1
|
Skácel J, Djukic S, Baszczyňski O, Kalčic F, Bílek T, Chalupský K, Kozák J, Dvořáková A, Tloušt'ová E, Král'ová Z, Šmídková M, Voldřich J, Rumlová M, Pachl P, Brynda J, Vučková T, Fábry M, Snášel J, Pichová I, Řezáčová P, Mertlíková-Kaiserová H, Janeba Z. Design, Synthesis, Biological Evaluation, and Crystallographic Study of Novel Purine Nucleoside Phosphorylase Inhibitors. J Med Chem 2023; 66:6652-6681. [PMID: 37134237 DOI: 10.1021/acs.jmedchem.2c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 μM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.
Collapse
Affiliation(s)
- Jan Skácel
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Stefan Djukic
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Faculty of Science, Charles University in Prague, Hlavova 2030/8, Prague 2 12843, Czech Republic
| | - Filip Kalčic
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Tadeáš Bílek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Karel Chalupský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Jaroslav Kozák
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Eva Tloušt'ová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Zuzana Král'ová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Faculty of Science, Charles University in Prague, Hlavova 2030/8, Prague 2 12843, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Jan Voldřich
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| | - Michaela Rumlová
- University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Tereza Vučková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Institute of Molecular Genetics, The Czech Academy of Science, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| |
Collapse
|
2
|
Abstract
Protein-ligand docking simulations are of central interest for computer-aided drug design. Docking is also of pivotal importance to understand the structural basis for protein-ligand binding affinity. In the last decades, we have seen an explosion in the number of three-dimensional structures of protein-ligand complexes available at the Protein Data Bank. These structures gave further support for the development and validation of in silico approaches to address the binding of small molecules to proteins. As a result, we have now dozens of open source programs and web servers to carry out molecular docking simulations. The development of the docking programs and the success of such simulations called the attention of a broad spectrum of researchers not necessarily familiar with computer simulations. In this scenario, it is essential for those involved in experimental studies of protein-ligand interactions and biophysical techniques to have a glimpse of the basics of the protein-ligand docking simulations. Applications of protein-ligand docking simulations to drug development and discovery were able to identify hits, inhibitors, and even drugs. In the present chapter, we cover the fundamental ideas behind protein-ligand docking programs for non-specialists, which may benefit from such knowledge when studying molecular recognition mechanism.
Collapse
|
3
|
Bitencourt-Ferreira G, de Azevedo WF. Docking with GemDock. Methods Mol Biol 2019; 2053:169-188. [PMID: 31452105 DOI: 10.1007/978-1-4939-9752-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
GEMDOCK is a protein-ligand docking software that makes use of an elegant biologically inspired computational methodology based on the differential evolution algorithm. As any docking program, GEMDOCK has two major features to predict the binding of a small-molecule ligand to the binding site of a protein target: the search algorithm and the scoring function to evaluate the generated poses. The GEMDOCK scoring function uses a piecewise potential energy function integrated into the differential evolutionary algorithm. GEMDOCK has been applied to a wide range of protein systems with docking accuracy similar to other docking programs such as Molegro Virtual Docker, AutoDock4, and AutoDock Vina. In this chapter, we explain how to carry out protein-ligand docking simulations with GEMDOCK. We focus this tutorial on the protein target cyclin-dependent kinase 2.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Abstract
Since the early 1980s, we have witnessed considerable progress in the development and application of docking programs to assess protein-ligand interactions. Most of these applications had as a goal the identification of potential new binders to protein targets. Another remarkable progress is taking place in the determination of the structures of protein-ligand complexes, mostly using X-ray diffraction crystallography. Considering these developments, we have a favorable scenario for the creation of a computational tool that integrates into one workflow all steps involved in molecular docking simulations. We had these goals in mind when we developed the program SAnDReS. This program allows the integration of all computational features related to modern docking studies into one workflow. SAnDReS not only carries out docking simulations but also evaluates several docking protocols allowing the selection of the best approach for a given protein system. SAnDReS is a free and open-source (GNU General Public License) computational environment for running docking simulations. Here, we describe the combination of SAnDReS and AutoDock4 for protein-ligand docking simulations. AutoDock4 is a free program that has been applied to over a thousand receptor-ligand docking simulations. The dataset described in this chapter is available for downloading at https://github.com/azevedolab/sandres.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Bitencourt-Ferreira G, Veit-Acosta M, de Azevedo WF. Van der Waals Potential in Protein Complexes. Methods Mol Biol 2019; 2053:79-91. [PMID: 31452100 DOI: 10.1007/978-1-4939-9752-7_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Van der Waals forces are determinants of the formation of protein-ligand complexes. Physical models based on the Lennard-Jones potential can estimate van der Waals interactions with considerable accuracy and with a computational complexity that allows its application to molecular docking simulations and virtual screening of large databases of small organic molecules. Several empirical scoring functions used to evaluate protein-ligand interactions approximate van der Waals interactions with the Lennard-Jones potential. In this chapter, we present the main concepts necessary to understand van der Waals interactions relevant to molecular recognition of a ligand by the binding pocket of a protein target. We describe the Lennard-Jones potential and its application to calculate potential energy for an ensemble of structures to highlight the main features related to the importance of this interaction for binding affinity.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Martina Veit-Acosta
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Abstract
Homology modeling is a computational approach to generate three-dimensional structures of protein targets when experimental data about similar proteins are available. Although experimental methods such as X-ray crystallography and nuclear magnetic resonance spectroscopy successfully solved the structures of nearly 150,000 macromolecules, there is still a gap in our structural knowledge. We can fulfill this gap with computational methodologies. Our goal in this chapter is to explain how to perform homology modeling of protein targets for drug development. We choose as a homology modeling tool the program MODELLER. To illustrate its use, we describe how to model the structure of human cyclin-dependent kinase 3 using MODELLER. We explain the modeling procedure of CDK3 apoenzyme and the structure of this enzyme in complex with roscovitine.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Abstract
Fast and reliable evaluation of the hydrogen bond potential energy has a significant impact in the drug design and development since it allows the assessment of large databases of organic molecules in virtual screening projects focused on a protein of interest. Semi-empirical force fields implemented in molecular docking programs make it possible the evaluation of protein-ligand binding affinity where the hydrogen bond potential is a common term used in the calculation. In this chapter, we describe the concepts behind the programs used to predict hydrogen bond potential energy employing semi-empirical force fields as the ones available in the programs AMBER, AutoDock4, TreeDock, and ReplicOpter. We described here the 12-10 potential and applied it to evaluate the binding affinity for an ensemble of crystallographic structures for which experimental data about binding affinity are available.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Martina Veit-Acosta
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Dalberto PF, Rodrigues-Junior V, Almeida Falcão VC, Pinto AFM, Abbadi BL, Bizarro CV, Basso LA, Villela AD, Santos DS. Assessing the role of deoD gene in Mycobacterium tuberculosis in vitro growth and macrophage infection. Microb Pathog 2018; 119:60-64. [PMID: 29608932 DOI: 10.1016/j.micpath.2018.03.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022]
Abstract
Purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP), encoded by deoD gene (Rv3307), is an enzyme from the purine salvage pathway, which has been widely studied as a molecular target for the development of inhibitors with potential antimycobacterial activity. However, the role of MtPNP in tuberculosis pathogenesis and dormancy is still unknown. The present work aims to construct a deoD knockout strain from M. tuberculosis, to evaluate the role of MtPNP in the growth of M. tuberculosis under oxygenated condition and in a dormancy model, and to assess whether deoD gene is important for M. tuberculosis invasion and growth in macrophages. The construction of a knockout strain for deoD gene was confirmed at DNA level by PCR and protein level by Western blot and LC-MS/MS. The deoD gene is not required for M. tuberculosis growth and survival under oxygenated and hypoxic conditions. The disruption of deoD gene did not affect mycobacterial ability to invade and grow in RAW 264.7 cells under the experimental conditions employed here.
Collapse
Affiliation(s)
- Pedro Ferrari Dalberto
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Valnês Rodrigues-Junior
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Virginia Carla Almeida Falcão
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Antônio Frederico Michel Pinto
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bruno Lopes Abbadi
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, Brazil
| | - Anne Drumond Villela
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - Diógenes Santiago Santos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto de Pesquisas Biomédicas, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
9
|
Caceres RA, Timmers LFSM, Ducati RG, da Silva DON, Basso LA, de Azevedo WF, Santos DS. Crystal structure and molecular dynamics studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis associated with acyclovir. Biochimie 2011; 94:155-65. [PMID: 22033138 DOI: 10.1016/j.biochi.2011.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022]
Abstract
Consumption has been a scourge of mankind since ancient times. This illness has charged a high price to human lives. Many efforts have been made to defeat Mycobacterium tuberculosis (Mt). The M. tuberculosis purine nucleoside phosphorylase (MtPNP) is considered an interesting target to pursuit new potential inhibitors, inasmuch it belongs to the purine salvage pathway and its activity might be involved in the mycobacterial latency process. Here we present the MtPNP crystallographic structure associated with acyclovir and phosphate (MtPNP:ACY:PO(4)) at 2.10 Å resolution. Molecular dynamics simulations were carried out in order to dissect MtPNP:ACY:PO(4) structural features, and the influence of the ligand in the binding pocket stability. Our results revealed that the ligand leads to active site lost of stability, in agreement with experimental results, which demonstrate a considerable inhibitory activity against MtPNP (K(i) = 150 nM). Furthermore, we observed that some residues which are important in the proper ligand's anchor into the human homologous enzyme do not present the same importance to MtPNP. Therewithal, these findings contribute to the search of new specific inhibitors for MtPNP, since peculiarities between the mycobacterial and human enzyme binding sites have been identified, making a structural-based drug design feasible.
Collapse
Affiliation(s)
- Rafael A Caceres
- Faculdade de Biociências, Laboratório de Bioquímica Estrutural, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre - RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Ducati RG, Basso LA, Santos DS, de Azevedo WF. Crystallographic and docking studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis. Bioorg Med Chem 2010; 18:4769-74. [DOI: 10.1016/j.bmc.2010.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
11
|
Zanchi FB, Caceres RA, Stabeli RG, de Azevedo WF. Molecular dynamics studies of a hexameric purine nucleoside phosphorylase. J Mol Model 2009; 16:543-50. [PMID: 19669809 DOI: 10.1007/s00894-009-0557-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/28/2009] [Indexed: 11/30/2022]
Abstract
Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1) is an enzyme that catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is involved in purine-salvage pathway and has been proposed as a promising target for design and development of antimalarial and antibacterial drugs. Recent elucidation of the three-dimensional structure of PNP by X-ray protein crystallography left open the possibility of structure-based virtual screening initiatives in combination with molecular dynamics simulations focused on identification of potential new antimalarial drugs. Most of the previously published molecular dynamics simulations of PNP were carried out on human PNP, a trimeric PNP. The present article describes for the first time molecular dynamics simulations of hexameric PNP from Plasmodium falciparum (PfPNP). Two systems were simulated in the present work, PfPNP in ligand free form, and in complex with immucillin and sulfate. Based on the dynamical behavior of both systems the main results related to structural stability and protein-drug interactions are discussed.
Collapse
|
12
|
Ducati RG, Santos DS, Basso LA. Substrate specificity and kinetic mechanism of purine nucleoside phosphorylase from Mycobacterium tuberculosis. Arch Biochem Biophys 2009; 486:155-64. [DOI: 10.1016/j.abb.2009.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/23/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
|
13
|
Basso LA, da Silva LHP, Fett-Neto AG, de Azevedo WF, Moreira IDS, Palma MS, Calixto JB, Astolfi Filho S, dos Santos RR, Soares MBP, Santos DS. The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases: a review. Mem Inst Oswaldo Cruz 2005; 100:475-506. [PMID: 16302058 DOI: 10.1590/s0074-02762005000600001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Collapse
Affiliation(s)
- Luiz Augusto Basso
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|