1
|
McCarty TY, Kearney CJ. Human dermal fibroblast senescence in response to single and recurring oxidative stress. FRONTIERS IN AGING 2025; 6:1504977. [PMID: 40225319 PMCID: PMC11985536 DOI: 10.3389/fragi.2025.1504977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Introduction: Aging results in an accumulation of damaged cells, which reduces the health of tissues and their regenerative capabilities. In the skin, there are both internal and external drivers of oxidative stress that result in aging phenotypes. Oxidative stress has been used to model senescence in vitro; however, there has been a lack of research determining whether the severity of oxidative stress correlates with senescent phenotypes. Methods: In this work, we compare cellular and secretory responses to a single (500 μM hydrogen peroxide, 2 hours) or recurring dose of hydrogen peroxide (500 μM hydrogen peroxide, 2 hours + 4 × 300 μM hydrogen peroxide each 48 hours). Senescence induction was studied using markers including cell morphology, senescence-associated-beta-galactosidase, absence of apoptosis, and cell cycle inhibition genes. Next, functional studies of the effects of the signaling of these cells were completed, such as vascular potential, keratinocyte proliferation, and macrophage polarization. Results: Fibroblasts exposed to both single and recurring oxidative stress had increased total cell and nucleic area, increased senescence-associated-beta-galactosidase (SABGAL) expression, and they were able to escape apoptosis - all characteristics of senescent cells. Additionally, cells exposed to recurring oxidative stress expressed increased levels of cell cycle inhibitor genes and decreased expression of collagen-I, -III, and -IV. Cytokine profiling showed that the single stressed cells had a more inflammatory secretory profile. However, in functional assays, the recurring stressed cells had reduced vascular potential, reduced keratinocyte proliferation, and increased IL-1β gene expression in unpolarized and polarized macrophages. Discussion: The described protocol allows for the investigation of the direct effects of single and recurring oxidative stress in fibroblasts and their secretory effects on surrounding healthy cells. These results show that recurringly stressed fibroblasts represent a more intense senescent phenotype, which can be used in in vitro aging studies to understand the severity of senescent responses.
Collapse
Affiliation(s)
| | - Cathal J. Kearney
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
2
|
Ernst P, Heidel FH. Molecular Mechanisms of Senescence and Implications for the Treatment of Myeloid Malignancies. Cancers (Basel) 2021; 13:612. [PMID: 33557090 PMCID: PMC7913823 DOI: 10.3390/cancers13040612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Senescence is a cellular state that is involved in aging-associated diseases but may also prohibit the development of pre-cancerous lesions and tumor growth. Senescent cells are actively secreting chemo- and cytokines, and this senescence-associated secretory phenotype (SASP) can contribute to both early anti-tumorigenic and long-term pro-tumorigenic effects. Recently, complex mechanisms of cellular senescence and their influence on cellular processes have been defined in more detail and, therefore, facilitate translational development of targeted therapies. In this review, we aim to discuss major molecular pathways involved in cellular senescence and potential therapeutic strategies, with a specific focus on myeloid malignancies.
Collapse
Affiliation(s)
- Philipp Ernst
- Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany;
- Research Program “Else Kröner-Forschungskolleg AntiAge“, Jena University Hospital, 07747 Jena, Germany
| | - Florian H. Heidel
- Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
- Leibniz Institute on Aging, Fritz-Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
3
|
Miranowicz-Dzierżawska K, Zapór L, Skowroń J. Differences in apoptosis levels in the different skin origin cells: Fibroblasts and keratinocytes after in vitro exposure to preservatives used in cosmetic products and present in the working environment. Toxicol In Vitro 2020; 69:105008. [PMID: 32987124 DOI: 10.1016/j.tiv.2020.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | - Lidia Zapór
- Central Institute for Labour Protection - National Research Institute, Warsaw, Poland.
| | - Jolanta Skowroń
- Central Institute for Labour Protection - National Research Institute, Warsaw, Poland.
| |
Collapse
|
4
|
Senoptosis: non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2018; 8:30656-30671. [PMID: 28427150 PMCID: PMC5458157 DOI: 10.18632/oncotarget.15693] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
DNA-damage-induced apoptosis and cellular senescence are perceived as two distinct cell fates. We found that after ionizing radiation (IR)-induced DNA damage the majority (up to 70 %) of senescent human diploid fibroblasts (HDFs) were subjected to controlled cleavage of DNA, resulting in the establishment of a viable and stable sub-G1 population, i.e. deeply senescent cells. We show that in senescent HDFs this DNA cleavage is triggered by modest loss of the mitochondrial membrane potential, which is not sufficient to activate caspases, but strong enough to release mitochondrial endonuclease G (EndoG). We demonstrate that upon γ-irradiation in HDFs EndoG translocates into the nucleus playing an essential role in the non-lethal cleavage of damaged DNA. Notably, the established sub-G1 cell population does not contribute to the senescence-associated secretory phenotype (SASP), however, it exhibits increased senescence-associated β-galactosidase activity. We show that EndoG knockdown causes an increase in DNA damage, indicating a role of this enzyme in DNA repair. Thus, we conclude that IR-induced deep senescence of HDFs exhibits features of both senescence, such as cell cycle arrest and viability, and apoptosis like reduced DNA content and no SASP, and, resembles uncomplete or stalled apoptosis, a phenomenon we term senoptosis.
Collapse
|
5
|
Cai C, Guo Z, Yang Y, Geng Z, Tang L, Zhao M, Qiu Y, Chen Y, He P. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide. Int J Biol Macromol 2016; 91:241-7. [PMID: 27211299 DOI: 10.1016/j.ijbiomac.2016.05.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
Abstract
Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics.
Collapse
Affiliation(s)
- Chuner Cai
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Institute of Marine Science, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedicine Institute, The Second Military Medical University, Shanghai 200433, China
| | - Ziye Guo
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yayun Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhonglei Geng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Langlang Tang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Minglin Zhao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuyan Qiu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yifan Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Peimin He
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Institute of Marine Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Oliver AE. Dry state preservation of nucleated cells: progress and challenges. Biopreserv Biobank 2015; 10:376-85. [PMID: 24849888 DOI: 10.1089/bio.2012.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Effective stabilization of nucleated cells for dry storage would be a transformative development in the field of cell-based biosensors and biotechnologic devices, as well as regenerative medicine and other areas in which stem cells have clinical utility. Ultimately, the tremendous promise of cell-based products will only be fully realized when stable long-term storage becomes available without the use of liquid nitrogen and bulky, energetically expensive freezers. Significant progress has been made over the last 10 years toward this goal, but obstacles still remain. Loading cells with the protective disaccharide trehalose has been achieved by several different techniques and has been shown to increase cell survival at low water contents. Likewise, the protective effect of heat shock proteins and other compounds have also been explored alone and in combination with trehalose. In some cases, the benefit of these molecules is seen not initially upon rehydration, but over time during cellular recovery. Other considerations, such as inhibiting apoptosis and utilizing isotonic buffer conditions have also provided stepwise increases in cell viability and function following drying and rehydration. In all these cases, however, a low level of residual water is required to achieve viability after rehydration. The most significant remaining challenge is to protect nucleated cells such that this residual water can be safely removed, thus allowing vitrification of intra- and extracellular trehalose and stable dry state storage at room temperature.
Collapse
Affiliation(s)
- Ann E Oliver
- Department of Biomedical Engineering, University of California , Davis, California
| |
Collapse
|
7
|
Feng B, Ma LJ, Yao JJ, Fang Y, Mei YA, Wei SM. Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide. J Zhejiang Univ Sci B 2013; 14:97-105. [PMID: 23365008 DOI: 10.1631/jzus.b1200159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investigation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H(2)O(2)). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-rich extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H(2)O(2) in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H(2)O(2), but application oat peptides with H(2)O(2) at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H(2)O(2)-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H(2)O(2)-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.
Collapse
Affiliation(s)
- Bing Feng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | |
Collapse
|
8
|
Inhibition of mitochondrial cytochrome c release and suppression of caspases by gamma-tocotrienol prevent apoptosis and delay aging in stress-induced premature senescence of skin fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:785743. [PMID: 22919441 PMCID: PMC3418699 DOI: 10.1155/2012/785743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 11/23/2022]
Abstract
In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.
Collapse
|
9
|
Feng B, Ye WL, Ma LJ, Fang Y, Mei YA, Wei SM. Hydrogen peroxide enhanced Ca(2+)-activated BK currents and promoted cell injury in human dermal fibroblasts. Life Sci 2012; 90:424-31. [PMID: 22273755 DOI: 10.1016/j.lfs.2011.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/19/2011] [Accepted: 12/22/2011] [Indexed: 01/01/2023]
Abstract
AIMS Recent studies have shown that dermal fibroblasts possess multiple types of voltage-dependent K(+) channels, and the activation of these channels induces apoptosis. In the present study, we aimed to investigate whether hydrogen peroxide (H(2)O(2)), an oxidative stress inducer, could modulate these channels or induce human dermal fibroblasts injury. MAIN METHODS The effects of H(2)O(2) on K(+) currents were studied using a whole-cell recording. Intracellular PKC levels were measured with a direct human PKC enzyme immunoassay kit. Cell viability was assessed using PI staining and apoptotic nuclei were detected with TdT-mediated digoxigenin-dUTP nick-end labelling assay (TUNEL) assay. KEY FINDINGS Treatment of cells with 100μM H(2)O(2) resulted in a partially reversible increase in non-inactivating outward K(+) currents and an alteration in the steady-state activation property of the channels. The H(2)O(2)-induced increase in K(+) currents was mimicked by a PKC activator, and was blocked by the PKC inhibitor or the large conductance Ca(2+)-activited K(+) (BK) channel blockers. The intracellular PKC levels were significantly enhanced by H(2)O(2) treatment in a concentration-dependent manner. After exposure to H(2)O(2), evaluation of fibroblasts survival rate and damaged cell number with TUNEL-positive nuclei revealed an increased cell injury. Blocking the K(+) channels with blockers significantly decreased the H(2)O(2)-induced human dermal fibroblasts injury. SIGNIFICANCE Our results revealed that H(2)O(2) could enhance BK currents by PKC pathway. Increased K(+) currents might be related to H(2)O(2)-induced human dermal fibroblasts injury. The results reported here contribute to our understanding of the mechanism underlying H(2)O(2)-induced human dermal fibroblasts injury.
Collapse
Affiliation(s)
- Bing Feng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
10
|
Yun JS, Pahk JW, Lee JS, Shin WC, Lee SY, Hong EK. Inonotus obliquus protects against oxidative stress-induced apoptosis and premature senescence. Mol Cells 2011; 31:423-9. [PMID: 21359681 PMCID: PMC3887607 DOI: 10.1007/s10059-011-0256-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/31/2011] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated the cytoprotective effects of Inonotus obliquus against oxidative stress-induced apoptosis and premature senescence. Pretreatment with I. obliquus scavenged intracellular ROS and prevented lipid peroxidation in hydrogen peroxide-treated human fibroblasts. As a result, I. obliquus exerted protective effects against hydrogen peroxide-induced apoptosis and premature senescence in human fibroblasts. In addition, I. obliquus suppressed UV-induced morphologic skin changes, such as skin thickening and wrinkle formation, in hairless mice in vivo and increased collagen synthesis through inhibition of MMP-1 and MMP-9 activities in hydrogen peroxide-treated human fibroblasts. Taken together, these results demonstrate that I. obliquus can prevent the aging process by attenuating oxidative stress in a model of stress-induced premature senescence.
Collapse
Affiliation(s)
| | | | | | | | | | - Eock Kee Hong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
11
|
Skórkowska-Telichowska K, Żuk M, Kulma A, Bugajska-Prusak A, Ratajczak K, Gąsiorowski K, Kostyn K, Szopa J. New dressing materials derived from transgenic flax products to treat long-standing venous ulcers-a pilot study. Wound Repair Regen 2010; 18:168-79. [DOI: 10.1111/j.1524-475x.2010.00578.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Camera E, Mastrofrancesco A, Fabbri C, Daubrawa F, Picardo M, Sies H, Stahl W. Astaxanthin, canthaxanthin and β-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp Dermatol 2009; 18:222-31. [DOI: 10.1111/j.1600-0625.2008.00790.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Gosselin K, Deruy E, Martien S, Vercamer C, Bouali F, Dujardin T, Slomianny C, Houel-Renault L, Chelli F, De Launoit Y, Abbadie C. Senescent keratinocytes die by autophagic programmed cell death. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:423-35. [PMID: 19147823 DOI: 10.2353/ajpath.2009.080332] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal cells reach senescence after a specific time and number of divisions, leading ultimately to cell death. Although escape from this fate may be a requisite step in neoplastic transformation, the mechanisms governing senescent cell death have not been well investigated. We show here, using normal human epidermal keratinocytes, that no apoptotic markers appear with senescence. In contrast, the expression of several proteins involved in the regulation of macroautophagy, notably Beclin-1 and Bcl-2, was found to change with senescence. The corpses occurring at the senescence growth plateau displayed a large central area delimited by the cytokeratin network that contained a huge quantity of autophagic vacuoles, the damaged nucleus, and most mitochondria. 3-methyladenine, an inhibitor of autophagosome formation, but not the caspase inhibitor zVAD, prevented senescent cell death. We conclude that senescent cells do not die by apoptosis, but as a result of high macroautophagic activity that targets the primary vital cell components.
Collapse
Affiliation(s)
- Karo Gosselin
- UMR8161, Institut de Biologie de Lille, Lille Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Muller M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal 2009; 11:59-98. [PMID: 18976161 DOI: 10.1089/ars.2008.2104] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular senescence is recognized as a critical cellular response to prolonged rounds of replication and environmental stresses. Its defining characteristics are arrested cell-cycle progression and the development of aberrant gene expression with proinflammatory behavior. Whereas the mechanistic events associated with senescence are generally well understood at the molecular level, the impact of senescence in vivo remains to be fully determined. In addition to the role of senescence as an antitumor mechanism, this review examines cellular senescence as a factor in organismal aging and age-related diseases, with particular emphasis on aberrant gene expression and abnormal paracrine signaling. Senescence as an emerging factor in tissue remodeling, wound repair, and infection is considered. In addition, the role of oxidative stress as a major mediator of senescence and the role of NAD(P)H oxidases and changes to intracellular GSH/GSSG status are reviewed. Recent findings indicate that senescence and the behavior of senescent cells are amenable to therapeutic intervention. As the in vivo significance of senescence becomes clearer, the challenge will be to modulate the adverse effects of senescence without increasing the risks of other diseases, such as cancer. The uncoupled relation between cell-cycle arrest and the senescent phenotype suggests that this is an achievable outcome.
Collapse
Affiliation(s)
- Michael Muller
- Centre for Education and Research on Ageing, ANZAC Research Institute, University of Sydney, Concord RG Hospital, Concord, Sydney, Australia.
| |
Collapse
|
15
|
Suzuki M, Boothman DA. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy. JOURNAL OF RADIATION RESEARCH 2008; 49:105-112. [PMID: 18219184 DOI: 10.1269/jrr.07081] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy.
Collapse
Affiliation(s)
- Masatoshi Suzuki
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
16
|
Lee YH, Lee JC, Moon HJ, Jung JE, Sharma M, Park BH, Yi HK, Jhee EC. Differential effect of oxidative stress on the apoptosis of early and late passage human diploid fibroblasts: implication of heat shock protein 60. Cell Biochem Funct 2008; 26:502-8. [DOI: 10.1002/cbf.1473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Abstract
To study the role of cell death in the aging process, cell death during spontaneous cellular senescence in vitro was examined with normal human fibroblasts. A small subset of the senescent cells showed aberrant morphology such as remarkable nuclear fragmentation or multiple micronuclei, and such cells often showed positive reactions with antibody to phosphorylated pRb. Cells showing caspase activation and binding of Annexin V, which indicate apoptotic change, increased in the senescent phase in flow cytometry analysis. Propidium iodide-positive cells, however, also increased with passaging. The results suggest that both apoptosis and necrosis are involved in cell death of senescent human fibroblasts.
Collapse
Affiliation(s)
- Susumu Ohshima
- Division of Morphological Science, Biomedical Research Center, Saitama Medical School, Morohongo, Iruma, Japan.
| |
Collapse
|
18
|
Abstract
It is widely believed that cellular senescence is a tumor suppressor mechanism; however, it has not been understood why it is advantageous for organisms to retain mutant cells is a postmitotic state rather than simply eliminating them by apoptosis. It has recently been proposed that the primary role of cellular senescence is in mitotic compartments of fixed size in which spatial considerations dictate that a deleted cell is replaced by a neighboring cell. In these situations, rather than eliminating the neoplastic clone, deletion of mutant cells can paradoxically lead to their increased turnover. If mutant cells become senescent, then the compartment is instead progressively filled by senescent cells until the mutant clone is eliminated. Since most of the genetic alterations responsible for malignancy arise in stem cells, this mechanism may have particular relevance to the stem cell niche. In this article the implications of this hypothesis are examined in detail and related to experimental results. It is further proposed here that blockage of stem cell niches by senescent stem cells may account for some of the functional alterations observed in stem cell compartments at old age. Clearly, the existence of senescent stem cells is central to the proposed hypothesis, and although there is preliminary evidence for this assertion it has yet to be proven in vivo. An experimental strategy involving double labeling of stem cells with a nucleotide label is described that can address this question.
Collapse
|
19
|
Zhu S, Jamil K, Ma X, Crowe JH, Oliver AE. Protection of CANARY Cells After Drying and Rehydration Correlates with Decrease in Apoptotic Cell Death. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/cpt.2006.4.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shijun Zhu
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, Iowa
| | - Kamran Jamil
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| | - Xiaocui Ma
- Department of Internal Medicine, UC Davis Medical Center, Sacramento, California
| | - John H. Crowe
- Section of Molecular and Cellular Biology, University of California, Davis, California
| | - Ann E. Oliver
- Section of Molecular and Cellular Biology, University of California, Davis, California
| |
Collapse
|
20
|
Formichi P, Radi E, Battisti C, Tarquini E, Leonini A, Di Stefano A, Federico A. Human fibroblasts undergo oxidative stress-induced apoptosis without internucleosomal DNA fragmentation. J Cell Physiol 2006; 208:289-97. [PMID: 16646085 DOI: 10.1002/jcp.20662] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to evaluate the reliability of fibroblasts as a cell model for studying apoptosis, we tested the response of normal human fibroblasts to the oxidative stress inducers H(2)O(2) and 2-deoxy-D-ribose (dRib). Our results showed that fibroblasts treated with dRib and H(2)O(2) are induced to undergo apoptosis as demonstrated by reduction in total cell number, chromatin condensation, phosphatidylserine (PS) exposure, activation of caspase-3 and 7, changes in mitochondrial membrane potential and increase in the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive nuclei. However we only found a slight increase in the percentage of cells in the sub-G1 region evaluated by flow cytometry, and we did not observe DNA fragmentation by agarose gel electrophoresis. Early in apoptosis, DNA cleavage generates high molecular weight (HMW) fragments which can be detected by TUNEL assay; successively followed by a pronounced DNA brake down into low molecular weight (LMW) fragments, detected as a "DNA ladder" by conventional agarose gel electrophoresis and as an hypodiploid peak by propidium iodide (PI) flow cytometry assay. Our results thus suggest that only HMW fragmentation occurs in fibroblasts exposed to dRib or H(2)O(2) and the lack of internucleosomal DNA fragmentation may depend on the peculiar characteristics of human fibroblasts themselves, irrespective of the apoptotic stimulus used. The existence of distinct events leading to cell death in different cell types makes it necessary to use a combination of strategies and techniques to evaluate the occurrence of apoptosis.
Collapse
Affiliation(s)
- P Formichi
- Department of Neurological and Behavioural Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|