1
|
Dhall S, Sathyamoorthy M, Kuang JQ, Hoffman T, Moorman M, Lerch A, Jacob V, Sinclair SM, Danilkovitch A. Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage. PLoS One 2018; 13:e0204060. [PMID: 30278042 PMCID: PMC6168127 DOI: 10.1371/journal.pone.0204060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022] Open
Abstract
Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization. These properties of AM are attributed to its native extracellular matrix, growth factors, and endogenous cells including mesenchymal stem cells. Advances in tissue preservation have helped to overcome the short shelf life of fresh AM and led to the development of AM products for clinical use. Viable cryopreserved amnion (VCAM), which retains all native components of fresh AM, has shown positive outcomes in clinical trials for wound management. However, cryopreservation requires ultra-low temperature storage and shipment that limits widespread use of VCAM. We have developed a lyopreservation technique to allow for ambient storage of living tissues. Here, we compared the structural, molecular, and functional properties of a viable lyopreserved human amniotic membrane (VLAM) with properties of VCAM using in vitro and in vivo wound models. We found that the structure, growth factors, and cell viability of VLAM is similar to that of VCAM and fresh AM. Both, VCAM and VLAM inhibited TNF-α secretion and upregulated VEGF expression in vitro under conditions designed to mimic inflammation and hypoxia in a wound microenvironment, and resulted in wound closure in a diabetic mouse chronic wound model. Taken together, these data demonstrate that VLAM structural and functional properties are equivalent to VCAM but without the constraints of ultra-low temperature storage.
Collapse
Affiliation(s)
- Sandeep Dhall
- Osiris Therapeutics Inc., Columbia, MD, United States of America
- * E-mail:
| | | | - Jin-Qiang Kuang
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Tyler Hoffman
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Matthew Moorman
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Anne Lerch
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Vimal Jacob
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | | | | |
Collapse
|
2
|
Fanton Y, Houbrechts C, Willems L, Daniëls A, Linsen L, Ratajczak J, Bronckaers A, Lambrichts I, Declercq J, Rummens JL, Hendrikx M, Hensen K. Cardiac atrial appendage stem cells promote angiogenesis in vitro and in vivo. J Mol Cell Cardiol 2016; 97:235-44. [PMID: 27291064 DOI: 10.1016/j.yjmcc.2016.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 06/08/2016] [Indexed: 12/23/2022]
Abstract
Cardiac atrial appendage stem cells (CASCs) show extraordinary myocardial differentiation properties, making them ideal candidates for myocardial regeneration. However, since the myocardium is a highly vascularized tissue, revascularization of the ischemic infarct area is essential for functional repair. Therefore, this study assessed if CASCs contribute to cardiac angiogenesis via paracrine mechanisms. First, it was demonstrated that CASCs produce and secrete high levels of numerous angiogenic growth factors, including vascular endothelial growth factor (VEGF), endothelin-1 (ET-1) and insulin-like growth factor binding protein 3 (IGFBP-3). Functional in vitro assays with a human microvascular endothelial cell line (HMEC-1) and CASC CM showed that CASCs promote endothelial cell proliferation, migration and tube formation, the most important steps of the angiogenesis process. Addition of inhibitory antibodies against identified growth factors could significantly reduce these effects, indicating their importance in CASC-induced neovascularization. The angiogenic potential of CASCs and CASC CM was also confirmed in a chorioallantoic membrane assay, demonstrating that CASCs promote blood vessel formation in vivo. In conclusion, this study shows that CASCs not only induce myocardial repair by cardiomyogenic differentiation, but also stimulate blood vessel formation by paracrine mechanisms. The angiogenic properties of CASCs further strengthen their therapeutic potential and make them an optimal stem cell source for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Yanick Fanton
- Laboratory of Experimental Hematology, Jessa Hospital, Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
| | - Cynthia Houbrechts
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Leen Willems
- Laboratory of Experimental Hematology, Jessa Hospital, Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Annick Daniëls
- Laboratory of Experimental Hematology, Jessa Hospital, Hasselt, Belgium
| | - Loes Linsen
- AC Biobanking, University Hospital Leuven, Leuven, Belgium
| | | | | | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jeroen Declercq
- Laboratory of Experimental Hematology, Jessa Hospital, Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Jean-Luc Rummens
- Laboratory of Experimental Hematology, Jessa Hospital, Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Cardiothoracic Surgery, Jessa Hospital, Hasselt, Belgium
| | - Karen Hensen
- Laboratory of Experimental Hematology, Jessa Hospital, Hasselt, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
3
|
Mohamed Omer S, Krishna SM, Li J, Moxon JV, Nsengiyumva V, Golledge J. The efficacy of extraembryonic stem cells in improving blood flow within animal models of lower limb ischaemia. Heart 2016; 102:69-74. [PMID: 26573094 DOI: 10.1136/heartjnl-2015-308322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/17/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Stem cell (SC) administration is a potential therapeutic strategy to improve blood supply in patients with peripheral artery disease (PAD). The aim of this systematic review and meta-analysis was to investigate the efficacy of extraembryonic tissue-derived SC (ETSC) in improving blood flow within animal models of hindlimb ischaemia (HLI). METHODS PubMed, ScienceDirect and Web of Science were searched to identify studies which investigated ETSCs within animal HLI models. A meta-analysis was performed focusing on the effect of ETSCs on limb blood flow assessed by laser Doppler imaging using a random effects model. Methodological quality was assessed using a newly devised quality assessment tool. RESULTS Five studies investigating umbilical cord-derived SCs (three studies), placental SCs (one study), amnion and chorionic SCs (one study) were included. A meta-analysis suggested that administration of ETSCs improved the restoration of blood flow within the HLI models used. The methodological quality of the included studies was assessed as poor. Problems identified included lack of randomised design and blinding of outcome assessors; that the animal models did not incorporate recognised risk factors for human PAD or atherosclerosis; the models used did not have established chronic ischaemia as is the cases in most patients presenting with PAD; and the studies lacked a clear rationale for the dosage and frequency of SCs administered. CONCLUSIONS The identified studies suggest that ETSCs improve recovery of limb blood supply within current animal HLI models. Improved study quality is, however, needed to provide support for the likelihood of translating these findings to patients with PAD.
Collapse
Affiliation(s)
- Safraz Mohamed Omer
- Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jiaze Li
- Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Joseph Vaughan Moxon
- Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Vianne Nsengiyumva
- Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia
| |
Collapse
|
4
|
Yin T, He S, Su C, Chen X, Zhang D, Wan Y, Ye T, Shen G, Wang Y, Shi H, Yang L, Wei Y. Genetically modified human placenta‑derived mesenchymal stem cells with FGF‑2 and PDGF‑BB enhance neovascularization in a model of hindlimb ischemia. Mol Med Rep 2015; 12:5093-9. [PMID: 26239842 PMCID: PMC4581748 DOI: 10.3892/mmr.2015.4089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 06/26/2015] [Indexed: 02/05/2023] Open
Abstract
Ischemic diseases represent a challenging worldwide health burden. The current study investigated the therapeutic potential of genetically modified human placenta‑derived mesenchymal stem cells (hPDMSCs) with basic fibroblast growth factor (FGF2) and platelet‑derived growth factor‑BB (PDGF‑BB) genes in hindlimb ischemia. Mesenchymal stem cells obtained from human term placenta were transfected ex vivo with adenoviral bicistronic vectors carrying the FGF2 and PDGF‑BB genes (Ad‑F‑P). Unilateral hindlimb ischemia was surgically induced by excision of the right femoral artery in New Zealand White rabbits. Ad‑F‑P genetically modified hPDMSCs, Ad‑null (control vector)‑modified hPDMSCs, unmodified hPDMSCs or media were intramuscularly implanted into the ischemic limbs 7 days subsequent to the induction of ischemia. Four weeks after cell therapy, angiographic analysis revealed significantly increased collateral vessel formation in the Ad‑F‑P‑hPDMSC group compared with the control group. Histological examination revealed markedly increased capillary and arteriole density in the Ad‑F‑P‑hPDMSC group. The xenografted hPDMSCs survived in the ischemic tissue for at least 4 weeks subsequent to cell therapy. The current study demonstrated that the combination of hPDMSC therapy with FGF2 and PDGF‑BB gene therapy effectively induced collateral vessel formation and angiogenesis, suggesting a novel strategy for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Tao Yin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Sisi He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Chao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Dongmei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Huashan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Merfeld-Clauss S, Lupov IP, Lu H, March KL, Traktuev DO. Adipose Stromal Cell Contact with Endothelial Cells Results in Loss of Complementary Vasculogenic Activity Mediated by Induction of Activin A. Stem Cells 2015; 33:3039-51. [PMID: 26037810 DOI: 10.1002/stem.2074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
Adipose stem/stromal cells (ASCs) after isolation produce numerous angiogenic growth factors. This justifies their use to promote angiogenesis per transplantation. In parallel, local coimplantation of ASC with endothelial cells (ECs) leading to formation of functional vessels by the donor cells suggests the existence of a mechanism responsible for fine-tuning ASC paracrine activity essential for vasculogenesis. As expected, conditioned media (CM) from ASC promoted ECs survival, proliferation, migration, and vasculogenesis. In contrast, media from EC-ASC cocultures had neutral effects upon EC responses. Media from cocultures exhibited lower levels of vascular endothelial growth factor (VEGF), hepatic growth factor, angiopoietin-1, and stromal cell-derived factor-1 compared with those in ASC CM. Activin A was induced in ASC in response to EC exposure and was responsible for overall antivasculogenic activity of EC-ASC CM. Except for VEGF, activin A diminished secretion of all tested factors by ASC. Activin A mediated induction of VEGF expression in ASC, but also upregulated expression of VEGF scavenger receptor FLT-1 in EC in EC-ASC cocultures. Blocking the FLT-1 expression in EC led to an increase in VEGF concentration in CM. In vitro pre-exposure of ASC to low number of EC before subcutaneous coimplantation with EC resulted in decrease in vessel density in the implants. In vitro tests suggested that activin A was partially responsible for this diminished ASC activity. This study shows that neovessel formation is associated with induction of activin A expression in ASC; this factor, by affecting the bioactivity of both ASC and EC, directs the crosstalk between these complementary cell types to establish stable vessels.
Collapse
Affiliation(s)
- Stephanie Merfeld-Clauss
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Ivan P Lupov
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Hongyan Lu
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Keith L March
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dmitry O Traktuev
- Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,Department of Medicine, Indiana Center for Vascular Biology and Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana, USA.,VA Center for Regenerative Medicine, R.L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Yoshizawa RS, Osis MJD, Nascimento SL, Bento SF, Godoy AC, Coelho S, Cecatti JG. Postpartum Women's Perspectives on the Donation of Placentas for Scientific Research in Campinas, Brazil. J Empir Res Hum Res Ethics 2014; 10:76-87. [PMID: 25742669 DOI: 10.1177/1556264614559889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Little is known about public perspectives of scientific and therapeutic uses of placentas. Gaps in knowledge potentiate ethical and clinical problems regarding collection and applications. As such, this study sought to assess the perspectives of placenta donation of a sample of women. Postpartum women's perspectives on placental donation were assessed at the State University of Campinas in the Centro de Atençäo Integral a Saúde da Mulher (CAISM) maternity hospital using a cross-sectional survey (n = 384) and semi-structured interviews (n = 12). Surveys were analyzed quantitatively and interviews were analyzed qualitatively using grounded coding; results were compared. The average age of respondents was 27. Fifty-six percent had more than one child, 45% were Caucasian, 38% were mixed-race, 74% identified with a Christian faith, 52% had high school education or higher, 13% regarded the placenta as spiritually important, 72% felt that knowing what happens to the placenta after birth was somewhat or very important, 78% supported the use of the placenta in research and medicine, 59% reported that consent to collect the placenta was very or somewhat important, 78% preferred their doctor to invite donation, and only 7% preferred the researcher to invite donation. Interviews suggested women appreciate being part of research and that receiving information about studies was important to them. Informed by these results, we argue that women support scientific and therapeutic uses of placentas, want to be included in decision making, and desire information about the placenta. Placentas should not be viewed as "throwaway" organs that are poised for collection without the involvement and permission of women. Women want to be meaningfully included in research processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Suelene Coelho
- State University of Campinas, State of Sao Paulo, Brazil
| | | |
Collapse
|
7
|
Chen J, Shehadah A, Pal A, Zacharek A, Cui X, Cui Y, Roberts C, Lu M, Zeitlin A, Hariri R, Chopp M. Neuroprotective effect of human placenta-derived cell treatment of stroke in rats. Cell Transplant 2013; 22:871-9. [PMID: 22469567 DOI: 10.3727/096368911x637380] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Human placenta-derived adherent (PDA001) cells are mesenchymal-like stem cells isolated from postpartum placenta. In this study, we tested whether intravenously infused PDA001 improves neurological functional recovery after stroke in rats. In addition, potential mechanisms underlying the PDA001-induced neuroprotective effect were investigated. Young adult male rats (2–3 months) were subjected to 2 h of middle cerebral artery occlusion (MCAo) and treated with PDA001 (4x10(6)) or vehicle controls [dextran vehicle or phosphate buffer saline (PBS)] via intravenous (IV) administration initiated at 4 h after MCAo. A battery of functional tests and measurements of lesion volume and apoptotic cells were performed. Immunostaining and ELISA assays for vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) and brain derived neurotrophic factor (BDNF) were performed in the ischemic brain to test the potential mechanisms underlying the neuroprotective effects of PDA001 cell treatment of stroke. PDA001 cell treatment at 4 h post stroke significantly improved functional outcome and significantly decreased lesion volume, TUNEL, and cleaved caspase 3-positive cell number in the ischemic brain, compared to MCAo-vehicle and MCAo-PBS control. Treatment of stroke with PDA001 cells also significantly increased HGF and VEGF expression in the ischemic border zone (IBZ) compared to controls. Using ELISA assays, treatment of stroke with PDA001 cells significantly increased VEGF, HGF, and BDNF levels in the ischemic brain compared to controls. CONCLUSION When administered intravenously at 4 h after MCAo, PDA001 cells promoted neuroprotective effects. These effects induced by PDA001 cell treatment may be related to the increase of VEGF, HGF, and BDNF expression,and a decrease of apoptosis. PDA001 cells may provide a viable cell source to treat stroke.
Collapse
Affiliation(s)
- Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2013; 115:92-115. [PMID: 24333397 DOI: 10.1016/j.pneurobio.2013.11.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Neurology, Tianjin General Hospital, Tianjin University School of Medicine, Tianjin, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Fan
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
9
|
Abstract
Placental tissues are frequently utilized by scientists studying pregnancy and reproduction and in diverse fields including immunology, stem cell research, genetics, cancer research, and tissue engineering, as well as by clinicians in many therapies. Though the utilization of the human placenta in science and medicine has benefitted many people, little is known about public perspectives of this phenomenon. This review addresses placental donation, collection, and utilization in science and medicine, focusing on public perspectives. Cultural values and traditions, ethical paradigms and concerns, public understandings of science and medicine, and political considerations may impact perceptions of the utilization of the placenta in science and medicine, but systematic study is lacking. It is argued that knowledge of public views gained from empirical investigation may underpin the development of collection protocols and research projects that are more responsive to public will, spur more extensive utilization in science and medicine of this unique organ, and/or aid in the realization of the mobilization of knowledge about the placenta for clinical and educational ends. New avenues for research on public perspectives of the placenta are proposed.
Collapse
|
10
|
Liew A, O'Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 2012; 3:28. [PMID: 22846185 PMCID: PMC3580466 DOI: 10.1186/scrt119] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic potential of mesenchymal stem cell (MSC) transplantation for the treatment of ischemic conditions such as coronary artery disease, peripheral arterial disease, and stroke has been explored in animal models and early-phase clinical trials. A substantial database documents the safety profile of MSC administration to humans in a large number of disease states. The mechanism of the therapeutic effect of MSC transplantation in ischemic disease has been postulated to be due to paracrine, immunomodulatory, and differentiation effects. This review provides an overview of the potential role of MSC-based therapy for critical limb ischemia (CLI), the comparison of MSC cellular therapy with angiogenesis gene therapy in CLI, and the proposed mechanism of action of MSC therapy. Preclinical efficacy data in animal models of hindlimb ischemia, current early-phase human trial data, and considerations for future MSC-based therapy in CLI will also be discussed.
Collapse
|
11
|
Kranz A, Wagner DC, Kamprad M, Scholz M, Schmidt UR, Nitzsche F, Aberman Z, Emmrich F, Riegelsberger UM, Boltze J. Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res 2010; 1315:128-36. [PMID: 20004649 DOI: 10.1016/j.brainres.2009.12.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
Abstract
The beneficial effects of bone marrow-derived mesenchymal stromal cell (MSC) administration following experimental stroke have already been described. Despite several promising characteristics, placenta-derived MSC have not been used in models of focal ischemia. The aim of the current study is to investigate the impact of intravenously transplanted placenta-derived MSC on post-stroke recovery. Permanent occlusion of the middle cerebral artery was induced in spontaneously hypertensive rats. MSC were obtained from the human maternal or fetal placenta and intravenously administered after 24 h (single transplantation) or after 8 h and 24 h (dual transplantation). Sensorimotor deficits were quantified for 60 days using the beam walk test and the modified Neurological Severity Score system. Infarct volume was determined in vivo by means of magnetic resonance imaging on days 1, 8, 29 and 60. Astroglial reactivity was semiquantitatively ascertained within a small and a broad region adjacent to the lesion border. The double infusion of placental MSC was superior to single transplantation in the functional tests. However, a significant difference to the control group in all outcome parameters was observed only for maternally derived MSC. These findings suggest that placental tissue constitutes a promising source for experimental stroke therapies.
Collapse
Affiliation(s)
- Alexander Kranz
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Angiogenesis in differentiated placental multipotent mesenchymal stromal cells is dependent on integrin alpha5beta1. PLoS One 2009; 4:e6913. [PMID: 19847290 PMCID: PMC2760707 DOI: 10.1371/journal.pone.0006913] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 07/30/2009] [Indexed: 12/20/2022] Open
Abstract
Human placental multipotent mesenchymal stromal cells (hPMSCs) can be isolated from term placenta, but their angiogenic ability and the regulatory pathways involved are not known. hPMSCs were shown to express integrins αv, α4, α5, β1, β3, and β5 and could be induced to differentiate into cells expressing endothelial markers. Increases in cell surface integrins α5 and β1, but not α4, αvβ3, or αvβ5, accompanied endothelial differentiation. Vascular endothelial growth factor-A augmented the effect of fibronectin in enhancing adhesion and migration of differentiated hPMSC through integrin α5β1, but not αvβ3 or αvβ5. Formation of capillary-like structures in vitro from differentiated cells was inhibited by pre-treatment with function-blocking antibodies to integrins α5 and β1. When hPMSCs were seeded onto chick chorioallantoic membranes (CAM), human von Willebrand factor-positive cells were observed to engraft in the chick endothelium. CAMs transplanted with differentiated hPMSCs had a greater number of vessels containing human cells and more incorporated cells per vessel compared to CAMs transplanted with undifferentiated hPMSCs, and overall angiogenesis was enhanced more by the differentiated cells. Function-blocking antibodies to integrins α5 and β1 inhibited angiogenesis in the CAM assay. These results suggest that differentiated hPMSCs may contribute to blood vessel formation, and this activity depends on integrin α5β1.
Collapse
|
13
|
Fuchs S, Battler A, Kornowski R. Catheter-based stem cell and gene therapy for refractory myocardial ischemia. ACTA ACUST UNITED AC 2007; 4 Suppl 1:S89-95. [PMID: 17230221 DOI: 10.1038/ncpcardio0762] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 11/06/2006] [Indexed: 11/08/2022]
Abstract
Intramyocardial delivery of genes and cells derived from bone marrow has been evaluated in several small studies of 'no-option' symptomatic patients with chronic ischemic coronary artery disease. Clinical experience with intramyocardial gene delivery is limited to genes encoding isoforms of vascular endothelial cell growth factor. In the largest study (Euroinject One), 80 patients were randomized to receive a plasmid encoding vascular endothelial cell growth factor 165 or placebo. The results of this study suggested no beneficial therapeutic effect of this strategy. The experience with stem cells is limited to use of autologous, nonexpanded, nonmanipulated bone-marrow-derived cells; thus, the number of injected stem cells reflects their natural proportion within the bone marrow. The results of these preliminary studies suggest this approach is feasible and has a high safety profile. Although no conclusion can yet be made regarding efficacy, the improved myocardial perfusion in all four studies described in this Review is encouraging. Data from assessments of individual patients, however, suggests a wide variability in response, underscoring the need for further bench and clinical investigations.
Collapse
Affiliation(s)
- Shmuel Fuchs
- Cardiac Catheterization Laboratory, Cardiology Department, Rabin Medical Center, Golda-Hasharon Campus, 7 Keren Kayemet Street, Petah Tikva 49372, Israel.
| | | | | |
Collapse
|