1
|
Wu D, Zhang Z, Li X, Han J, Hu Q, Yu Y, Mao Z. Cucurbit[10]uril-based supramolecular radicals: Powerful arms to kill facultative anaerobic bacteria. J Control Release 2023; 354:626-634. [PMID: 36681280 DOI: 10.1016/j.jconrel.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Two water-soluble supramolecular complexes (CB[10]⊃PSA and CB[10]⊃TPE-cyc) are constructed based on the host-guest interaction between cucurbit[10]uril (CB[10]) and perylene diimide derivative (PSA) or tetracationic cyclophane (TPE-cyc). Attributing to the matched redox potential, both supramolecular complexes can be specifically reduced into corresponding supramolecular radical cations or anions by facultative anaerobic E. coli. Benefiting from the strong near-infrared (NIR) absorption, CB[10]⊃PSA radical anions and CB[10]⊃TPE-cyc radical cations act as efficient NIR photosensitizers and perform an excellent antimicrobial activity (close to 100%) via PTT. In addition, the biocompatibility of TPE-cyc is notably improved under the protection of CB[10], guaranteeing its biosafety for in vivo application. CB[10]⊃PSA radical anions and CB[10]⊃TPE-cyc radical cations are in situ generated in the E. coli-infected abscess of mice and effectively inhibit the bacterial infection without obvious system toxicity. It is anticipated that this supramolecular strategy may pave a new way for the selective bacteria inhibition to regulate the balance of different bacterial flora.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinyue Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jin Han
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China..
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China..
| | - Yuan Yu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China..
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China..
| |
Collapse
|
2
|
Vo KC, Wada A, Iwata R, Asada R, Sakamoto JJ, Furuta M, Tsuchido T. Evaluation of distinct modes of oxidative secondary injury generated in heat-treated cells of Escherichia coli with solid/liquid and complex/semi-synthetic media sets. J Appl Microbiol 2022; 133:2361-2374. [PMID: 35771133 DOI: 10.1111/jam.15697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
AIMS To characterize and evaluate oxidative secondary injury generated in heat-treated Escherichia coli cells during recovery cultivation either on agar or in a broth of a semi-synthetic enriched M9 (EM9) medium and a complex Luria broth (LB) medium with different types of antioxidants. METHODS AND RESULTS E. coli cells grown in the EM9 and LB broth were heated at 50o C in a buffer (pH7.0). Heated cells were recovered on the same kind of agar medium as that used for growth, with or without different antioxidants. Although these antioxidants mostly protected the cells from oxidative secondary injury on the recovery media, sodium thiosulfate and sodium pyruvate were most protective on EM9 and LB agars, respectively. Determination of viability using the most probable number and growth delay analysis methods showed significant reductions in the protective effects of antioxidants in the EM9 and LB media. CONCLUSION Oxidative secondary injury generated in heated E. coli cells was found to be qualitatively and quantitatively diverse under cellular and environmental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggest that different modes of oxidation should be considered in viability determination and injured cell enumeration of heat-treated cells.
Collapse
Affiliation(s)
- K C Vo
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan
| | - A Wada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan
| | - R Iwata
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan
| | - R Asada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan.,Radiation Research Center, Organization for Research Promotion, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan.,Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan
| | - J J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan.,Faculty of Materials, Chemistry, Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, Japan
| | - M Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan.,Radiation Research Center, Organization for Research Promotion, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan.,Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan
| | - T Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Japan
| |
Collapse
|
3
|
Ahmad R, Kleineberg C, Nasirimarekani V, Su YJ, Goli Pozveh S, Bae A, Sundmacher K, Bodenschatz E, Guido I, Vidaković-koch T, Gholami A. Light-Powered Reactivation of Flagella and Contraction of Microtubule Networks: Toward Building an Artificial Cell. ACS Synth Biol 2021; 10:1490-1504. [PMID: 33761235 PMCID: PMC8218302 DOI: 10.1021/acssynbio.1c00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Artificial systems
capable of self-sustained movement with self-sufficient
energy are of high interest with respect to the development of many
challenging applications, including medical treatments, but also technical
applications. The bottom-up assembly of such systems in the context
of synthetic biology is still a challenging task. In this work, we
demonstrate the biocompatibility and efficiency of an artificial light-driven
energy module and a motility functional unit by integrating light-switchable
photosynthetic vesicles with demembranated flagella. The flagellar
propulsion is coupled to the beating frequency, and dynamic ATP synthesis
in response to illumination allows us to control beating frequency
of flagella in a light-dependent manner. In addition, we verified
the functionality of light-powered synthetic vesicles in in
vitro motility assays by encapsulating microtubules assembled
with force-generating kinesin-1 motors and the energy module to investigate
the dynamics of a contractile filamentous network in cell-like compartments
by optical stimulation. Integration of this photosynthetic system
with various biological building blocks such as cytoskeletal filaments
and molecular motors may contribute to the bottom-up synthesis of
artificial cells that are able to undergo motor-driven morphological
deformations and exhibit directional motion in a light-controllable
fashion.
Collapse
Affiliation(s)
- Raheel Ahmad
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Christin Kleineberg
- Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Vahid Nasirimarekani
- Microfluidics & BIOMICS Cluster UPV/EHU, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Yu-Jung Su
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Samira Goli Pozveh
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Albert Bae
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Kai Sundmacher
- Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Otto von Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
| | - Eberhard Bodenschatz
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Isabella Guido
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Tanja Vidaković-koch
- Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Azam Gholami
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Nothling MD, Cao H, McKenzie TG, Hocking DM, Strugnell RA, Qiao GG. Bacterial Redox Potential Powers Controlled Radical Polymerization. J Am Chem Soc 2021; 143:286-293. [PMID: 33373526 DOI: 10.1021/jacs.0c10673] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbes employ a remarkably intricate electron transport system to extract energy from the environment. The respiratory cascade of bacteria culminates in the terminal transfer of electrons onto higher redox potential acceptors in the extracellular space. This general and inducible mechanism of electron efflux during normal bacterial proliferation leads to a characteristic fall in bulk redox potential (Eh), the degree of which is dependent on growth phase, the microbial taxa, and their physiology. Here, we show that the general reducing power of bacteria can be subverted to induce the abiotic production of a carbon-centered radical species for targeted bioorthogonal molecular synthesis. Using two species, Escherichia coli and Salmonella enterica serovar Typhimurium as model microbes, a common redox active aryldiazonium salt is employed to intervene in the terminal respiratory electron flow, affording radical production that is mediated by native redox-active molecular shuttles and active bacterial metabolism. The aryl radicals are harnessed to initiate and sustain a bioorthogonal controlled radical polymerization via reversible addition-fragmentation chain transfer (BacRAFT), yielding a synthetic extracellular matrix of "living" vinyl polymers with predetermined molecular weight and low dispersity. The ability to interface the ubiquitous reducing power of bacteria into synthetic materials design offers a new means for creating engineered living materials with promising adaptive and self-regenerative capabilities.
Collapse
Affiliation(s)
- Mitchell D Nothling
- Department of Chemical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hanwei Cao
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thomas G McKenzie
- Department of Chemical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dianna M Hocking
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
5
|
Byrne DP, Manandhar SP, Potempa J, Smalley JW. Breakdown of albumin and haemalbumin by the cysteine protease interpain A, an albuminase of Prevotella intermedia. BMC Microbiol 2015; 15:185. [PMID: 26403890 PMCID: PMC4582931 DOI: 10.1186/s12866-015-0516-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prevotella intermedia is a Gram-negative black-pigmenting oral anaerobe associated with periodontitis in humans, and has a haem requirement for growth, survival and virulence. It produces an iron porphyrin-containing pigment comprising monomeric iron (III) protoporphyrin IX (Fe(III)PPIX.OH; haematin). The bacterium expresses a 90-kDa cysteine protease termed interpain A (InpA) which both oxidizes and subsequently degrades haemoglobin, releasing haem. However, it is not known whether the enzyme may play a role in degrading other haem-carrying plasma proteins present in the gingival sulcus or periodontal pocket from which to derive haem. This study evaluated the ability of InpA to degrade apo- and haem-complexed albumin. RESULTS Albumin breakdown was examined over a range of pH and in the presence of reducing agent; conditions which prevail in sub- and supra-gingival plaque. InpA digested haemalbumin more efficiently than apoalbumin, especially under reducing conditions at pH 7.5. Under these conditions InpA was able to substantially degrade the albumin component of whole human plasma. CONCLUSIONS The data point to InpA as an efficient "albuminase" with the ability to degrade the minor fraction of haem-bound albumin in plasma. InpA may thus contribute significantly to haem acquisition by P. intermedia under conditions of low redox potential and higher pH in the inflamed gingival crevice and diseased periodontal pocket where haem availability is tightly controlled by the host.
Collapse
Affiliation(s)
- Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, The University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | - Surya P Manandhar
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, California, 90840, USA.
| | - Jan Potempa
- Malopolska Centre of Biotechnology and Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland. .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40202, USA.
| | - John W Smalley
- The University of Liverpool, School of Dentistry, Daulby Street, Liverpool, L69 3GN, UK.
| |
Collapse
|
6
|
Reducing activity, glucose metabolism and acid tolerance response of Bacillus cereus grown at various pH and oxydo-reduction potential levels. Food Microbiol 2015; 46:314-321. [DOI: 10.1016/j.fm.2014.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 12/26/2022]
|
7
|
Vardanyan Z, Trchounian A. Cu(II), Fe(III) and Mn(II) combinations as environmental stress factors have distinguishing effects on Enterococcus hirae. J Environ Sci (China) 2015; 28:95-100. [PMID: 25662243 DOI: 10.1016/j.jes.2014.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 06/04/2023]
Abstract
Pollution by various heavy metals as environmental stress factors might affect bacteria. It was established that iron (Fe(III)), manganese (Mn(II)) and copper (Cu(II)) ion combinations caused effects on Enterococcus hirae that differed from the sum of the effects when the metals were added separately. It was shown that the Cu2+-Fe3+ combination decreased the growth and ATPase activity of membrane vesicles of wild-type E. hirae ATCC9790 and atpD mutant (with defective FoF1-ATPase) MS116. Addition of Mn2+-Fe3+ combinations within the same concentration range had no effects on growth compared to control (without heavy metals). ATPase activity was increased in the presence of Mn2+-Fe3+, while together with 0.2 mmol/L N,N'-dicyclohexylcarbodiimide (DCCD), ATPase activity was decreased compared to control (when only 0.2 mmol/L DCCD was present). These results indicate that heavy metals ion combinations probably affect the FOF1-ATPase, leading to conformational changes. Moreover the action may be direct or be mediated by environment redox potential. The effects observed when Fe3+ was added separately disappeared in both cases, which might be a result of competing processes between Fe3+ and other heavy metals. These findings are novel and improve the understanding of heavy metals ions effects on bacteria, and could be applied for regulation of stress response patterns in the environment.
Collapse
Affiliation(s)
- Zaruhi Vardanyan
- Department of Biophysics, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.
| | - Armen Trchounian
- Department of Microbiology, Plants and Microbes Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.
| |
Collapse
|
8
|
Poladyan A, Trchounian K, Sawers RG, Trchounian A. Hydrogen-oxidizing hydrogenases 1 and 2 ofEscherichia coliregulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiol Lett 2013; 348:143-8. [DOI: 10.1111/1574-6968.12281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anna Poladyan
- Department of Microbiology, Plants and Microbes Biotechnology; Faculty of Biology; Yerevan State University; Yerevan Armenia
| | - Karen Trchounian
- Department of Biophysics; Faculty of Biology; Yerevan State University; Yerevan Armenia
- Institute of Biology/Microbiology; Martin Luther University of Halle-Wittenberg; Halle Germany
| | - R. Gary Sawers
- Institute of Biology/Microbiology; Martin Luther University of Halle-Wittenberg; Halle Germany
| | - Armen Trchounian
- Department of Microbiology, Plants and Microbes Biotechnology; Faculty of Biology; Yerevan State University; Yerevan Armenia
| |
Collapse
|
9
|
The Effects of Manganese (II) But Not Nickel (II) Ions on Enterococcus hirae Cell Growth, Redox Potential Decrease, and Proton-Coupled Membrane Transport. Cell Biochem Biophys 2013; 67:1301-6. [DOI: 10.1007/s12013-013-9662-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ignatova M, Guével B, Com E, Haddad N, Rossero A, Bogard P, Prévost H, Guillou S. Two-dimensional fluorescence difference gel electrophoresis analysis of Listeria monocytogenes submitted to a redox shock. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Poladyan A, Avagyan A, Vassilian A, Trchounian A. Oxidative and Reductive Routes of Glycerol and Glucose Fermentation by Escherichia coli Batch Cultures and Their Regulation by Oxidizing and Reducing Reagents at Different pHs. Curr Microbiol 2012; 66:49-55. [DOI: 10.1007/s00284-012-0240-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
|
12
|
Oktyabrskii ON, Smirnova GV. Redox potential changes in bacterial cultures under stress conditions. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Vardanyan Z, Trchounian A. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity. Biochem Biophys Res Commun 2011; 417:541-5. [PMID: 22166211 DOI: 10.1016/j.bbrc.2011.11.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022]
Abstract
Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E(h)) from positive values to negative ones (down to ∼-200 mV). In this study, iron (III) ions (Fe(3+)) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe(2+)) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E(h) values during bacterial growth. It was revealed that ATPase activity with and without N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the F(0)F(1)-ATPase, increased in the presence of even low Fe(3+) concentration (0.05 mM) but decreased in the presence of Fe(2+). It was established that Fe(3+) and Fe(2+) both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe(2+) with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F(0)F(1)) MS116 strains but they were different with Fe(3+) and Fe(2+). It is suggested that the effects of Fe(3+) might be due to interaction of these ions with F(0)F(1) or there might be a Fe(3+)-dependent ATPase different from F(0)F(1) in these bacteria that is active even in the presence of DCCD. Fe(2+) inhibits E. hirae cell growth probably by strong effect on E(h) leading to changes in F(0)F(1) and decreasing its activity.
Collapse
Affiliation(s)
- Zaruhi Vardanyan
- Department of Biophysics of the Biology Faculty, Yerevan State University, Yerevan, Armenia
| | | |
Collapse
|
14
|
Torgomyan H, Trchounian A. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state. Biochem Biophys Res Commun 2011; 414:265-9. [PMID: 21951849 DOI: 10.1016/j.bbrc.2011.09.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm(-2)) had bactericidal effects on Escherichia coli. This EMI (1h) exposure suppressed the growth of E. coli K-12(λ). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.
Collapse
Affiliation(s)
- Heghine Torgomyan
- Department of Biophysics of Biology Faculty, Yerevan State University, Yerevan 0025, Armenia
| | | |
Collapse
|
15
|
Nguyen Thi Minh H, Durand A, Loison P, Perrier-Cornet JM, Gervais P. Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure. Appl Microbiol Biotechnol 2011; 90:1409-17. [DOI: 10.1007/s00253-011-3183-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
16
|
Low Intensity Electromagnetic Irradiation with 70.6 and 73 GHz Frequencies Affects Escherichia coli Growth and Changes Water Properties. Cell Biochem Biophys 2011; 60:275-81. [DOI: 10.1007/s12013-010-9150-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Soghomonyan D, Akopyan K, Trchounian A. pH and oxidation-reduction potential change of environment during growth of lactic acid bacteria: Effects of oxidizers and reducers. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811010157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Torgomyan H, Tadevosyan H, Trchounian A. Extremely High Frequency Electromagnetic Irradiation in Combination with Antibiotics Enhances Antibacterial Effects on Escherichia coli. Curr Microbiol 2010; 62:962-7. [DOI: 10.1007/s00284-010-9811-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
|
19
|
Vardanyan Z, Trchounian A. The effects of copper (II) ions on Enterococcus hirae cell growth and the proton-translocating FoF1 ATPase activity. Cell Biochem Biophys 2010; 57:19-26. [PMID: 20352375 DOI: 10.1007/s12013-010-9078-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enterococcus hirae grow well under anaerobic conditions at alkaline pH (pH 8.0) producing acids by glucose fermentation. Bacterial growth was shown to be accompanied by decrease of redox potential from positive values (approximately +35 mV) to negative ones (approximately -220 mV). An oxidizer copper (II) ions (Cu(2+)) affected bacterial growth in a concentration-dependent manner (within the range of 0.05 mM to 1 mM) increasing lag phase duration and decreasing specific growth rate. These effects were observed with the wild-type strain ATCC9790 and the atpD mutant strain MS116 (with absent beta subunit of F(1) of the F(o)F(1) ATPase) both. Also ATPase activity and proton-potassium ions exchange were assessed with and without N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of the F(o)F(1) ATPase. In both cases (DCCD +/-), even low Cu(2+) concentrations had noticeable effect on ATPase activity, but with less visible concentration-dependent manner. Changes in the number of accessible SH-groups were observed with E. hirae ATCC9790 and MS116 membrane vesicles. In both strains Cu(2+) markedly decreased the number of SH-groups in the presence of K(+) ions. The addition of ATP increased the amount of accessible SH-groups in ATCC9790 and decreased this number in MS116; Cu(2+) blocked ATP-installed increase in SH-groups number in ATCC9790. H(+)-K(+)-exchange of bacteria was markedly inhibited by Cu(2+), but stronger effects were detected together with DCCD. Moreover, discrimination between Cu(2+) and other bivalent cation--Ni(2+) was shown. It is suggested that Cu(2+) ions inhibit E. hirae cell growth by direct affect on the F(o)F(1) ATPase leading to conformational changes in this protein complex and decrease in its activity.
Collapse
Affiliation(s)
- Zaruhi Vardanyan
- Department of Biophysics of the Biological Faculty, Yerevan State University, 1 A. Manoukian Str, 0025, Yerevan, Armenia
| | | |
Collapse
|
20
|
Michelon D, Abraham S, Ebel B, De Coninck J, Husson F, Feron G, Gervais P, Cachon R. Contribution of exofacial thiol groups in the reducing activity of Lactococcus lactis. FEBS J 2010; 277:2282-90. [PMID: 20423456 DOI: 10.1111/j.1742-4658.2010.07644.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lactococcus lactis can decrease the redox potential at pH 7 (E(h7)) from 200 to -200 mV in oxygen free Man-Rogosa-Sharpe media. Neither the consumption of oxidizing compounds or the release of reducing compounds during lactic acid fermentation were involved in the decrease in E(h7) by the bacteria. Thiol groups located on the bacterial cell surface appear to be the main components that are able to establish a greater exchange current between the Pt electrode and the bacteria. After the final E(h7) (-200 mV) was reached, only thiol-reactive reagents could restore the initial E(h7) value. Inhibition of the proton motive force showed no effect on maintaining the final E(h7) value. These results suggest that maintaining the exofacial thiol (-SH) groups in a reduced state does not depend on an active mechanism. Thiol groups appear to be displayed by membrane proteins or cell wall-bound proteins and may participate in protecting cells against oxidative stress.
Collapse
Affiliation(s)
- D Michelon
- Laboratoire de Génie des Procédés Microbiologiques et Alimentaires, AgroSup Dijon, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ignatova M, Prévost H, Leguerinel I, Guillou S. Growth and reducing capacity of Listeria monocytogenes under different initial redox potential. J Appl Microbiol 2010; 108:256-65. [DOI: 10.1111/j.1365-2672.2009.04426.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Zhu B, Zhang X, Jia H, Li Y, Liu H, Tan W. A highly selective ratiometric fluorescent probe for 1,4-dithiothreitol (DTT) detection. Org Biomol Chem 2010; 8:1650-4. [DOI: 10.1039/b923754b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Santiago-Gómez MP, Thanh HT, De Coninck J, Cachon R, Kermasha S, Belin JM, Gervais P, Husson F. Modeling hexanal production in oxido-reducing conditions by the yeast Yarrowia lipolytica. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Copper (II) ions affect Escherichia coli membrane vesicles' SH-groups and a disulfide-dithiol interchange between membrane proteins. Cell Biochem Biophys 2008; 51:45-50. [PMID: 18458828 DOI: 10.1007/s12013-008-9014-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 04/21/2008] [Indexed: 11/27/2022]
Abstract
The SH-groups in Escherichia coli membrane vesicles, prepared from cells grown in fermentation conditions on glucose at slightly alkaline pH, have a role in the F0F1-ATPase operation. The changes in the number of these groups by ATP are observed under certain conditions. In this study, copper ions (Cu2+) in concentration of 0.1 mM were shown to increase the number of SH-groups in 1.5- to 1.6-fold independent from K+ ions, and the suppression of the increased level of SH-groups by ATP was determined for Cu2+ in the presence of K+. Moreover, the increase in the number of SH-groups by Cu2+ was absent as well as the inhibition in ATP-dependent increasing SH-groups number by Cu2+ lacked when vesicles were treated with N-ethylmaleimide (NEM), specific thiol-reagent. Such an effect was not observed with zinc (Zn2+), cobalt (Co2+), or Cu+ ions. The increased level of SH-groups was observed in the hycE or hyfR mutants with defects in hydrogenases 3 or 4, whereas the ATP-dependent increase in the number of these groups was determined in hycE not in hyfR mutants. Both changes in SH-groups number disappeared in the atp or hyc mutants deleted for the F0F1-ATPase or hydrogenase 3 (no activity of hydrogenase 4 was detected in the hyc mutant used). A direct effect of Cu2+ but not Cu+ on the F0F1-ATPase is suggested to lead to conformational changes or damaging consequences, increasing accessible SH-groups number and disturbing disulfide-dithiol interchange within a protein-protein complex, where this ATPase works with K+ uptake system or hydrogenase 4 (Hyd-4); breaks in disulfides are not ruled out.
Collapse
|
25
|
Stepanyan K, Balayan M, Vassilian A, Pepoyan A, Trchounian A. Some growth peculiarities and membrane characteristics of probiotic strains of Escherichia coli. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2007. [DOI: 10.1134/s1990747807040095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Pham TH, Mauvais G, Vergoignan C, De Coninck J, Cachon R, Feron G. Gaseous environments modify reserve carbohydrate contents and cell survival in the brewing yeast Saccharomyces cerevisiae. Biotechnol Lett 2007; 30:287-94. [PMID: 17882380 DOI: 10.1007/s10529-007-9533-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/27/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
The use of H(2), He and O(2) during batch fermentation of Saccharomyces cerevisiae BRAS291 increased the final intracellular glycogen contents of the cells from 2-fold to 10-fold compared with a gas-free condition, and this depended on the gas applied. Differently, the intracellular trehalose contents increased from 2-fold to 10-fold in reducing conditions compared with more oxidizing conditions. During storage at 4 degrees C, the viability of cells cultivated with gas was twice that of cells cultivated without gas. These results could be explained by the intracellular carbohydrate contents as well as yeast ultrastructural modifications observed previously.
Collapse
Affiliation(s)
- Thu-Ha Pham
- Laboratoire de Génie des Procédés Microbiologiques et Alimentaires, UMR INRA/UB 1232, INRA, Dijon, France
| | | | | | | | | | | |
Collapse
|
27
|
Kirakosyan G, Trchounian A. Redox sensing by Escherichia coli: Effects of copper ions as oxidizers on proton-coupled membrane transport. Bioelectrochemistry 2007; 70:58-63. [PMID: 16713752 DOI: 10.1016/j.bioelechem.2006.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Indexed: 11/19/2022]
Abstract
Escherichia coli is able to grow under anaerobic fermentation conditions upon a decrease in redox potential (E(h)). Indeed, upon a transition of E. coli MC4100 wild-type culture to stationary growth phase a decrease in E(h) from the positive values ( approximately +100 mV) to the negative ones ( approximately -520 mV) was observed, the acidification of the medium and the H(2) production were obtained. An oxidizer, copper ions (Cu(2+)) affected a bacterial growth in a concentration-dependent manner (of 0.1 mM to 10 mM) increasing latent (lag) growth phase duration, delaying logarithmic (log) growth phase and decreasing specific growth rate. Acidification of the medium and the N,N'-dicyclohexylcarbodiimide (DCCD)- and azide-sensitive proton-potassium exchange by bacteria were inhibited, H(2) production upon growth and under assays disappeared with Cu(2+) (0.1 mM). These effects were observed with hycE but not hyfR and hyc(A-H) mutants and under aerobic conditions. Cu(2+) also increased membrane proton conductance. Copper ions are suggested to affect directly the F(0)F(1)-ATPase associated with potassium uptake transport system and/or formate hydrogenlyase composed with hydrogenase 4. A role of the F(0)F(1)-ATPase in redox sensing under fermentation is proposed.
Collapse
Affiliation(s)
- Gayane Kirakosyan
- Department of Biophysics, Biological Faculty, Yerevan State University, 1 Alex Manoukian Str., 375025 Yerevan, Armenia
| | | |
Collapse
|
28
|
Poladyan A, Kirakosyan G, Trchounian A. Growth and proton-potassium exchange in the bacterium Enterococcus hirae: the effect of protonophore and the role of redox potential. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906030171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Zigha A, Rosenfeld E, Schmitt P, Duport C. Anaerobic cells of Bacillus cereus F4430/73 respond to low oxidoreduction potential by metabolic readjustments and activation of enterotoxin expression. Arch Microbiol 2006; 185:222-33. [PMID: 16470372 DOI: 10.1007/s00203-006-0090-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 10/25/2022]
Abstract
In the present study, a food-borne pathogen strain of Bacillus cereus (F4430/73) was anaerobically grown in controlled-batch conditions under low initial oxidoreduction potential (ORP=-148 mV) using hydrogen gas as reducing agent. Its physiological characteristics, including growth, glucose fermentation capacity and enterotoxin production, were compared with anaerobic conditions generated by nitrogen gas (ORP=+ 45 mV). The results showed that low ORP affected growth mainly during the early stages. Maximal specific rates of growth and glucose consumption were reduced, and drastic changes in time profiles of fermentation product concentration were observed. Production of lactate was promoted at the expense of acetate. Nevertheless, low ORP did not affect final biomass yield. Under both ORP conditions, Non-haemolytic enterotoxin (Nhe) was produced early during the exponential growth phase as a first enterotoxin and Haemolysin BL (Hbl) later during the early stationary growth phase as a second enterotoxin. The major effect of low ORP was the strong stimulation of Hbl production and, to a lesser extent, Nhe production. This control was complex, involving different levels of regulation. We discussed the regulation of enterotoxin expression and the involvement of the pleiotropic regulator PlcR.
Collapse
Affiliation(s)
- A Zigha
- UMR A 408 Université d'Avignon et des Pays de Vaucluse & INRA, Domaine Saint Paul, 84914 Avignon cedex, France
| | | | | | | |
Collapse
|