate. PLoS One 2014; 9:e89853. [PMID: 24643010 PMCID: PMC3958350 DOI: 10.1371/journal.pone.0089853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/25/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Diabetes-related foot problems are bound to increase. However, medical therapies for wound care are limited; therefore, the need for development of new treatment modalities to improve wound healing in diabetic patients is essential and constitutes an emerging field of investigation. METHODS Animals were randomly divided into 8 groups (I-VIII) (32 rats/group), all were streptozotocin (STZ)-induced diabetics except groups III and VIII were non-diabetic controls. The study comprised two experiments; the first included 3 groups. Group I injected with mononuclear cells (MNCs) derived from human umbilical cord blood (HUCB), group II a diabetic control group (PBS i.v). The second experiment included 5 groups, groups IV, V, and VI received topical HUCB-haemodialysate (HD), calves' blood HD, and solcoseryl, respectively. Group VII was the diabetic control group (topical saline). Standard circular wounds were created on the back of rats. A sample of each type of HD was analyzed using the high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) system. Wound area measurement and photography were carried out every 4 days. Plasma glucose, catalase (CAT), malondialdehyde (MDA), nitric oxide (NO) and platelets count were assessed. Wound samples were excised for hydroxyproline (HP) and histopathological study. RESULTS Treatment with HUCB MNCs or HUCB-HD resulted in wound contraction, increased CAT, NO, platelets count, body weights, and HP content, and decreased MDA and glucose. CONCLUSION Systemic administration of HUCB MNCs and topical application of the newly prepared HUCB-HD or calves' blood HD significantly accelerated the rate of diabetic wound healing and would open the possibility of their future use in regenerative medicine.
Collapse
|
12
|
Matsuoka K, Saito M, Shibata K, Sekine M, Shitara H, Taya C, Zhang X, Takahashi TA, Kohno K, Kikkawa Y, Yonekawa H. Generation of mouse models for type 1 diabetes by selective depletion of pancreatic beta cells using toxin receptor-mediated cell knockout. Biochem Biophys Res Commun 2013; 436:400-5. [PMID: 23747725 DOI: 10.1016/j.bbrc.2013.05.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 12/15/2022]
Abstract
By using the toxin receptor-mediated cell knockout (TRECK) method, we have generated two transgenic (Tg) murine lines that model type 1 (insulin-dependent) diabetes. The first strain, C.B-17/Icr-Prkdc(scid)/Prkdc(scid)-INS-TRECK-Tg, carries the diphtheria toxin receptor (hDTR) driven by the human insulin gene promoter, while the other strain, C57BL/6-ins2(BAC)-TRECK-Tg, expresses hDTR cDNA under the control of the mouse insulin II gene promoter. With regard to the C.B-17/Icr-Prkdc(scid)/Prkdc(scid)-INS-TRECK-Tg strain, only one of three Tg strains exhibited proper expression of hDTR in pancreatic β cells. By contrast, hDTR was expressed in the pancreatic β cells of all four of the generated C57BL/6-ins2(BAC)-TRECK-Tg strains. Hyperglycemia, severe ablation of pancreatic β cells and depletion of serum insulin were observed within 3days after the administration of diphtheria toxin (DT) in these Tg mice. Subcutaneous injection of a suitable dosage of insulin was sufficient for recovery from hyperglycemia in all of the examined strains. Using the C.B-17/Icr-Prkdc(scid)/Prkdc(scid)-INS-TRECK-Tg model, we tried to perform regenerative therapeutic approaches: allogeneic transplantation of pancreatic islet cells from C57BL/6 and xenogeneic transplantation of CD34(+) human umbilical cord blood cells. Both approaches successfully rescued C.B-17/Icr-Prkdc(scid)/Prkdc(scid)-INS-TRECK-Tg mice from hyperglycemia caused by DT administration. The high specificity with which DT causes depletion in pancreatic β cells of these Tg mice is highly useful for diabetogenic research.
Collapse
Affiliation(s)
- Kunie Matsuoka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mesenchymal stem cell therapy in diabetes mellitus: progress and challenges. J Nucleic Acids 2013; 2013:194858. [PMID: 23762531 PMCID: PMC3666198 DOI: 10.1155/2013/194858] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023] Open
Abstract
Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs) therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.
Collapse
|
14
|
Pessina A, Coccè V, Pascucci L, Bonomi A, Cavicchini L, Sisto F, Ferrari M, Ciusani E, Crovace A, Falchetti ML, Zicari S, Caruso A, Navone S, Marfia G, Benetti A, Ceccarelli P, Parati E, Alessandri G. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice. Br J Haematol 2013; 160:766-78. [DOI: 10.1111/bjh.12196] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/19/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
| | - Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
| | - Luisa Pascucci
- Section of Veterinary Anatomy; Department of Biopathological Sciences and Hygiene of Animal and Food Productions; University of Perugia; Milan Italy
| | - Arianna Bonomi
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Loredana Cavicchini
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
| | - Maura Ferrari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna; Brescia Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Neurogenetic Medicine; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Antonio Crovace
- Dipartimento dell'Emergenza e dei Trapianti di Organi (D.E.T.O.), Sezione di Chirurgia Veterinaria; Università degli Studi di Bari Aldo Moro; Bari Italy
| | | | - Sonia Zicari
- Department of Microbiology; University of Brescia and Spedali Civili; Brescia Italy
| | - Arnaldo Caruso
- Department of Microbiology; University of Brescia and Spedali Civili; Brescia Italy
| | - Stefania Navone
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Giovanni Marfia
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Anna Benetti
- 2nd Department of Pathology; University of Brescia and Spedali Civili; Brescia Italy
| | - Piero Ceccarelli
- Section of Veterinary Anatomy; Department of Biopathological Sciences and Hygiene of Animal and Food Productions; University of Perugia; Milan Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| |
Collapse
|
15
|
Bonomi A, Coccè V, Cavicchini L, Sisto F, Dossena M, Balzarini P, Portolani N, Ciusani E, Parati E, Alessandri G, Pessina A. Adipose Tissue-Derived Stromal Cells Primed in Vitro with Paclitaxel Acquire Anti-Tumor Activity. Int J Immunopathol Pharmacol 2013; 26:33-41. [DOI: 10.1177/03946320130260s105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- A. Bonomi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - V. Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - L. Cavicchini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - F. Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - M. Dossena
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - P. Balzarini
- Second Department of Pathology, University of Brescia and Spedali Civili, Brescia, Italy
| | - N. Portolani
- Second Department of Pathology, University of Brescia and Spedali Civili, Brescia, Italy
| | - E. Ciusani
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - E. Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - G. Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A. Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| |
Collapse
|
16
|
Domínguez-Bendala J, Ricordi C. Present and future cell therapies for pancreatic beta cell replenishment. World J Gastroenterol 2012; 18:6876-84. [PMID: 23322984 PMCID: PMC3531670 DOI: 10.3748/wjg.v18.i47.6876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.
Collapse
|
17
|
Stanekzai J, Isenovic ER, Mousa SA. Treatment options for diabetes: potential role of stem cells. Diabetes Res Clin Pract 2012; 98:361-8. [PMID: 23020931 DOI: 10.1016/j.diabres.2012.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/27/2012] [Accepted: 09/04/2012] [Indexed: 01/09/2023]
Abstract
There are diseases and injuries in which a patient's cells or tissues are destroyed that can only be adequately corrected by tissue or organ transplants. Stem cells may be able to generate new tissue and even cure diseases for which there is no adequate therapy. Type 1 diabetes (T1DM), an insulin-dependent diabetes, is a chronic disease affecting genetically predisposed individuals, in which insulin-secreting beta (β)-cells within pancreatic islets of Langerhans are selectively and irreversibly destroyed by autoimmune assault. Type 2 diabetes (T2DM) is characterized by a gradual decrease in insulin sensitivity in peripheral tissues and the liver (insulin resistance), followed by a gradual decline in β-cell function and insulin secretion. Successful replacing of damaged β-cells has shown considerable potential in treating T1DM, but lack of adequate donors is a barrier. The literature suggests that embryonic and adult stem cells are promising alternatives in long-term treatment of diabetes. However, any successful strategy should address both the need for β-cell replacement and controlling the autoimmune response to cells that express insulin. This review summarizes the current knowledge of options and the potential of stem cell transplantation in diabetes treatment.
Collapse
Affiliation(s)
- Jamil Stanekzai
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | | | | |
Collapse
|
18
|
Prabakar KR, Domínguez-Bendala J, Molano RD, Pileggi A, Villate S, Ricordi C, Inverardi L. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant 2011; 21:1321-39. [PMID: 22195604 DOI: 10.3727/096368911x612530] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Kamalaveni R Prabakar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Pessina A, Bonomi A, Coccè V, Invernici G, Navone S, Cavicchini L, Sisto F, Ferrari M, Viganò L, Locatelli A, Ciusani E, Cappelletti G, Cartelli D, Arnaldo C, Parati E, Marfia G, Pallini R, Falchetti ML, Alessandri G. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One 2011; 6:e28321. [PMID: 22205945 PMCID: PMC3243689 DOI: 10.1371/journal.pone.0028321] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 11/05/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells may represent an ideal candidate to deliver anti-cancer drugs. In a previous study, we demonstrated that exposure of mouse bone marrow derived stromal cells to Doxorubicin led them to acquire anti-proliferative potential towards co-cultured haematopoietic stem cells (HSCs). We thus hypothesized whether freshly isolated human bone marrow Mesenchymal stem cells (hMSCs) and mature murine stromal cells (SR4987 line) primed in vitro with anti-cancer drugs and then localized near cancer cells, could inhibit proliferation. METHODS AND PRINCIPAL FINDINGS Paclitaxel (PTX) was used to prime culture of hMSCs and SR4987. Incorporation of PTX into hMSCs was studied by using FICT-labelled-PTX and analyzed by FACS and confocal microscopy. Release of PTX in culture medium by PTX primed hMSCs (hMSCsPTX) was investigated by HPLC. Culture of Endothelial cells (ECs) and aorta ring assay were used to test the anti-angiogenic activity of hMSCsPTX and PTX primed SR4987(SR4987PTX), while anti-tumor activity was tested in vitro on the proliferation of different tumor cell lines and in vivo by co-transplanting hMSCsPTX and SR4987PTX with cancer cells in mice. Nevertheless, despite a loss of cells due to chemo-induced apoptosis, both hMSCs and SR4987 were able to rapidly incorporate PTX and could slowly release PTX in the culture medium in a time dependent manner. PTX primed cells acquired a potent anti-tumor and anti-angiogenic activity in vitro that was dose dependent, and demonstrable by using their conditioned medium or by co-culture assay. Finally, hMSCsPTX and SR4987PTX co-injected with human cancer cells (DU145 and U87MG) and mouse melanoma cells (B16) in immunodeficient and in syngenic mice significantly delayed tumor takes and reduced tumor growth. CONCLUSIONS These data demonstrate, for the first time, that without any genetic manipulation, mesenchymal stromal cells can uptake and subsequently slowly release PTX. This may lead to potential new tools to increase efficacy of cancer therapy.
Collapse
Affiliation(s)
- Augusto Pessina
- Department of Public Health, Microbiology, Virology, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Domínguez-Bendala J, Lanzoni G, Inverardi L, Ricordi C. Concise review: mesenchymal stem cells for diabetes. Stem Cells Transl Med 2011. [PMID: 23197641 DOI: 10.5966/sctm.2011-0017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes.
Collapse
|
21
|
Abstract
Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Division of Nephrology, Children's Hospital/Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
22
|
Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G. Wharton's jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev Rep 2011; 7:342-63. [PMID: 20972649 DOI: 10.1007/s12015-010-9196-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in high numbers via ex vivo culture and can be differentiated towards insulin-producing cells (IPC). Moreover, recent reports evidenced that MSC possess immunomodulatory activities (acting on both innate and acquired immunity effectors) which should result in a reduction of the immunogenicity of transplanted cells, thus limiting rejection. Moreover it has been proposed that MSC administration should be used to attenuate the autoimmune processes which lead to the destruction of beta cells. This review illustrates the recent advances made in differentiating human MSC to IPC. In particular, we compare the effectiveness of the differentiation protocols applied, the markers and functional assays used to characterize differentiated progeny, and the in vivo controls. We further speculate on how MSC derived from Wharton's jelly of human umbilical cord may represent a more promising regenerative medicine tool, as recently demonstrated for endoderm-derived organs (as liver) in human subjects, also considering their peculiar immunomodulatory features compared to other MSC populations.
Collapse
Affiliation(s)
- Rita Anzalone
- Sezione di Anatomia Umana, Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Via del Vespro 129, Palermo, PA 90127, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Qujeq D, Pourghasm M, Joursaraei G, Feiyzi F, Farsi M, Faraji AS. Mononuclear derived from human umbilical cord normalize glycemia in alloxan-induced hyperglycemic rat. Cell Physiol Biochem 2011; 28:323-8. [PMID: 21865740 DOI: 10.1159/000331748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 11/19/2022] Open
Abstract
The present study explored whether mononuclear cells derived from human umbilical cord blood could resolve hyperglycemia. In order to test this hypothesis, mononuclear cells derived from Human umbilical cord blood (HUCB) were transplanted into alloxan-induced hyperglycemic rats. Mononuclear cells (MNCs) were isolated by a conventional centrifuge method through a Ficoll- paque. Hyperglycemia was induced in rats by a single injection of alloxan at 50 mg/kg body weigh intraperitonealy. Rats were divided into three groups of ten each. Group I, served as control; Group II received alloxan alone; Group III received both alloxan and MNCs. The serum glucose and insulin level were measured before the animals received the MNCs and at 1, 4, 7, 12 and 15 weeks following the treatment. Glucose levels were monitored by the glucose oxidase technique. The insulin level was measured following Elisa assay by the insulin kit specific for rats made by Mercodia Co., Sweden. The results indicated that glucose levels in alloxan-injected rats rose at week 1 and remained elevated 301.00 ± 6.43 mg/dl for 15 weeks. In contrast, in week 15, after treated with MNCs, the blood glucose levels were 108.26 ± 6.84, mg/dl. Within a week after MNCs administration, blood glucose levels significantly reduced (245.74 ± 2.37 mg/dl and reached a baseline almost close to the normal glycemic values 15 week later (108.26 ± 6.84 mg/dl). Treated with MNCs in alloxan diabetic rats caused a significant rise in serum insulin accompanied by a drop in the blood glucose level.
Collapse
Affiliation(s)
- Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran.
| | | | | | | | | | | |
Collapse
|
24
|
Pessina A, Sisto F, Coccè V, Cavicchini L, Ciusani E, Gribaldo L, Bonomi A. A mesenchymal stromal cell line resistant to paclitaxel that spontaneously differentiates into osteoblast-like cells. Cell Biol Toxicol 2010; 27:169-80. [DOI: 10.1007/s10565-010-9179-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 12/09/2010] [Indexed: 11/28/2022]
|
25
|
Parekh V, Umrani M, Hardikar A. Taurine Supports Preservation of Proendocrine Cell Types in Human Umbilical Cord Blood-Derived Mononuclear Cells During Cryostorage. Transplant Proc 2010; 42:4619-21. [DOI: 10.1016/j.transproceed.2010.09.160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
|
26
|
CD45+/CD133+positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency. Cell Biol Int 2010; 34:783-90. [DOI: 10.1042/cbi20090236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
The potential utility of bone marrow or umbilical cord blood transplantation for the treatment of type I diabetes mellitus. Biol Blood Marrow Transplant 2010; 17:455-64. [PMID: 20541025 DOI: 10.1016/j.bbmt.2010.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/01/2010] [Indexed: 12/11/2022]
Abstract
The pathology of type 1 diabetes mellitus (T1D) involves the autoimmune destruction or malfunction of pancreatic β cells, leading to a lack of insulin. The absence of insulin is life-threatening, necessitating daily hormone injections from an exogenous source. Insulin injections do not adequately mimic the precise regulation of β cells on glucose homeostasis, however, eventually leading to complications in diabetic patients. There currently is no definitive cure for T1D. Pancreas transplantation, although quite successful, is an invasive intervention that is restricted to patients with advanced complications, requires constant immunosuppression, and is severely limited by donor availability. Recent progress in human islet cell isolation and immunosuppressive protocols has restored euglycemia in patients who received islet cells from 2 or 3 pancreas donors. However, because of the scarcity of cadaver pancreata and the low yield of islet cells obtained by the procedure, not all patients have access to this surgical intervention. Thus, other therapeutic approaches are needed to arrest immune aggression, preserve β cell mass, and provide efficient replacement. In this sense, bone marrow and umbilical cord blood transplantation are promising possibilities that merit exploration. In this review, we summarize multiple strategies that have been proposed and tested for potential therapeutic benefit in patients with T1D.
Collapse
|
28
|
Pessina A, Bonomi A, Cavicchini L, Albella B, Cerrato L, Parent-Massin D, Sibiril Y, Parchment R, Behrsing H, Verderio P, Pizzamiglio S, Giangreco M, Baglio C, Coccè V, Sisto F, Gribaldo L. Prevalidation of the Rat CFU-GM Assay for In Vitro Toxicology Applications. Altern Lab Anim 2010; 38:105-17. [DOI: 10.1177/026119291003800212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro haematotoxicity assays are thought to have the potential to significantly reduce and refine the use of animals for haematotoxicity testing. These assays are used successfully in all types of studies — however, their use is not so common in human toxicology studies in the preclinical setting, as they are not required for regulatory testing in this case. Furthermore, these assays could play a key role in bridging the gap between preclinical toxicology studies in animal models and clinical investigations. In previous studies, the Colony Forming Unit-Granulocyte Macrophage (CFU-GM) assay has been validated for testing drug haematotoxicity (with both mouse bone-marrow and human cord blood) and for predicting the in vivo human maximal tolerated dose (MTD) by adjusting in vivo data on mouse toxicity. Recently, a Colony Forming Unit-Megakaryocyte (CFU-MK) assay has also been prevalidated for testing drug toxicity toward megakaryocytes. The rat CFU-GM assay has been used by many researchers for its ability to evaluate in vitro haematotoxicity. Although it is not yet available, a standardised procedure for data comparison could be very important, since the rat is the most widely-used species for the in vivo testing of toxicants. This report presents the results of the prevalidation study developed to analyse the intra-laboratory and inter-laboratory variability of a standardised operating procedure for this assay and its performance for the in vitro determination of the inhibitory concentration (IC) values of drugs on rat myeloid progenitors (CFU-GM). The results demonstrate that the CFU-GM assay can be performed with cryopreserved rat bone-marrow cells (rBMC). The assay represents a useful tool for evaluating the toxicity of a compound, in terms of both relative toxicity (when different molecules are compared) and the prediction of the degree of in vivo toxicity. The use of this assay could greatly reduce the number of rats used in experimental procedures, and could also contribute to the accumulation of more toxicity data on compounds to be registered according to the criteria established by the European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) programme.
Collapse
Affiliation(s)
- Augusto Pessina
- Department of Public Health, Microbiology, Virology, University of Milan, Italy
| | - Arianna Bonomi
- Department of Public Health, Microbiology, Virology, University of Milan, Italy
| | - Loredana Cavicchini
- Department of Public Health, Microbiology, Virology, University of Milan, Italy
| | - Beatriz Albella
- Unit of Haematotoxicity, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Laura Cerrato
- Unit of Haematotoxicity, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | - Yann Sibiril
- Laboratory of Food Toxicology, ESMISAB/UBO, Technopole Brest-Iroise, Plouzané, France
| | - Ralph Parchment
- Predictive Toxicology Section, Laboratory of Human Toxicology and Pharmacology, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Holger Behrsing
- Predictive Toxicology Section, Laboratory of Human Toxicology and Pharmacology, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Paolo Verderio
- Unit of Medical Statistics and Biometry, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pizzamiglio
- Unit of Medical Statistics and Biometry, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Giangreco
- Unit of Medical Statistics and Biometry, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carolina Baglio
- Department of Public Health, Microbiology, Virology, University of Milan, Italy
| | - Valentina Coccè
- Department of Public Health, Microbiology, Virology, University of Milan, Italy
| | - Francesca Sisto
- Department of Public Health, Microbiology, Virology, University of Milan, Italy
| | - Laura Gribaldo
- Institute of Health Consumer Protection, Joint Research Centre, Ispra, Varese, Italy
| |
Collapse
|
29
|
Pessina A, Bonomi A, Baglio C, Cavicchini L, Gribaldo L. Refinement and optimisation of the rat CFU-GM assay to incorporate the use of cryopreserved bone-marrow cells for in vitro toxicology applications. Altern Lab Anim 2009; 37:417-25. [PMID: 19807213 DOI: 10.1177/026119290903700411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The colony-forming unit-granulocyte-macrophage (CFU-GM) assay has been validated for testing drug haematotoxicity (with both mouse bone-marrow and human cord blood cells) and for predicting in vivo human Maximal Tolerated Dose (MTD) values by extrapolating in vivo data on mouse toxicity. The rat CFU-GM assay is widely used for its capability to evaluate in vitro haematotoxicity, but no standardised procedure suitable for data comparison has been developed. A validated rat CFU-GM assay is needed for many reasons - not least because the rat is the most commonly-used species for the in vivo testing of toxicants. This report describes the refinement and optimisation of a standardised protocol for entering into the prevalidation phase of test development. The sensitivity of rat progenitors to granulocyte-macrophage-colony stimulating factor (GM-CSF), the correlation between the number of cells seeded and the number of colonies obtained, the role of mesenchymal cells on CFU-GM proliferation and the performance of the assay, and the effects of using different types of plastic dishes and sources of cytokines, are described. A standard operating procedure (SOP) based on the use of cryopreserved progenitors has been generated, to be applied to the in vitro toxicity testing of compounds. This SOP dramatically reduces the number of rats used and increases the homogeneity of the data obtained.
Collapse
Affiliation(s)
- Augusto Pessina
- Department of Public Health, Microbiology, Virology, University of Milan, Italy.
| | | | | | | | | |
Collapse
|
30
|
Parekh VS, Joglekar MV, Hardikar AA. Differentiation of human umbilical cord blood-derived mononuclear cells to endocrine pancreatic lineage. Differentiation 2009; 78:232-40. [PMID: 19664871 DOI: 10.1016/j.diff.2009.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 07/03/2009] [Accepted: 07/20/2009] [Indexed: 02/08/2023]
Abstract
Generation of insulin-producing cells remains a major limitation for cellular replacement therapy in treatment of diabetes. To understand the potential of human umbilical cord blood (hUCB)-derived mononuclear cells (MNCs) in cell replacement therapy for diabetes, we studied MNCs isolated from 270 human umbilical cord blood samples. We characterized these by immunostaining and real-time PCR and studied their ability to differentiate into insulin-producing cells. We observe that freshly isolated MNCs as well as mesenchymal-like cells grown out by in vitro culture of isolated MNCs express key pancreatic transcription factors: pdx1, ngn3, isl1, brn4 and pax6. However, after 32-fold expansion, MNCs show decreased abundance of pdx1 and ngn3, indicating that islet/pancreatic progenitors detected in freshly isolated MNCs die or are diluted out during in vitro expansion. We therefore transplanted freshly isolated MNCs in NOD/SCID (immuno-incompetent) or FVB/NJ (immuno-competent) mice to check their ability to differentiate into insulin-producing cells. We observe that after 9 weeks of transplantation, approximately 25% grafts exhibit human insulin-producing (16% immunopositive) cells. The number and abundance of pro-insulin transcript-containing cells increased when the animals underwent partial pancreatectomy, 15 days after transplantation. Our results indicate that such hUCB-derived MNC population contains a subset of "pancreas-committed" cells that have the potential to differentiate into insulin-producing cells in vivo. Further studies in understanding the differentiation potential of this subset of pancreas-committed hUCB-derived MNCs will provide us with an autologous source of "lineage-committed" progenitors for cell replacement therapy in diabetes.
Collapse
Affiliation(s)
- Vishal S Parekh
- Stem Cells and Diabetes Section, Lab #12, National Center for Cell Science, Ganeshkhind Road, Pune, MH 411007, India
| | | | | |
Collapse
|
31
|
Pessina A, Bonomi A, Coccè V, Bernardo ME, Cometa AM, Ferrari M, Sisto F, Cavicchini L, Locatelli F. Assessment of human herpesvirus-6 infection in mesenchymal stromal cells ex vivo expanded for clinical use. Transpl Infect Dis 2009; 11:491-6. [PMID: 19664021 DOI: 10.1111/j.1399-3062.2009.00427.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infection or reactivation of human herpesvirus (HHV)-6 represents a potentially serious complication (often involving the central nervous system) in patients receiving either solid organ or hematopoietic stem cell transplantation. The objective of this study was to assess the risk of HHV-6 infection/reactivation in mesenchymal stromal cells (MSCs). MSCs are multipotent cells displaying immunomodulatory properties that have been already successfully used in the clinical setting to enhance hematopoietic stem cell engraftment and to treat steroid-refractory acute graft-versus-host disease. We analyzed 20 samples of ex vivo expanded MSCs, at different passages of culture, isolated both from bone marrow and from umbilical cord blood. Through Western blotting and immunocytochemistry techniques, we investigated the presence of the HHV-6 receptor (CD46) on cell surface, whereas the presence of HHV-6 DNA was evaluated by nested polymerase chain reaction assay. All of the MSC samples tested were positive for the virus receptor (CD46), suggesting their potential susceptibility to HHV-6. However, none of the MSC samples derived from cultures, performed in the perspective of clinical use, was found to harbor HHV-6. This preliminary observation on a consistent number of MSC samples, some of them tested at late in vitro passages, indicates a good safety profile of the product in terms of HHV-6 contamination. Nevertheless, it remains important to set up in vitro experimental models to study MSCs' susceptibility to HHV-6 (and HHV-7) infection, to verify their capacity to integrate the virus into cellular DNA, and to investigate which experimental conditions are able to induce virus reactivation.
Collapse
Affiliation(s)
- A Pessina
- Department of Public Health-Microbiology-Virology, University of Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vija L, Farge D, Gautier JF, Vexiau P, Dumitrache C, Bourgarit A, Verrecchia F, Larghero J. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. DIABETES & METABOLISM 2009; 35:85-93. [PMID: 19230736 DOI: 10.1016/j.diabet.2008.10.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent non-haematopoietic progenitor cells that are being explored as a promising new treatment for tissue regeneration. Although their immunomodulatory properties are not yet completely understood, their low immunogenic potential together with their effects on immune response make them a promising therapeutic tool for severe refractory autoimmune diseases. Type 1 diabetes is characterized by T cell-mediated autoimmune destruction of pancreatic beta cells. While insulin replacement represents the current therapy for type 1 diabetes, its metabolic control remains difficult, as exogenous insulin cannot exactly mimic the physiology of insulin secretion. Pancreatic or islet transplantation can provide exogenous insulin independence, but is limited by its intrinsic complications and the scarcity of organ donors. In this context, stem cell therapy, based on the generation of insulin-producing cells (IPCs) derived from MSCs, represents an attractive possibility. In this review, we provide a brief characterization of MSC immunomodulatory effects, and present the current experimental evidence for the potential therapeutic efficacy of MSC transplantation in diabetes.
Collapse
Affiliation(s)
- L Vija
- Inserm U697, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sordi V, Bertuzzi F, Piemonti L. Diabetes mellitus: an opportunity for therapy with stem cells? Regen Med 2008; 3:377-97. [PMID: 18462060 DOI: 10.2217/17460751.3.3.377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In both Type 1 and 2 diabetes, insufficient numbers of insulin-producing beta-cells are a major cause of defective control of blood glucose and its complications. Restoration of damaged beta-cells by endocrine pancreas regeneration would be an ideal therapeutic option. The possibility of generating insulin-secreting cells with adult pancreatic stem or progenitor cells has been investigated extensively. The conversion of differentiated cells such as hepatocytes into beta-cells is being attempted using molecular insights into the transcriptional make-up of beta-cells. Additionally, the enhanced proliferation of beta-cells in vivo or in vitro is being pursued as a strategy for regenerative medicine for diabetes. Advances have also been made in directing the differentiation of embryonic stem cells into beta-cells. Although progress is encouraging, major gaps in our understanding of developmental biology of the pancreas and adult beta-cell dynamics remain to be bridged before a therapeutic application is made possible.
Collapse
Affiliation(s)
- Valeria Sordi
- Laboratory of Experimental Surgery, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | | |
Collapse
|
34
|
Singh P, Williams DJ. Cell therapies: realizing the potential of this new dimension to medical therapeutics. J Tissue Eng Regen Med 2008; 2:307-19. [DOI: 10.1002/term.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Abstract
The recent advancements in stem cell (SC) biology have led to the concept of regenerative medicine, which is based on the potential of SC for therapies aimed to facilitate the repair of degenerating or injured tissues. Nonetheless, prior to large scale clinical applications, critical aspects need to be further addressed, including the long-term safety, tolerability, and efficacy of SC-based treatments. Most problematic among the risks of SC-based therapies, in addition to the possible rejection or loss of function of the infused cells, is their potential neoplastic transformation. Indeed, SCs may be used to cure devastating diseases, but their specific properties of self-renewal and clonogenicity may render them prone to generate cancers. In this respect, ‘Stemness’ might be seen as a two-edged sword, its bright side being represented by normal SCs, its dark side by cancer SCs. A better understanding of SC biology will help fulfill the promise of regenerative medicine aimed at curing human pathologies and fighting cancer from its roots.
Collapse
|
36
|
Piscaglia AC, Novi M, Campanale M, Gasbarrini A. Stem cell-based therapy in gastroenterology and hepatology. MINIM INVASIV THER 2008; 17:100-18. [PMID: 18465445 DOI: 10.1080/13645700801969980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protagonists of a new scientific era, stem cells are promising tools on which regenerative medicine relies for the treatment of human pathologies. Stem cells can be obtained from various sources, including embryos, fetal tissues, umbilical cord blood, and also terminally differentiated organs. Once forced to expand and differentiate into functional progenies, stem cells may become suitable for cell replacement and tissue engineering. The manipulation and/or stimulation of adult stem cells seems to be particularly promising, as it could improve the endogenous regenerative potential without risks of rejection and overcome the ethical and political issues related to embryonic stem cell research. Stem cells are already leaving the bench and reaching the bedside, despite an incomplete knowledge of the genetic control program driving their fate and plasticity. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy and acute or chronic hepatopaties. Nonetheless, critical aspects need to be further addressed, including the long-term safety, tolerability and efficacy of cell-based treatments, as well as their carcinogenic potential. Aim of this review is to summarize the state-of-the-arts on gastrointestinal and hepatic stem cells and on stem cell-based therapies in gastroenterology and hepatology, highlighting both the benefits and the potential risks of these new tools for the treatment and prevention of human diseases.
Collapse
Affiliation(s)
- Anna Chiara Piscaglia
- Gastrointestinal and Hepatic Stem Cell Research Group (G.H.S.C.) , Department of Internal Medicine and Gastroenterology, Gemelli Hospital, Catholic University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Limbert C, Päth G, Jakob F, Seufert J. Beta-cell replacement and regeneration: Strategies of cell-based therapy for type 1 diabetes mellitus. Diabetes Res Clin Pract 2008; 79:389-99. [PMID: 17854943 DOI: 10.1016/j.diabres.2007.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 06/20/2007] [Indexed: 01/09/2023]
Abstract
Pancreatic islet transplantation has demonstrated that long-term insulin independence may be achieved in patients suffering from diabetes mellitus type 1. However, because of limited availability of islet tissue, new sources of insulin producing cells that are responsive to glucose are required. Development of pancreatic beta-cell lines from rodent or human origin has progressed slowly in recent years. Current experiments for ex vivo expansion of beta cells and in vitro differentiation of embryonic and adult stem cells into insulin producing beta-cell phenotypes led to promising results. Nevertheless, the cells generated to date lack important characteristics of mature beta cells and generally display reduced insulin secretion and loss of proliferative capacity. Therefore, much better understanding of the mechanisms that regulate expansion and differentiation of stem/progenitor cells is necessary. Here, we review recent advances in the identification of potential cellular sources, and the development of strategies to regenerate or fabricate insulin producing and glucose sensing cells that might enable future cell-based therapies of diabetes mellitus type 1.
Collapse
Affiliation(s)
- C Limbert
- Division of Endocrinology and Diabetology, Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
Type 1 diabetes mellitus (T1DM) is a disease that results from the selective autoimmune destruction of insulin-producing beta-cells. This disease process lends itself to cellular therapy because of the single cell nature of insulin production. Murine models have provided opportunities for the study of cellular therapies for the treatment of diabetes, including the investigation of islet transplantation, and also the possibility of stem cell therapies and islet regeneration. Studies in islet transplantation have included both allo- and xeno-transplantation and have allowed for the study of new approaches for the reversal of autoimmunity and achieving immune tolerance. Stem cells from hematopoietic sources such as bone marrow and fetal cord blood, as well as from the pancreas, intestine, liver, and spleen promise either new sources of islets or may function as stimulators of islet regeneration. This review will summarize the various cellular interventions investigated as potential treatments of T1DM.
Collapse
Affiliation(s)
- D D Lee
- Section of Transplantation, Department of Surgery, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
39
|
Palma CA, Lindeman R, Tuch BE. Blood into beta-cells: can adult stem cells be used as a therapy for Type 1 diabetes? Regen Med 2008; 3:33-47. [PMID: 18154461 DOI: 10.2217/17460751.3.1.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In the past 10 years there have been substantial developments in adult stem cell research, and the transplantation of these cells now holds great promise for regenerative medicine, such as in the treatment of Type 1 diabetes. A large proportion of studies have focused on stem cells sourced from hematopoietic tissues: bone marrow, umbilical cord blood and peripheral blood. Attempts to transdifferentiate these cells into insulin-producing cells, both in vivo and in vitro, have produced conflicting results. Although insulin production and normalization of blood glucose levels have been described in some studies, the true mechanism of stem cell plasticity remains in question - are the functional changes seen due to true transdifferentiation or do they result from cell fusion or other factors? There is evidence that stem cell plasticity is a true phenomenon, but whether it will ever be of therapeutic benefit for Type 1 diabetes remains uncertain.
Collapse
Affiliation(s)
- Catalina A Palma
- Diabetes Transplant Unit, Prince of Wales Hospital and University of New South Wales, Sydney, New South Wales 2031, Australia.
| | | | | |
Collapse
|
40
|
Lock LT, Tzanakakis ES. Stem/Progenitor cell sources of insulin-producing cells for the treatment of diabetes. ACTA ACUST UNITED AC 2007; 13:1399-412. [PMID: 17550339 DOI: 10.1089/ten.2007.0047] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Reversal of diabetes can be achieved through islet transplantation, but the scarcity of donor islets severely hinders wide application of this therapeutic modality. Toward that end, embryonic stem cells, adult tissue-residing progenitor cells, and regenerating native beta-cells may serve as sources of islet cell surrogates. Insulin-producing cells generated from stem or progenitor cells display subsets of native beta-cell attributes, indicating the need for further development of methods for differentiation to completely functional beta-cells. Pharmacological approaches aiming at stimulating the in vivo/ex vivo regeneration of beta-cells have also been proposed as a way of augmenting islet cell mass. We review the current state of the generation of insulin-producing cells from different sources with emphasis on embryonic stem cells and adult progenitor cells. Challenges for the clinical use of these sources are also discussed.
Collapse
Affiliation(s)
- Lye T Lock
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
41
|
Levicar N, Dimarakis I, Flores C, Tracey J, Gordon MY, Habib NA. Stem cells as a treatment for chronic liver disease and diabetes. Handb Exp Pharmacol 2007:243-62. [PMID: 17554512 DOI: 10.1007/978-3-540-68976-8_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advances in stem cell biology and the discovery of pluripotent stem cells have made the prospect of cell therapy and tissue regeneration a clinical reality. Cell therapies hold great promise to repair, restore, replace or regenerate affected organs and may perform better than any pharmacological or mechanical device. There is an accumulating body of evidence supporting the contribution of adult stem cells, in particular those of bone marrow origin, to liver and pancreatic islet cell regeneration. In this review, we will focus on the cell therapy for the diseased liver and pancreas by adult haematopoietic stem cells, as well as their possible contribution and application to tissue regeneration. Furthermore, recent progress in the generation, culture and targeted differentiation of human haematopoietic stem cells to hepatic and pancreatic lineages will be discussed. We will also explore the possibility that stem cell technology may lead to the development of clinical modalities for human liver disease and diabetes.
Collapse
Affiliation(s)
- N Levicar
- Department of Surgical Oncology and Technology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Gangaram-Panday ST, Faas MM, de Vos P. Towards stem-cell therapy in the endocrine pancreas. Trends Mol Med 2007; 13:164-73. [PMID: 17307397 DOI: 10.1016/j.molmed.2007.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/18/2007] [Accepted: 02/06/2007] [Indexed: 02/07/2023]
Abstract
Many approaches of stem-cell therapy for the treatment of diabetes have been described. One is the application of stem cells for replacement of nonfunctional islet cells in the native endogenous pancreas; another one is the use of stem cells as an inexhaustible source for islet-cell transplantation. During recent years three types of stem cells have been investigated: embryonic stem cells, bone-marrow-derived stem cells and organ-bound stem cells. We discuss the advantages and limitations of these different cell types. The applicability for the treatment of dysfunction of beta cells in the pancreas has been demonstrated for all three cell types, but more-detailed understanding of the sequence of events during differentiation is required to produce fully functional insulin-producing cells.
Collapse
Affiliation(s)
- Shanti T Gangaram-Panday
- Transplantation Biology and Immunoendocrinology, Section of Medical Biology, Department of Pathology and Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
43
|
Abstract
BACKGROUND The origin, function and physiology of totipotent embryonic cells are configured to construct organs and create cross-talk between cells for the biological and neurophysiologic development of organisms. Adult stem cells are involved in regenerating tissues for renewal and damage repair. FINDINGS Adult stem cells have been isolated from adult tissue, umbilical cord blood and other non-embryonic sources, and can transform into many tissues and cell types in response to pathophysiological stimuli. Clinical applications of adult stem cells and progenitor cells have potential in the regeneration of blood cells, skin, bone, cartilage and heart muscle, and may have potential in degenerative diseases. Multi-pluripotent adult stem cells can change their phenotype in response to trans-differentiation or fusion and their therapeutic potential could include therapies regulated by pharmacological modulation, for example mobilising endogenous stem cells and directing them within a tissue to stimulate regeneration. Adult stem cells could also provide a vehicle for gene therapy, and genetically-engineered human adult stem cells have shown success in treatment of genetic disease. CONCLUSION Deriving embryonic stem cells from early human embryos raises ethical, legal, religious and political questions. The potential uses of stem cells for generating human tissues are the subject of ongoing public debate. Stem cells must be used in standardised and controlled conditions in order to guarantee the best safety conditions for the patients. One critical point will be to verify the risk of tumourigenicity; this issue may be more relevant to embryonic than adult stem cells.
Collapse
Affiliation(s)
- Augusto Pessina
- Department of Public Health, Microbiology, Virology, University of Milan, Italy.
| | | |
Collapse
|
44
|
Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24:2319-45. [PMID: 16794264 DOI: 10.1634/stemcells.2006-0066] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we report on recent advances on the functions of embryonic, fetal, and adult stem cell progenitors for tissue regeneration and cancer therapies. We describe new procedures for derivation and maturation of these stem cells into the tissue-specific cell progenitors. The localization of the adult stem cells and their niches, as well as their implication in the tissue repair after injuries and during cancer progression, are also described. The emphasis is on the interactions among certain developmental signaling factors, such as hormones, epidermal growth factor, hedgehog, Wnt/beta-catenin, and Notch. These factors and their pathways are involved in the stringent regulation of the self-renewal and/or differentiation of adult stem cells. Novel strategies for the treatment of both diverse degenerating disorders, by cell replacement, and some metastatic cancer types, by molecular targeting multiple tumorigenic signaling elements in cancer progenitor cells, are also illustrated.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA.
| | | |
Collapse
|
45
|
List JF, He H, Habener JF. Glucagon-like peptide-1 receptor and proglucagon expression in mouse skin. ACTA ACUST UNITED AC 2006; 134:149-57. [PMID: 16631262 DOI: 10.1016/j.regpep.2006.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an insulinotropic hormone expressed by alternative post-translational processing of proglucagon in the intestines, endocrine pancreas, and brain. The multiple antidiabetogenic actions of GLP-1 include stimulation of the proliferation and differentiation of the insulin-producing beta cells in the pancreas. The GLP-1 receptor is widely distributed and has been identified in the endocrine pancreas, intestinal tract, brain, lung, kidney, and heart. Here we report the expression of the GLP-1 receptor and proglucagon in the skin of newborn mice located predominantly in the hair follicles, as well as in cultures of skin-derived cells that also express nestin, a marker of cultured cells that have dedifferentiated by epithelial to mesenchymal transition. In cultured skin cells, GLP-1 activates the MAPK/ERK signal transduction pathway, associated with cellular proliferation, differentiation, and cytoprotection. No evidence was found for the activation of cAMP or Ca2+ signaling pathways. Further, redifferentiation of cultured skin-derived cells by incubation in differentiation medium containing GLP-1 induced expression of the proinsulin-derived peptide, C-peptide. These findings suggest a possible paracrine/autocrine role for GLP-1 and its receptor in skin development and possibly also in folliculogenesis.
Collapse
Affiliation(s)
- James F List
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114, United States
| | | | | |
Collapse
|
46
|
Koblas T, Harman SM, Saudek F. The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev Diabet Stud 2006; 2:228-34. [PMID: 17491699 PMCID: PMC1783567 DOI: 10.1900/rds.2005.2.228] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, human umbilical cord blood (HUCB) has emerged as an attractive tool for cell-based therapy. Although at present the clinical application of HUCB is limited to the fields of hematology and oncology, a rising number of studies show potential for further application in the treatment of non-hematopoietic diseases. HUCB, with its real abundance, simple collection procedure and no serious ethical dilemmas, represents a valuable alternative to the use of other stem cell sources. The aim of this article is to review the literature on HUCB and to assess its eventual usability in the treatment of diabetes mellitus. This review presents some recent reports concerning pancreatic endocrine stem cells and their identification, HUCB stem cells and their advantages and, finally, the potential for converting HUCB-derived stem cells into insulin-producing beta-cells.
Collapse
Affiliation(s)
- Tomas Koblas
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Center for Cell Therapy and Tissue Repair, Prague, Czech Republic
| | | | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Center for Cell Therapy and Tissue Repair, Prague, Czech Republic
- Address correspondence to: Frantisek Saudek, e-mail:
| |
Collapse
|
47
|
Yoshida S, Ishikawa F, Kawano N, Shimoda K, Nagafuchi S, Shimoda S, Yasukawa M, Kanemaru T, Ishibashi H, Shultz LD, Harada M. Human Cord Blood-Derived Cells Generate Insulin-Producing Cells In Vivo. Stem Cells 2005; 23:1409-16. [PMID: 16210412 DOI: 10.1634/stemcells.2005-0079] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Here we report the capacity of human cord blood (CB)-derived cells to generate insulin-producing cells. To investigate in vivo capacity of human CB-derived cells, T cell-depleted mononuclear cells were intravenously transplanted into nonobese diabetic/severe combined immunodeficient/beta2-microglobulinnull mice within 48 hours of birth. At 1-2 months post-transplantation, immunofluorescence staining for insulin and fluorescence in situ hybridization (FISH) analysis using a human chromosome probe indicated that human CB-derived cells generated insulin-producing cells at a frequency of 0.65%+/-0.64% in xenogeneic hosts. Reverse transcription-polymerase chain reaction analysis confirmed the transcription of human insulin in the pancreatic tissue of the recipient mice. To clarify the mechanism underlying CB-derived insulin-producing cells, double FISH analysis using species-specific probes was performed. Almost equal proportions of human chromosome+ murine chromosome- insulin+ cells and human chromosome+ murine chromosome+ insulin+ cells were present in recipient pancreatic islets. Taken together, human CB contains progenitor cells, which can generate insulin-producing cells in recipient pancreatic tissues across a xenogeneic histocompatibility barrier by fusion-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Shuro Yoshida
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Di Gioacchino G, Di Campli C, Zocco MA, Piscaglia AC, Novi M, Santoro M, Santoliquido A, Flore R, Tondi P, Pola P, Gasbarrini G, Gasbarrini A. Transdifferentiation of stem cells in pancreatic cells: state of the art. Transplant Proc 2005; 37:2662-2663. [PMID: 16182777 DOI: 10.1016/j.transproceed.2005.06.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Among the different approaches for diabetes mellitus-pancreas and pancreatic islet transplantation-the use of stem cells represent a renewable alternative source of insulin-producing cells. Stem cells capable of differentiating into beta-like cells can be isolated namely from embryonic cells, bone marrow, and umbilical cord blood, but also from adult organs such as pancreas, liver, and spleen. Several studies have demonstrated that by manipulating culture conditions and using growth and transcription factors of beta-cell lineage (in particular pdx-1 and pax4), embryonic stem cells can differentiate in vitro after formation of embryoid bodies. Bone marrow stem cells can give rise to mesenchymal; endodermal-, and ectodermal-derived cells. In vivo it has been shown that after bone marrow transplantation, using a murine sex-mismatched model, insulin-producing cells expressing the Y chromosome can be detected in the donor pancreas, although not in a significantly number. Cells characterized by a group of markers (Nestin, CK-8, CK-18) and transcription factors (Isl-1, Pdx-1, Pax-4, Ngn-3) important for beta-cell differentiation have been detected in umbilical cord blood. The recent evidence of the possibility to transdifferentiate stem cells to beta cells encourages further studies in animal models to exhaustively determine the differentiation pathways of stem cells to insulin producing cells. These findings might open the way to a successful human investigation.
Collapse
Affiliation(s)
- G Di Gioacchino
- Department of Internal Medicine, Catholic University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 2005; 65:3025-9. [PMID: 15833827 DOI: 10.1158/0008-5472.can-04-3931] [Citation(s) in RCA: 563] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cellular mechanisms underlying the increasing aggressiveness associated with ovarian cancer progression are poorly understood. Coupled with a lack of identification of specific markers that could aid early diagnoses, the disease becomes a major cause of cancer-related mortality in women. Here we present direct evidence that the aggressiveness of human ovarian cancer may be a result of transformation and dysfunction of stem cells in the ovary. A single tumorigenic clone was isolated among a mixed population of cells derived from the ascites of a patient with advanced ovarian cancer. During the course of the study, yet another clone underwent spontaneous transformation in culture, providing a model of disease progression. Both the transformed clones possess stem cell-like characteristics and differentiate to grow in an anchorage-independent manner in vitro as spheroids, although further maturation and tissue-specific differentiation was arrested. Significantly, tumors established from these clones in animal models are similar to those in the human disease in their histopathology and cell architecture. Furthermore, the tumorigenic clones, even on serial transplantation continue to establish tumors, thereby confirming their identity as tumor stem cells. These findings suggest that: (a) stem cell transformation can be the underlying cause of ovarian cancer and (b) continuing stochastic events of stem and progenitor cell transformation define the increasing aggression that is characteristically associated with the disease.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra 411007, India.
| | | | | | | |
Collapse
|
50
|
Watt SM, Contreras M. Stem cell medicine: umbilical cord blood and its stem cell potential. Semin Fetal Neonatal Med 2005; 10:209-20. [PMID: 15927877 DOI: 10.1016/j.siny.2005.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ultimate aim of stem cell research is to improve patient outcomes and quality of life, and/or to effect a cure for a variety of inherited or acquired diseases. Improved treatments rely on developments in stem cell therapies and the discovery of new therapeutic drugs that regulate stem cell functions. These complement each other for the repair, regeneration and replacement of damaged or defective tissues. Stem cells may be sourced or derived from blood and tissues postnatally ('adult' stem cells), from the fetus (fetal stem cells) or from the blastocyst in the developing embryo prior to implantation (embryonic stem cells), each forming a unique component of the revolution in stem cell research and therapies. This review will concentrate on recent developments in the use of haemopoietic stem cells from umbilical cord blood for the transplantation of patients with haematological disorders. It will conclude with a summary of the potential of other umbilical cord blood-derived stem cells for tissue repair or regeneration.
Collapse
Affiliation(s)
- Suzanne M Watt
- National Blood Service, Oxford and Colindale, UK; Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.
| | | |
Collapse
|