1
|
Thüne K, Schmitz M, Villar-Piqué A, Altmeppen HC, Schlomm M, Zafar S, Glatzel M, Llorens F, Zerr I. The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers. Expert Rev Mol Diagn 2019; 19:1007-1018. [PMID: 31512940 DOI: 10.1080/14737159.2019.1667231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Human prion diseases are a heterogeneous group of incurable and debilitating conditions characterized by a progressive degeneration of the central nervous system. The conformational changes of the cellular prion protein and its formation into an abnormal isoform, spongiform degeneration, neuronal loss, and neuroinflammation are central to prion disease pathogenesis. It has been postulated that truncated variants of aggregation-prone proteins are implicated in neurodegenerative mechanisms. An increasing body of evidence indicates that proteolytic fragments and truncated variants of the prion protein are formed and accumulated in the brain of prion disease patients. These prion protein variants provide a high degree of relevance to disease pathology and diagnosis. Areas covered: In the present review, we summarize the current knowledge on the occurrence of truncated prion protein species and their potential roles in pathophysiological states during prion diseases progression. In addition, we discuss their usability as a diagnostic biomarker in prion diseases. Expert opinion: Either as a primary factor in the formation of prion diseases or as a consequence from neuropathological affection, abnormal prion protein variants and fragments may provide independent information about mechanisms of prion conversion, pathological states, or disease progression.
Collapse
Affiliation(s)
- Katrin Thüne
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Anna Villar-Piqué
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, CIBERNED, Hospitalet de Llobregat , Spain
| | | | - Markus Schlomm
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center HH-Eppendorf (UKE) , Hamburg , Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, CIBERNED, Hospitalet de Llobregat , Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat , Barcelona , Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| |
Collapse
|
2
|
Abstract
Focus a laser on dissolved particles and analyze the scattered light to reveal their size. This well established principle is used in dynamic light scattering (DLS), or also called photon-correlation spectroscopy, which is a widely popular and highly adaptable analytical method applied in different fields of life and material sciences, as well as in industrial quality control processes.
Collapse
Affiliation(s)
- Alice S. Pereira
- grid.10772.330000000121511713Molecular Biophysics Lab., UCIBIO/Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Tavares
- grid.10772.330000000121511713Molecular Biophysics Lab., UCIBIO/Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paulo Limão-Vieira
- grid.10772.330000000121511713Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
3
|
Falke S, Dierks K, Blanchet C, Graewert M, Cipriani F, Meijers R, Svergun D, Betzel C. Multi-channel in situ dynamic light scattering instrumentation enhancing biological small-angle X-ray scattering experiments at the PETRA III beamline P12. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:361-372. [PMID: 29488914 DOI: 10.1107/s1600577517017568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Small-angle X-ray scattering (SAXS) analysis of biomolecules is increasingly common with a constantly high demand for comprehensive and efficient sample quality control prior to SAXS experiments. As monodisperse sample suspensions are desirable for SAXS experiments, latest dynamic light scattering (DLS) techniques are most suited to obtain non-invasive and rapid information about the particle size distribution of molecules in solution. A multi-receiver four-channel DLS system was designed and adapted at the BioSAXS endstation of the EMBL beamline P12 at PETRA III (DESY, Hamburg, Germany). The system allows the collection of DLS data within round-shaped sample capillaries used at beamline P12. Data obtained provide information about the hydrodynamic radius of biological particles in solution and dispersity of the solution. DLS data can be collected directly prior to and during an X-ray exposure. To match the short X-ray exposure times of around 1 s for 20 exposures at P12, the DLS data collection periods that have been used up to now of 20 s or commonly more were substantially reduced, using a novel multi-channel approach collecting DLS data sets in the SAXS sample capillary at four different neighbouring sample volume positions in parallel. The setup allows online scoring of sample solutions applied for SAXS experiments, supports SAXS data evaluation and for example indicates local inhomogeneities in a sample solution in a time-efficient manner. Biological macromolecules with different molecular weights were applied to test the system and obtain information about the performance. All measured hydrodynamic radii are in good agreement with DLS results obtained by employing a standard cuvette instrument. Moreover, applying the new multi-channel DLS setup, a reliable radius determination of sample solutions in flow, at flow rates normally used for size-exclusion chromatography-SAXS experiments, and at higher flow rates, was verified as well. This study also shows and confirms that the newly designed sample compartment with attached DLS instrumentation does not disturb SAXS measurements.
Collapse
Affiliation(s)
- Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| | - Karsten Dierks
- Xtal Concepts GmbH, Marlowring 19, Hamburg 22525, Germany
| | - Clement Blanchet
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Florent Cipriani
- European Molecular Biology Laboratory (EMBL), 71 Avenue des Martyrs, Grenoble 38042, France
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| |
Collapse
|
4
|
Martínez J, Sánchez R, Castellanos M, Makarava N, Aguzzi A, Baskakov IV, Gasset M. PrP charge structure encodes interdomain interactions. Sci Rep 2015; 5:13623. [PMID: 26323476 PMCID: PMC4555102 DOI: 10.1038/srep13623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrPC) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We found that charges contain the information for interdomain interactions. Use of dynamic light scattering and thermal denaturation experiments delineates the compaction of the α-fold by an electrostatic compensation between the polybasic 23–30 region and the α3 electronegative surface. This interaction increases stability and disfavors fibrillation. Independently of this structural effect, the N-terminal electropositive clusters regulate the α-cleavage efficiency. In the fibrillar state, use of circular dichroism, atomic-force and fluorescence microscopies reveal that the N-terminal positive clusters and the α3 electronegative surface dictate the secondary structure, the assembly hierarchy and the growth length of the fibril state. These findings show that the PrP charge structure functions as a code set up to ensure function and reduce pathogenic routes.
Collapse
Affiliation(s)
- Javier Martínez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Rosa Sánchez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Milagros Castellanos
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; IMDEA-Nanociencia, Madrid 28049, Spain
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Zürich 8091, Switzerland
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - María Gasset
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| |
Collapse
|
5
|
Hu PP, Liu H, Zhan L, Zheng LL, Huang CZ. Coomassie brilliant blue R-250 as a new surface-enhanced Raman scattering probe for prion protein through a dual-aptamer mechanism. Talanta 2015; 139:35-9. [PMID: 25882405 DOI: 10.1016/j.talanta.2014.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
Abstract
Surface-enhanced Raman scattering (SERS) spectra, which can provide large information about trace amount of chemical and biological species have been widely performed as a well-established tool in complex biological system. In this work, coomassie brilliant blue (R-250) with high affinity to proteins and high Raman activity was employed as a Raman reporter to probe prion protein (PrP) through a dual-aptamer mechanism, and thus an original strategy for PrP determination was proposed, which showed great potential to turn on the SERS response through specific recognition of anti-prion aptamers towards the target protein. Aptamers (Apt1 and Apt 2) recognizing distinct epitopes of PrP with high affinity were first conjugated to Ag@Si NPs, and Ag@Si-PrP/R-250-Ag@Si conjugates were obtained in the presence of PrP/R-250, inducing dramatically enhanced Raman signal. SERS responses enhanced with increasing amount of PrP and a linear equation of ISERS=6729.7+3091.2 cPrP was obtained in the range of 3.0-12.0×10(-9)M with the determination coefficient of 0.988. The proposed strategy is simple, rapid, and high specificity to probe protein-aptamer recognition in the solution.
Collapse
Affiliation(s)
- Ping Ping Hu
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Liu
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lei Zhan
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lin Ling Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Elmallah MIY, Borgmeyer U, Betzel C, Redecke L. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion. Prion 2013; 7:404-11. [PMID: 24121542 DOI: 10.4161/pri.26745] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Prion diseases comprise a group of fatal neurodegenerative disorders characterized by the autocatalytic conversion of the cellular prion protein PrP(C) into the infectious misfolded isoform PrP(Sc). Increasing evidence supports a specific role of oxidative stress in the onset of pathogenesis. Although the associated molecular mechanisms remain to be elucidated in detail, several studies currently suggest that methionine oxidation already detected in misfolded PrP(Sc) destabilizes the native PrP fold as an early event in the conversion pathway. To obtain more insights about the specific impact of surface-exposed methionine residues on the oxidative-induced conversion of human PrP we designed, produced, and comparatively investigated two new pseudosulfoxidation mutants of human PrP 121-231 that comprises the well-folded C-terminal domain. Applying circular dichroism spectroscopy and dynamic light scattering techniques we showed that pseudosulfoxidation of all surface exposed Met residues formed a monomeric molten globule-like species with striking similarities to misfolding intermediates recently reported by other groups. However, individual pseudosulfoxidation at the polymorphic M129 site did not significantly contribute to the structural destabilization. Further metal-induced oxidation of the partly unfolded pseudosulfoxidation mutant resulted in the formation of an oligomeric state that shares a comparable size and stability with PrP oligomers detected after the application of different other triggers for structural conversion, indicating a generic misfolding pathway of PrP. The obtained results highlight the specific importance of methionine oxidation at surface exposed residues for PrP misfolding, strongly supporting the hypothesis that increased oxidative stress could be one causative event for sporadic prion diseases and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- Institute of Biochemistry and Molecular Biology; Department of Chemistry; University of Hamburg, c/o DESY; Hamburg, Germany
| | - Uwe Borgmeyer
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology (ZMNH); University Medical Center Eppendorf; Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology; Department of Chemistry; University of Hamburg, c/o DESY; Hamburg, Germany
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation; Institute of Biochemistry and Molecular Biology; University of Hamburg; and Institute of Biochemistry; University of Lübeck, c/o DESY; Hamburg, Germany
| |
Collapse
|
7
|
Metal-enhanced fluorescence of nano-core-shell structure used for sensitive detection of prion protein with a dual-aptamer strategy. Anal Chim Acta 2013; 787:239-45. [PMID: 23830445 DOI: 10.1016/j.aca.2013.05.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 11/22/2022]
Abstract
Metal-enhanced fluorescence (MEF) as a newly recognized technology is widespread throughout biological research. The use of fluorophore-metal interactions is recognized to be able to alleviate some of fluorophore photophysical constraints, favorably increase both the fluorophore emission intensity and photostability. In this contribution, we developed a novel metal-enhanced fluorescence (MEF) and dual-aptamer-based strategy to achieve the prion detection in solution and intracellular protein imaging simultaneously, which shows high promise for nanostructure-based biosensing. In the presence of prion protein, core-shell Ag@SiO2, which are functionalized covalently by single stranded aptamer (Apt1) of prions and Cyanine 3 (Cy3) decorated the other aptamer (Apt2) were coupled together by the specific interaction between prions and the anti-prion aptamers in solution. By adjusting shell thickness of the pariticles, a dual-aptamer strategy combined MEF can be realized by the excitation and/or emission rates of Cy3. It was found that the enhanced fluorescence intensities followed a linear relationship in the range of 0.05-0.30 nM, which is successfully applied to the detection of PrP in mice brain homogenates.
Collapse
|
8
|
|
9
|
Zhan L, Liang LJ, Zhen SJ, Li CM, Huang CZ. Aptamer-based spectrofluorometry for cellular prion protein using N,N'-bis[3,3'-(dimethylamino)propylamine]-3,4,9,10-perylenetetracarboxylic diimide. Analyst 2012; 138:825-30. [PMID: 23240131 DOI: 10.1039/c2an36322d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new spectrofluorometric method for cellular prion protein (PrP(C)) was developed based on the regulation of N,N'-bis[3,3'-(dimethylamino)propylamine]-3,4,9,10-perylenetetracarboxylic diimide (DAPER) fluorescence. As a perylene derivative, DAPER emits strong fluorescence in the form of free monomer in aqueous medium, but not in the form of aggregates. In this contribution, we found that the aptamer of PrP(C) could induce the aggregation of DAPER, and the bright fluorescence of DAPER was completely quenched. The quenched fluorescence, however, was recovered if PrP(C) was further added, which was ascribed to the specific binding of PrP(C) to its aptamer and the releasing of free DAPER monomers. This signalling mechanism makes it possible to detect PrP(C) by fluorescence spectroscopy. The assay allows the selective determination of PrP(C) in aqueous solution with high sensitivity and exhibits a good linear range from 0.4 to 1.6 nmol L(-1). Moreover, this probe can be applied to monitor the level of PrP(C) in human urine samples with satisfactory results.
Collapse
Affiliation(s)
- Lei Zhan
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | | | | | | | | |
Collapse
|
10
|
Zhou YW, Li CM, Liu Y, Huang CZ. Effective detection and cell imaging of prion protein with new prepared targetable yellow-emission silver nanoclusters. Analyst 2012; 138:873-8. [PMID: 23223184 DOI: 10.1039/c2an36456e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver nanoclusters (AgNCs) have gained considerable attention over a wide range from chemical detection to bioimaging applications. Herein we developed a facile way to synthesize water-soluble, intense fluorescent targetable AgNCs with yellow-emission by using DNA via a chemical reduction method. The sequence of DNA was designed to contain two fragments, one of which is the DNA aptamer fragment which can selectively bind to the target, and the other is rich in cytosine sequence fragments that can result in a high quantum efficiency. The as-prepared targetable AgNCs (Apt-AgNCs) through the reduction of silver ions (Ag(+)) by NaBH(4) have a very strong fluorescence emission, which, was greatly quenched upon specific binding to prion protein (PrP(C)). As a result, Apt-AgNCs were demonstrated as a novel, effective and sensitive probe for both detection and intracellular fluorescent imaging with high selectivity through the strong binding affinity between the aptamer and its target.
Collapse
Affiliation(s)
- Ya Wen Zhou
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | |
Collapse
|
11
|
Zhan L, Peng L, Yu Y, Zhen SJ, Huang CZ. Sensitive spectrofluorometry of cellular prion protein based on the on-off interaction between fluorescent dye-labelled aptamers and multi-walled carbon nanotubes. Analyst 2012; 137:4968-73. [PMID: 22970431 DOI: 10.1039/c2an35924c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The very simple and general spectrofluorometry of cellular prion protein (PrP(C)) is reported in this contribution based on the on-off noncovalent interaction of fluorescent dye-labelled PrP(C) DNA aptamers with multi-walled carbon nanotubes (MWCNTs). Due to the π-π stacking interaction between the DNA bases of the aptamer and the carbon nanotubes, the fluorescent dye and the MWCNTs are brought into close proximity, which leads to fluorescence quenching with a ratio of up to 87%. However, further addition of PrP(C), which disturbs the π-π interaction owing to the strong and specific binding of the aptamer to PrP(C), driving the aptamer away from the surface of the MWCNTs, restored the quenched fluorescence. This recovered fluorescence intensity was found to be in linear proportion to the PrP(C) concentration in the range of 8.2 to 81.7 nM, which builds the basis of the spectrofluorometry of the cellular prion protein.
Collapse
Affiliation(s)
- Lei Zhan
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | | | |
Collapse
|
12
|
Leishmania donovani HslV does not interact stably with HslU proteins. Int J Parasitol 2012; 42:329-39. [PMID: 22370310 DOI: 10.1016/j.ijpara.2012.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 11/21/2022]
Abstract
Genes for HslVU-type peptidases are found in bacteria and in a few select Eukaryota, among those such important pathogens as Plasmodium spp. and Leishmania spp. In this study, we performed replacements of all three HslV/HslU gene homologues and found one of those, HslV, to be essential for Leishmania donovani viability. The Leishmania HslV gene can also partially relieve the thermosensitive phenotype of a combined HslVU/Lon/ClpXP knockout mutant of Escherichia coli, indicating a conserved function. However, we found that the role and function of the two Leishmania HslU genes has diverged since neither of those interacts stably with HslV. The latter forms a dodecameric complex by itself and shows a punctate distribution. We conclude that whilst the basic function of HslV may be conserved in Leishmania, its organisation and interaction with its canonical complex partner HslU is not. Nevertheless, given the absence of HslV from the proteome of mammals and its essential role in Leishmania viability, HslV is a promising target for intervention.
Collapse
|
13
|
Bjorndahl TC, Zhou GP, Liu X, Perez-Pineiro R, Semenchenko V, Saleem F, Acharya S, Bujold A, Sobsey CA, Wishart DS. Detailed biophysical characterization of the acid-induced PrP(c) to PrP(β) conversion process. Biochemistry 2011; 50:1162-73. [PMID: 21189021 DOI: 10.1021/bi101435c] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prions are believed to spontaneously convert from a native, monomeric highly helical form (called PrP(c)) to a largely β-sheet-rich, multimeric and insoluble aggregate (called PrP(sc)). Because of its large size and insolubility, biophysical characterization of PrP(sc) has been difficult, and there are several contradictory or incomplete models of the PrP(sc) structure. A β-sheet-rich, soluble intermediate, called PrP(β), exhibits many of the same features as PrP(sc) and can be generated using a combination of low pH and/or mild denaturing conditions. Studies of the PrP(c) to PrP(β) conversion process and of PrP(β) folding intermediates may provide insights into the structure of PrP(sc). Using a truncated, recombinant version of Syrian hamster PrP(β) (shPrP(90-232)), we used NMR spectroscopy, in combination with other biophysical techniques (circular dichroism, dynamic light scattering, electron microscopy, fluorescence spectroscopy, mass spectrometry, and proteinase K digestion), to characterize the pH-driven PrP(c) to PrP(β) conversion process in detail. Our results show that below pH 2.8 the protein oligomerizes and conversion to the β-rich structure is initiated. At pH 1.7 and above, the oligomeric protein can recover its native monomeric state through dialysis to pH 5.2. However, when conversion is completed at pH 1.0, the large oligomer "locks down" irreversibly into a stable, β-rich form. At pH values above 3.0, the protein is amenable to NMR investigation. Chemical shift perturbations, NOE, amide line width, and T(2) measurements implicate the putative "amylome motif" region, "NNQNNF" as the region most involved in the initial helix-to-β conversion phase. We also found that acid-induced PrP(β) oligomers could be converted to fibrils without the use of chaotropic denaturants. The latter finding represents one of the first examples wherein physiologically accessible conditions (i.e., only low pH) were used to achieve PrP conversion and fibril formation.
Collapse
Affiliation(s)
- Trent C Bjorndahl
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E8
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Andreyeva A, Leshchyns'ka I, Knepper M, Betzel C, Redecke L, Sytnyk V, Schachner M. CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex. PLoS One 2010; 5:e12018. [PMID: 20711454 PMCID: PMC2920317 DOI: 10.1371/journal.pone.0012018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/15/2010] [Indexed: 11/19/2022] Open
Abstract
Proteins constituting the presynaptic machinery of vesicle release undergo substantial conformational changes during the process of exocytosis. While changes in the conformation make proteins vulnerable to aggregation and degradation, little is known about synaptic chaperones which counteract these processes. We show that the cell adhesion molecule CHL1 directly interacts with and regulates the activity of the synaptic chaperones Hsc70, CSP and αSGT. CHL1, Hsc70, CSP and αSGT form predominantly CHL1/Hsc70/αSGT and CHL1/CSP complexes in synapses. Among the various complexes formed by CHL1, Hsc70, CSP and αSGT, SNAP25 and VAMP2 induce chaperone activity only in CHL1/Hsc70/αSGT and CHL1/CSP complexes, respectively, indicating a remarkable selectivity of a presynaptic chaperone activity for proteins of the exocytotic machinery. In mice with genetic ablation of CHL1, chaperone activity in synapses is reduced and the machinery for synaptic vesicle exocytosis and, in particular, the SNARE complex is unable to sustain prolonged synaptic activity. Thus, we reveal a novel role for a cell adhesion molecule in selective activation of the presynaptic chaperone machinery.
Collapse
Affiliation(s)
- Aksana Andreyeva
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
- Institute of Neuro- und Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Iryna Leshchyns'ka
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Knepper
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Vladimir Sytnyk
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (MS); (VS)
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MS); (VS)
| |
Collapse
|
15
|
Redecke L, Binder S, Elmallah MIY, Broadbent R, Tilkorn C, Schulz B, May P, Goos A, Eich A, Rübhausen M, Betzel C. UV-light-induced conversion and aggregation of prion proteins. Free Radic Biol Med 2009; 46:1353-61. [PMID: 19249347 DOI: 10.1016/j.freeradbiomed.2009.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 01/15/2009] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
Abstract
Increasing evidence suggests a central role for oxidative stress in the pathology of prion diseases, a group of fatal neurodegenerative disorders associated with structural conversion of the prion protein (PrP). Because UV-light-induced protein damage is mediated by direct photo-oxidation and radical reactions, we investigated the structural consequences of UVB radiation on recombinant murine and human prion proteins at pH 7.4 and pH 5.0. As revealed by circular dichroism and dynamic light scattering measurements, the observed PrP aggregation follows two independent pathways: (i) complete unfolding of the protein structure associated with rapid precipitation or (ii) specific structural conversion into distinct soluble beta-oligomers. The choice of pathway was directly attributed to the chromophoric properties of the PrP species and the susceptibility to oxidation. Regarding size, the oligomers characterized in this study share a high degree of identity with oligomeric species formed after structural destabilization induced by other triggers, which significantly strengthens the theory that partly unfolded intermediates represent initial precursor molecules directing the pathway of PrP aggregation. Moreover, we identified the first suitable photo-trigger capable of inducing refolding of PrP, which has an important biotechnological impact in terms of analyzing the conversion process on small time scales.
Collapse
Affiliation(s)
- Lars Redecke
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Proteolysis of prion protein by cathepsin S generates a soluble β-structured intermediate oligomeric form, with potential implications for neurotoxic mechanisms. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:209-18. [DOI: 10.1007/s00249-008-0371-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
|
17
|
Redecke L, von Bergen M, Clos J, Konarev PV, Svergun DI, Fittschen UEA, Broekaert JAC, Bruns O, Georgieva D, Mandelkow E, Genov N, Betzel C. Structural characterization of β-sheeted oligomers formed on the pathway of oxidative prion protein aggregation in vitro. J Struct Biol 2007; 157:308-20. [PMID: 17023178 DOI: 10.1016/j.jsb.2006.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 11/26/2022]
Abstract
The pathology of transmissible spongiform encephalopathies (TSEs) is strongly associated with the structural conversion of the cellular prion protein (PrPC) into a misfolded isoform (PrPSc) that assembles into amyloid fibrils. Since increased levels of oxidative stress have been linked to prion diseases, we investigated the metal-induced oxidation of human PrP (90-231). A novel in vitro conversion assay based on aerobic incubation of PrP in the presence of elemental copper pellets at pH 5 was established, resulting in aggregation of highly beta-sheeted prion proteins. We show for the first time that two discrete oligomeric species of elongated shape, approx. 25 mers and 100 mers, are formed on the pathway of oxidative PrP aggregation in vitro, which are well characterized regarding shape and size using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and electron microscopy (EM). Considering that small oligomers of highly similar size have recently been reported to show the highest specific infectivity within TSE-infected brain tissues of hamsters, the novel oligomers observed in this study are interesting candidates as agent causing neurodegenerative and/or self-propagating effects. Moreover, our results significantly strengthen the theory that oxidative stress might be an influence that leads to substantial structural conversions of PrP in vivo.
Collapse
Affiliation(s)
- Lars Redecke
- Center of Experimental Medicine, Institute of Biochemistry and Molecular Biology I, University Hospital Hamburg-Eppendorf, c/o DESY, 22603 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Redecke L, Brehm MA, Bredehorst R. Cloning and characterization of dihydrofolate reductase from a facultative alkaliphilic and halotolerant bacillus strain. Extremophiles 2006; 11:75-83. [PMID: 17021659 DOI: 10.1007/s00792-006-0013-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Elucidation of the molecular basis of the stability of enzymes from extremophilic organisms is of fundamental importance for various industrial applications. Due to the wealth of structural data from various species, dihydrofolate reductase (DHFR, EC 1.5.1.3) provides an excellent model for systematic investigations. In this report, DHFR from alkaliphilic Bacillus halodurans C-125 was cloned and expressed in E. coli. Functional analyses revealed that BhDHFR exhibits the most alkali-stable phenotype of DHFRs characterized so far. Optimal enzyme activity was observed in a slightly basic pH region ranging from 7.25 to 8.75. Alkali-stability is associated with a remarkable resistance to elevated temperatures (half-life of 60 min at 52.5 degrees C) and to high concentrations of urea (up to 3 M). Although the secondary structure shows distinct similarities to those of mesophilic DHFR molecules, BhDHFR exhibits molecular features contributing to its alkaliphilic properties. Interestingly, the unique phenotype is diminished by C-terminal addition of a His-tag sequence. Therefore, His-tag-derivatized BhDHFR offers the opportunity to obtain deeper insights into the specific mechanisms of alkaliphilic adaption by comparison of the three dimensional structure of both BhDHFR molecules.
Collapse
Affiliation(s)
- Lars Redecke
- Institute of Biochemistry and Food Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| | | | | |
Collapse
|
19
|
Georgieva D, Schwark D, von Bergen M, Redecke L, Genov N, Betzel C. Interactions of recombinant prions with compounds of therapeutical significance. Biochem Biophys Res Commun 2006; 344:463-70. [PMID: 16630566 DOI: 10.1016/j.bbrc.2006.03.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The transformation of the cellular prion protein (PrP(C)) into the infectious form (PrP(Sc)) is implicated in the invariably fatal transmissible spongiform encephalopathies. To identify a mechanism to prevent the undesired PrP(C)-->PrP(Sc) transformation, we investigated the interactions of recombinant prion proteins with a number of potential therapeutic agents which inhibit the PrP(Sc) formation, infectivity, and the accumulation of the misfolded form. We show that the prion aggregates formed in the presence of six compounds have no beta-structure, which is typical of the infectious form, and possess considerably higher alpha-helical content than the normal PrP(C). The investigated compounds stimulate the formation of alpha-helices and the destruction of beta-structure. They prevent the transformation of alpha-helical structure into beta-sheets. Probably, this is the reason for the resistance to PrP(C)-->PrP(Sc) transformation in the presence of these compounds. The results may be useful for the future therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dessislava Georgieva
- University of Hamburg, Department of Biochemistry and Molecular Biology, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Bade S, Baier M, Boetel T, Frey A. Intranasal immunization of Balb/c mice against prion protein attenuates orally acquired transmissible spongiform encephalopathy. Vaccine 2006; 24:1242-53. [PMID: 16455168 DOI: 10.1016/j.vaccine.2005.12.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 12/23/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
To test whether prion protein (PrP) specific secretory immunoglobulin A (sIgA) can be induced and protect against oral transmission of spongiform encephalopathy (SE) we immunized Balb/c mice either intragastrically or intranasally (i.n.) with a recombinant PrP-fragment (PrP90-231) and cholera toxin (CT) adjuvant. Since PrP90-231 was rapidly digested in intestinal lavage, aprotinin was added to some vaccine formulations. While an anti-CT response was elicited via both routes, solely i.n. immunization without aprotinin induced PrP-specific sIgA. They recognize predominantly PrP-oligomers as the antigen was aggregated in the vaccine formulations. Challenge experiments showed that the immune response induced by our protocol could not prevent disease, but increases the median survival of the animals. We conclude that PrP-specific sIgA reduce the infectivity of the inoculum and that complete protection against transmission of SE should be achievable by optimized immunization regimens.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Aprotinin/administration & dosage
- Aprotinin/pharmacology
- Cholera Toxin/administration & dosage
- Cholera Toxin/pharmacology
- Disease Models, Animal
- Feces
- Female
- Immunity, Mucosal
- Immunoglobulin A, Secretory/blood
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin G/analysis
- Mice
- Mice, Inbred BALB C
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Prion Diseases/immunology
- Prion Diseases/prevention & control
- Prion Diseases/transmission
- Prions/administration & dosage
- Prions/immunology
- Serine Proteinase Inhibitors/administration & dosage
- Serine Proteinase Inhibitors/pharmacology
- Urine
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Steffen Bade
- Research Center Borstel, Parkallee 22, D-23845 Borstel, Germany
| | | | | | | |
Collapse
|