1
|
Janssen BDE, van den Boogaard MJH, Lichtenbelt K, Seaby EG, Stals K, Ellard S, Newbury-Ecob R, Dixit A, Roht L, Pajusalu S, Õunap K, Firth HV, Buckley M, Wilson M, Roscioli T, Tidwell T, Mao R, Ennis S, Holwerda SJ, van Gassen K, van Jaarsveld RH. De novo putative loss-of-function variants in TAF4 are associated with a neuro-developmental disorder. Hum Mutat 2022; 43:1844-1851. [PMID: 35904126 PMCID: PMC10087332 DOI: 10.1002/humu.24444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 01/24/2023]
Abstract
TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder "TAF4-related NDD" (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.
Collapse
Affiliation(s)
- Beau D E Janssen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Klaske Lichtenbelt
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleanor G Seaby
- Genomic Informatics Group, University of Southampton, Southampton, UK
| | - Karen Stals
- Exeter Genomic Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- Exeter Genomic Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Ruth Newbury-Ecob
- Clinical Genetics, St Michael's Hospital Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Abhijit Dixit
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Laura Roht
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | | | - Michael Buckley
- Randwick Genomics laboratory, New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, and Discipline of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Tony Roscioli
- Randwick Genomics laboratory, New South Wales Health Pathology, Sydney, New South Wales, Australia.,Neurosciences Research Australia, University of NSW, Kensington, New South Wales, Australia.,Randwick Genomics laboratory, New South Wales Health Pathology, Sydney, New South Wales, Australia
| | | | - Rong Mao
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sarah Ennis
- Genomic Informatics Group, University of Southampton, Southampton, UK
| | - Sjoerd J Holwerda
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
2
|
Kazantseva J, Sadam H, Neuman T, Palm K. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming. Sci Rep 2016; 6:30852. [PMID: 27499390 PMCID: PMC4976350 DOI: 10.1038/srep30852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022] Open
Abstract
Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression.
Collapse
Affiliation(s)
| | - Helle Sadam
- Protobios LLC, Tallinn, Estonia.,The Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Kaia Palm
- Protobios LLC, Tallinn, Estonia.,The Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
3
|
Diversity in TAF proteomics: consequences for cellular differentiation and migration. Int J Mol Sci 2014; 15:16680-97. [PMID: 25244017 PMCID: PMC4200853 DOI: 10.3390/ijms150916680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022] Open
Abstract
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of “core transcription machinery” during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
Collapse
|
4
|
Kazantseva J, Tints K, Neuman T, Palm K. TAF4 controls differentiation of human neural progenitor cells through hTAF4-TAFH activity. J Mol Neurosci 2014; 55:160-166. [PMID: 24696168 DOI: 10.1007/s12031-014-0295-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/23/2014] [Indexed: 12/13/2022]
Abstract
Expression of general transcription factor and co-activator TAF4 varies during development and in the processes of cell differentiation with suggested connection to neurodegenerative diseases. Here, we show that expression of TAF4 alternative splice variants is different in various regions of the human brain, substantiating the role of alternative splicing of TAF4 in the regulation of neural development and brain function. Most of the described splicing events affect the TAFH homology domain of TAF4 (hTAF4-TAFH). Besides, differentiated towards neural lineages, normal human neural progenitors (NHNPs) lose canonical full-length TAF4 isoform. To study the effects of hTAF4-TAFH splicing on neuronal differentiation, we used RNAi approach to target hTAF4-TAFH-encoding domain in NHNPs. Results show that inactivation of hTAF4-TAFH domain accelerates differentiation of human neural progenitor cells. Conversely, enhanced expression of TAF4 suppresses differentiation and keeps neural progenitor cells in a stem cell-like state. Finally, we provide data on the involvement of TP53 and noncanonical WNT signaling pathways in mediating effects of TAF4 on neuronal differentiation. Overall, our data suggest that specific isoforms of TAF4 may selectively and efficiently control neurogenesis.
Collapse
Affiliation(s)
| | - Kairit Tints
- Protobios LLC, Mäealuse 4, Tallinn, 12618, Estonia
| | | | - Kaia Palm
- Protobios LLC, Mäealuse 4, Tallinn, 12618, Estonia. .,The Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia.
| |
Collapse
|
5
|
Kazantseva J, Kivil A, Tints K, Kazantseva A, Neuman T, Palm K. Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells. PLoS One 2013; 8:e74799. [PMID: 24098348 PMCID: PMC3788782 DOI: 10.1371/journal.pone.0074799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/06/2013] [Indexed: 01/07/2023] Open
Abstract
Transcription factor IID (TFIID) activity can be regulated by cellular signals to specifically alter transcription of particular subsets of genes. Alternative splicing of TFIID subunits is often the result of external stimulation of upstream signaling pathways. We studied tissue distribution and cellular expression of different splice variants of TFIID subunit TAF4 mRNA and biochemical properties of its isoforms in human mesenchymal stem cells (hMSCs) to reveal the role of different isoforms of TAF4 in the regulation of proliferation and differentiation. Expression of TAF4 transcripts with exons VI or VII deleted, which results in a structurally modified hTAF4-TAFH domain, increases during early differentiation of hMSCs into osteoblasts, adipocytes and chondrocytes. Functional analysis data reveals that TAF4 isoforms with the deleted hTAF4-TAFH domain repress proliferation of hMSCs and preferentially promote chondrogenic differentiation at the expense of other developmental pathways. This study also provides initial data showing possible cross-talks between TAF4 and TP53 activity and switching between canonical and non-canonical WNT signaling in the processes of proliferation and differentiation of hMSCs. We propose that TAF4 isoforms generated by the alternative splicing participate in the conversion of the cellular transcriptional programs from the maintenance of stem cell state to differentiation, particularly differentiation along the chondrogenic pathway.
Collapse
Affiliation(s)
| | - Anri Kivil
- Protobios LLC, Tallinn, Estonia
- The Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Anna Kazantseva
- Protobios LLC, Tallinn, Estonia
- The Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Kaia Palm
- Protobios LLC, Tallinn, Estonia
- The Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
6
|
Abstract
p53 is arguably the most intensively studied protein to date, yet there is much that we ignore about its function as a transcription factor. The p53-dependent transcriptional program is remarkably flexible, as it varies with the nature of p53-activating stimuli, the cell type and the duration of the activation signal. This flexibility may allow cells to mount alternative responses to p53 activation, such as cell cycle arrest or apoptosis. Here, I organize the available data into two alternative models to explain how this regulatory diversity is achieved.
Collapse
|
8
|
Katzenberger RJ, Marengo MS, Wassarman DA. ATM and ATR pathways signal alternative splicing of Drosophila TAF1 pre-mRNA in response to DNA damage. Mol Cell Biol 2006; 26:9256-67. [PMID: 17030624 PMCID: PMC1698527 DOI: 10.1128/mcb.01125-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative pre-mRNA splicing is a major mechanism utilized by eukaryotic organisms to expand their protein-coding capacity. To examine the role of cell signaling in regulating alternative splicing, we analyzed the splicing of the Drosophila melanogaster TAF1 pre-mRNA. TAF1 encodes a subunit of TFIID, which is broadly required for RNA polymerase II transcription. We demonstrate that TAF1 alternative splicing generates four mRNAs, TAF1-1, TAF1-2, TAF1-3, and TAF1-4, of which TAF1-2 and TAF1-4 encode proteins that directly bind DNA through AT hooks. TAF1 alternative splicing was regulated in a tissue-specific manner and in response to DNA damage induced by ionizing radiation or camptothecin. Pharmacological inhibitors and RNA interference were used to demonstrate that ionizing-radiation-induced upregulation of TAF1-3 and TAF1-4 splicing in S2 cells was mediated by the ATM (ataxia-telangiectasia mutated) DNA damage response kinase and checkpoint kinase 2 (CHK2), a known ATM substrate. Similarly, camptothecin-induced upregulation of TAF1-3 and TAF1-4 splicing was mediated by ATR (ATM-RAD3 related) and CHK1. These findings suggest that inducible TAF1 alternative splicing is a mechanism to regulate transcription in response to developmental or DNA damage signals and provide the first evidence that the ATM/CHK2 and ATR/CHK1 signaling pathways control gene expression by regulating alternative splicing.
Collapse
Affiliation(s)
- Rebeccah J Katzenberger
- University of Wisconsin School of Medicine and Public Health, Department of Pharmacology, Madison, WI 53706, USA
| | | | | |
Collapse
|