1
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. Nat Methods 2023; 20:908-917. [PMID: 37188954 PMCID: PMC10539039 DOI: 10.1038/s41592-023-01880-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
Collapse
Affiliation(s)
- Song-Yi Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Joleen S Cheah
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Boxuan Zhao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Charles Xu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heegwang Roh
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Christina K Kim
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Neuroscience and Department of Neurology, University of California, Davis, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Amgen Research, South San Francisco, CA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531939. [PMID: 36945504 PMCID: PMC10028978 DOI: 10.1101/2023.03.09.531939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions, and function with light. We integrated optogenetic control into proximity labeling (PL), a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the PL enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. "LOV-Turbo" works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffick between endoplasmic reticulum, nuclear, and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by BRET from luciferase, enabling interaction-dependent PL. Overall, LOV-Turbo increases the spatial and temporal precision of PL, expanding the scope of experimental questions that can be addressed with PL.
Collapse
|
3
|
Li W, Yan Y, Zheng Z, Zhu Q, Long Q, Sui S, Luo M, Chen M, Li Y, Hua Y, Deng W, Lai R, Li L. Targeting the NCOA3-SP1-TERT axis for tumor growth in hepatocellular carcinoma. Cell Death Dis 2020; 11:1011. [PMID: 33239622 PMCID: PMC7689448 DOI: 10.1038/s41419-020-03218-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate and lacks an effective therapeutic target. Elevated expression of human telomerase reverse transcriptase (TERT) is an important hallmark in cancers, but the mechanism by which TERT is activated differentially in cancers is poorly understood. Here, we have identified nuclear receptor coactivator-3 (NCOA3) as a new modulator of TERT expression and tumor growth in HCC. NACO3 specifically binds to the TERT promoter at the -234 to -144 region and transcriptionally activates TERT expression. NCOA3 promotes HCC cell growth and tumor progression in vitro and in vivo through upregulating the TERT signaling. Knockdown of NACO3 suppresses HCC cell viability and colony formation, whereas TERT overexpression rescues this suppression. NCOA3 interacts with and recruits SP1 binding on the TERT promoter. Knockdown of NCOA3 also inhibits the expression of the Wnt signaling-related genes but has no effect on the Notch signaling-targeting genes. Moreover, NCOA3 is positively correlated with TERT expression in HCC tumor tissues, and high expression of both NCOA3 and TERT predicts a poor prognosis in HCC patients. Our findings indicate that targeting the NCOA3-SP1-TERT signaling axis may benefit HCC patients.
Collapse
Affiliation(s)
- Wenbin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yue Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zongheng Zheng
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiaohua Zhu
- Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Qian Long
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Silei Sui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Meihua Luo
- Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yijun Hua
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Renchun Lai
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Liren Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
5
|
Abstract
The generation of mice lacking SCYL1 or SCYL2 and the identification of Scyl1 as the causative gene in the motor neuron disease mouse model muscle deficient (Scyl1mdf/mdf) demonstrated the importance of the SCY1-like family of protein pseudokinases in neuronal function and survival. Several essential cellular processes such as intracellular trafficking and nuclear tRNA export are thought to be regulated by SCYL proteins. However, whether deregulation of these processes contributes to the neurodegenerative processes associated with the loss of SCYL proteins is still unclear. Here, I briefly review the evidence supporting that SCYL proteins play a role in these processes and discuss their possible involvement in the neuronal functions of SCYL proteins. I also propose ways to determine the importance of these pathways for the functions of SCYL proteins in vivo.
Collapse
Affiliation(s)
- Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
6
|
Zhao J, Zou Y, Liu H, Wang H, Zhang H, Hou W, Li X, Jia X, Zhang J, Hou L, Zhang B. TEIF associated centrosome activity is regulated by EGF/PI3K/Akt signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1851-64. [PMID: 24769208 DOI: 10.1016/j.bbamcr.2014.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/29/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Centrosome amplification, which is a characteristic of cancer cells, has been understood as a driving force of genetic instability in the development of cancer. In previous work, we demonstrated that TEIF (transcriptional element-interacting factor) distributes in the centrosomes and regulates centrosome status under both physiologic and pathologic conditions. Here we identify TEIF as a downstream effector in EGF/PI3K/Akt signaling. The addition of EGF or transfection of active Akt stimulates centrosome TEIF distribution, resulting in an increase of centrosome splitting and amplification, while inhibitors of either PI3K or Akt attenuate these changes in TEIF and the associated centrosome status. A consensus motif for Akt phosphorylation (RHRVLT) proved to be involved in centrosomal TEIF localization, and the 469-threonine of this motif may be phosphorylated by Akt both in vitro and in vivo. Elimination of this phosphorylated site on TEIF caused reduced centrosome distribution and centrosome splitting or amplification. Moreover, TEIF closely co-localized with C-NAP1 at the proximal ends of centrioles, and centriolar loading of TEIF stimulated by EGF/Akt could displace C-NAP1, resulting in centrosome splitting. These findings reveal linkage of the EGF/PI3K/Akt signaling pathway to regulation of centrosome status which may act as an oncogenic pathway and induce genetic instability in carcinogenesis.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yongxin Zou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Huali Wang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hong Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wei Hou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xinying Jia
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jing Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lin Hou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
7
|
Hsu CC, Chen CH, Hsu TI, Hung JJ, Ko JL, Zhang B, Lee YC, Chen HK, Chang WC, Lin DY. The 58-kda microspherule protein (MSP58) represses human telomerase reverse transcriptase (hTERT) gene expression and cell proliferation by interacting with telomerase transcriptional element-interacting factor (TEIF). BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:565-579. [PMID: 24361335 DOI: 10.1016/j.bbamcr.2013.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/13/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
Abstract
58-kDa microspherule protein (MSP58) plays an important role in a variety of cellular processes including transcriptional regulation, cell proliferation and oncogenic transformation. Currently, the mechanisms underlying the oncogenic effect of MSP58 are not fully understood. The human telomerase reverse transcriptase (hTERT) gene, which encodes an essential component for telomerase activity that is involved in cellular immortalization and transformation, is strictly regulated at the gene transcription level. Our previous study revealed a novel function of MSP58 in cellular senescence. Here we identify telomerase transcriptional element-interacting factor (TEIF) as a novel MSP58-interacting protein and determine the effect of MSP58 on hTERT transcription. This study thus provides evidence showing MSP58 to be a negative regulator of hTERT expression and telomerase activity. Luciferase reporter assays indicated that MSP58 could suppress the transcription ofhTERTpromoter. Additionally, stable overexpression of MSP58 protein in HT1080 and 293T cells decreased both endogenous hTERT expression and telomerase activity. Conversely, their upregulation was induced by MSP58 silencing. Chromatin immunoprecipitation assays showed that MSP58 binds to the hTERT proximal promoter. Furthermore, overexpression of MSP58 inhibited TEIF-mediated hTERT transactivation, telomerase activation, and cell proliferation promotion. The inhibitory effect of MSP58 occurred through inhibition of TEIF binding to DNA. Ultimately, the HT1080-implanted xenograft mouse model confirmed these cellular effects. Together, our findings provide new insights into both the biological function of MSP58 and the regulation of telomerase/hTERT expression.
Collapse
|
8
|
Nozawa K, Ishitani R, Yoshihisa T, Sato M, Arisaka F, Kanamaru S, Dohmae N, Mangroo D, Senger B, Becker HD, Nureki O. Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm. Nucleic Acids Res 2013; 41:3901-14. [PMID: 23396276 PMCID: PMC3616705 DOI: 10.1093/nar/gkt010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, transcribed precursor tRNAs are maturated by processing and modification processes in nucleus and are transported to the cytoplasm. The cytoplasmic export protein (Cex1p) captures mature tRNAs from the nuclear export receptor (Los1p) on the cytoplasmic side of the nuclear pore complex, and it delivers them to eukaryotic elongation factor 1α. This conserved Cex1p function is essential for the quality control of mature tRNAs to ensure accurate translation. However, the structural basis of how Cex1p recognizes tRNAs and shuttles them to the translational apparatus remains unclear. Here, we solved the 2.2 Å resolution crystal structure of Saccharomyces cerevisiae Cex1p with C-terminal 197 disordered residues truncated. Cex1p adopts an elongated architecture, consisting of N-terminal kinase-like and a C-terminal α-helical HEAT repeat domains. Structure-based biochemical analyses suggested that Cex1p binds tRNAs on its inner side, using the positively charged HEAT repeat surface and the C-terminal disordered region. The N-terminal kinase-like domain acts as a scaffold to interact with the Ran-exportin (Los1p·Gsp1p) machinery. These results provide the structural basis of Los1p·Gsp1p·Cex1p·tRNA complex formation, thus clarifying the dynamic mechanism of tRNA shuttling from exportin to the translational apparatus.
Collapse
Affiliation(s)
- Kayo Nozawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sun Y, Sun Q, McNutt MA, Gong Y, Wang J, Hou L, Shen Q, Ling Y, Chi Y, Zhang B. A cluster of polypyrimidine tracts is involved in the transcription regulation of telomerase transcriptional elements-interacting factor. Mol Cell Biochem 2009; 327:65-73. [PMID: 19214709 DOI: 10.1007/s11010-009-0043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
Abstract
In a previous study, we demonstrated that telomerase transcriptional elements-interacting factor (TEIF) could up-regulate the expression of telomerase and DNA polymerase beta, increasing resistance to genotoxic agents. Here, we further report that TEIF can be stimulated by DNA damage and we have identified a cluster of repeated polypyrimidine tracts in the promoter of TEIF, which mediate both its basal transcription and its response to genotoxic agents. These polypyrimidine tracts are arranged in three types of repeating units and in each of these units there are 14 bp length tandem sequences, which are repeated three times. These sequences are also characteristically separated by an 11 bp interval sequence. Among these units, one type (5'-CCCCCCCATCCCCG-3') has been found to be involved in the transcriptional regulation of TEIF. At the same time, PTB1 (polypyrimidine tract-binding protein 1) has been shown to repress TEIF expression through interaction with this element. Up-regulation of TEIF may be achieved by PTB1 suppression that is induced by DNA damage, or by an olignucleotide decoy, which mediates reversal of suppression. This study provides new insight into the mechanism through which TEIF is involved in DNA damage response, together with insight into the role of polypyrimidine tracts in transcription regulation.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathology, Health Science Center of Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Localization of TEIF in the centrosome and its functional association with centrosome amplification in DNA damage, telomere dysfunction and human cancers. Oncogene 2009; 28:1549-60. [PMID: 19198626 DOI: 10.1038/onc.2008.503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Centrosome amplification and telomere shortening, which are commonly detected in human cancers, have been implicated in the induction of chromosome instability in tumorigenesis. The functions of these two structures are closely related to DNA damage repair machinery, and some factors that operate in the maintenance of telomeres also take part in the regulation of centrosome status, suggesting they are functionally linked. We report that TEIF (telomerase transcriptional elements-interacting factor), a transactivator of the hTERT (human telomerase reverse transcriptase subunit) gene, is distributed in the centrosome throughout the cell cycle, but its transport into the centrosome is increased under some conditions, and its distribution is dependent on its C-terminal domain. Experimental modulation of TEIF expression through overexpression, polypeptide expression or depletion affected centrosome status and increased abnormalities of cell mitosis. Localization of TEIF to the centrosome was also stimulated by treatment with genotoxic agents and experimental telomere dysfunction, accompanying centrosome amplification. Moreover, we demonstrated that the expression level of TEIF is not only closely correlated with centrosome amplification in soft tissue sarcomas but it is also significantly related to tumor histologic grade. Our data confirmed TEIF functions as a centrosome regulator. Its participation in DNA damage response, including telomere dysfunction and tumorigenesis, indicates TEIF is likely to be a factor involved in linking centrosome amplification and telomere dysfunction in cancer development.
Collapse
|
11
|
Zhao Y, Zheng J, Ling Y, Hou L, Zhang B. Transcriptional upregulation of DNA polymerase beta by TEIF. Biochem Biophys Res Commun 2005; 333:908-16. [PMID: 15963946 DOI: 10.1016/j.bbrc.2005.05.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
The overexpression of DNA polymerase beta (beta-pol) has been identified in lots of human cancers, but the mechanism has seldom been investigated. Telomerase transcriptional element-interacting factor (TEIF) can bind to hTERT promoter, stimulating its transcription and telomerase activities. Here, we report that TEIF could also enhance the expression of beta-pol at transcription level. TEIF could specifically activate transcription of beta-pol promoter, but not that of DNA polymerase alpha or delta promoter. The responsible sequences for binding of TEIF were revealed as GC-rich elements dispersing from +19 to -29 nt of beta-pol promoter, which due to mutations caused decreasing in binding of TEIF and apparent losing of transactivation activity. The in vivo interaction between TEIF and beta-pol promoter was identified by chromatin immunoprecipitation assay. Besides, ectopic expression of TEIF in HeLa cells could upregulate both levels of endogenous beta-pol mRNA and protein, and consequently increases resistance to the oxidative stress of H2O2. The data may provide new clue to the elucidation of beta-pol overexpression in cancers and also a functional link between beta-pol and telomerase.
Collapse
Affiliation(s)
- Yuanjun Zhao
- Department of Pathology, Health Science Center, Peking University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
12
|
|