1
|
Kunii K, Yamanaka T, Miyamoto A, Nanatani K, Abe K. Thermostability optimization of the aspartate/alanine exchange transporter from Tetragenococcus halophilus. J Biochem 2024; 175:439-446. [PMID: 38616642 DOI: 10.1093/jb/mvad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Aspartate/alanine exchange transporter (AspT) is a secondary transporter isolated from the lactic acid bacterium Tetragenococcus halophilus D10 strain. This transporter cooperates with aspartate decarboxylase to produce proton-motive force through decarboxylative phosphorylation. A method that successfully analyzes the AspT mechanism could serve as a prototype for elucidating the substrate transport mechanism of other exchange transporters; therefore, the purpose of this study was to search for conditions that improve the thermal stability of AspT for 3D structure analysis. We used the fluorescence size-exclusion chromatography-based thermostability assay to evaluate conditions that contribute to AspT stability. We found that the AspT thermostability was enhanced at pH 5.0 to 6.0 and in the presence of Na+ and Li+. Pyridoxal phosphate, a coenzyme of aspartate decarboxylase, also had a thermostabilizing effect on AspT. Under the conditions obtained from these results, it was possible to increase the temperature at which 50% of dimer AspT remained by 14°C. We expect these conditions to provide useful information for future structural analysis of AspT.
Collapse
Affiliation(s)
- Kota Kunii
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Takashi Yamanaka
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Akari Miyamoto
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Kei Nanatani
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
- Structural Biology Group, Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
- Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, 6-6-10, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
2
|
Conformational transition induced in the aspartate:alanine antiporter by L-Ala binding. Sci Rep 2022; 12:15871. [PMID: 36151227 PMCID: PMC9508256 DOI: 10.1038/s41598-022-19974-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
An aspartate:alanine antiporter (AspT) from the lactic acid bacterium Tetragenococcus halophilus catalyzes the electrogenic aspartate<sup>1-</sup>:alanine<sup>0</sup> exchange reaction. Our previous kinetic analyses of transport reactions mediated by AspT in reconstituted liposomes suggested that, although the substrate transport reactions are physiologically coupled, the putative binding sites of L-aspartate (-Asp) and L-alanine (-Ala) are independently located on AspT. By using the fluorescent probe Oregon Green maleimide (OGM), which reacts specifically with cysteine, we also found that the presence of L-Asp changes the conformation of AspT. In this study, we conducted an OGM labeling assay in the presence of L-Ala. The labeling efficiency of single cysteine mutants (G62C and P79C) in transmembrane helix 3 of the AspT showed novel patterns depending on the presence of L-Ala or analogs. A concentration-dependent shift of AspT from the conformation in the presence of one substrate to that specific to the substrate added subsequently (L-Ala or L-Asp) was observed. Moreover, size-exclusion-chromatography-based thermostability assays indicated that the thermal stability of AspT in the presence of L-Ala differed from that in the presence of L-Asp. From these results, we concluded that L-Ala binding yields a conformation different from the apo or L-Asp binding conformations.
Collapse
|
3
|
Jangir MM, Vani B, Chowdhury S. Analysis of seven putative Na +/H + antiporters of Arthrospira platensis NIES-39 using transcription profiling and in silico studies: an indication towards alkaline pH acclimation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1175-1183. [PMID: 31564780 PMCID: PMC6745590 DOI: 10.1007/s12298-019-00687-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/26/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Na+/H+ antiporters mediated pH regulation is one of the known mechanism(s), which advocates a possible role of the antiporters in the alkaline pH tolerance of Arthrospira platensis NIES-39. Seven putative Na+/H+ antiporters have been reported in A. platensis NIES-39. Based upon the in silico analysis, the seven putative antiporters were characterized into two different superfamilies, where A1, Q2, L2, and L6 belonged to the CPA1 family whereas C5, D5 and O6 belonged to CPA2 family. The orientation of functionally important residues in both CPA1 and CPA2 subfamily are conserved in modeled Q2 and C5 antiporters. Conserved domain analysis of the seven putative antiporters indicated the presence of nine different kinds of domains. Out of these nine domains, six domains function as monovalent cation-proton antiporters and two as the universal stress protein (Usp) category. Transcription profile of these seven antiporters was also generated at three different pH (7, 9 and 11) and time frames which showed a significant difference in the mRNA levels along with a temporal pattern of the expression profile. The in silico and the real-time PCR analysis put together, suggest the active participation of these seven putative Na+/H+ antiporters in alkaline pH homeostasis of this cyanobacterial strain where CPA1 subfamily antiporters play a major role.
Collapse
Affiliation(s)
- Monika M. Jangir
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 India
| | - B. Vani
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 India
| |
Collapse
|
4
|
Holmes RS, Spradling-Reeves KD, Cox LA. Evolution of Vertebrate Solute Carrier Family 9B Genes and Proteins ( SLC9B): Evidence for a Marsupial Origin for Testis Specific SLC9B1 from an Ancestral Vertebrate SLC9B2 Gene. ACTA ACUST UNITED AC 2016; 4. [PMID: 28868326 DOI: 10.4172/2329-9002.1000167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SLC9B genes and proteins are members of the sodium/lithium hydrogen antiporter family which function as solute exchangers within cellular membranes of mammalian tissues. SLC9B2 and SLC9B1 amino acid sequences and structures and SLC9B-like gene locations were examined using bioinformatic data from several vertebrate genome projects. Vertebrate SLC9B2 sequences shared 56-98% identity as compared with ∼50% identities with mammalian SLC9B1 sequences. Sequence alignments, key amino acid residues and conserved predicted transmembrane structures were also studied. Mammalian SLC9B2 and SLC9B1 genes usually contained 11 or 12 coding exons with differential tissue expression patterns: SLC9B2, broad tissue distribution; and SLC9B1, being testis specific. Transcription factor binding sites and CpG islands within the human SLC9B2 and SLC9B1 gene promoters were identified. Phylogenetic analyses suggested that SLC9B1 originated in an ancestral marsupial genome from a SLC9B2 gene duplication event.
Collapse
Affiliation(s)
- Roger S Holmes
- Eskitis Institute for Drug Discovery and School of Natural Sciences, Griffith University, Nathan, QLD, Australia.,Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Kimberly D Spradling-Reeves
- Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Laura A Cox
- Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
5
|
A cell-free translocation system using extracts of cultured insect cells to yield functional membrane proteins. PLoS One 2014; 9:e112874. [PMID: 25486605 PMCID: PMC4259328 DOI: 10.1371/journal.pone.0112874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/17/2014] [Indexed: 11/24/2022] Open
Abstract
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.
Collapse
|
6
|
Sasahara A, Nanatani K, Enomoto M, Kuwahara S, Abe K. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes. J Biol Chem 2011; 286:29044-29052. [PMID: 21719707 DOI: 10.1074/jbc.m111.260224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.
Collapse
Affiliation(s)
- Ayako Sasahara
- Department of Microbial Biotechnology, Laboratory of Applied Microbiology, Sendai 981-8555, Japan
| | - Kei Nanatani
- Department of Biomolecular Engineering, Laboratory of Applied Biophysical Chemistry, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, and
| | - Masaru Enomoto
- Department of Applied Bioorganic Chemistry, Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Shigefumi Kuwahara
- Department of Applied Bioorganic Chemistry, Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Keietsu Abe
- Department of Microbial Biotechnology, Laboratory of Applied Microbiology, Sendai 981-8555, Japan; Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Xie H, Guo XM, Chen H. Making the most of fusion tags technology in structural characterization of membrane proteins. Mol Biotechnol 2009; 42:135-45. [PMID: 19199085 DOI: 10.1007/s12033-009-9148-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/19/2009] [Indexed: 11/24/2022]
Abstract
Membrane proteins can be investigated at various structural levels, including the topological structure, the high-resolution three-dimensional structure, and the organization and assembly of membrane protein complexes. Gene fusion technology makes it possible to insert a polynucleotide encoding a protein or polypeptide tag into the gene encoding a membrane protein of interest. Resultant recombinant proteins may possess the functions of the original membrane proteins, together with the biochemical properties of the imported fusion tag, greatly enhancing functional and structural studies of membrane proteins. In this article, the latest literature is reviewed in relation to types, applications, strategies, and approaches to fusion tag technology for structural investigations of membrane proteins.
Collapse
Affiliation(s)
- Hao Xie
- Department of Biological Science and Biotechnology, Institute of Science, Wuhan University of Technology, People's Republic of China.
| | | | | |
Collapse
|
8
|
Structural and functional importance of transmembrane domain 3 (TM3) in the aspartate:alanine antiporter AspT: topology and function of the residues of TM3 and oligomerization of AspT. J Bacteriol 2009; 191:2122-32. [PMID: 19181816 DOI: 10.1128/jb.00830-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a functional unit.
Collapse
|
9
|
Nanatani K, Fujiki T, Kanou K, Takeda-Shitaka M, Umeyama H, Ye L, Wang X, Nakajima T, Uchida T, Maloney PC, Abe K. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling. J Bacteriol 2007; 189:7089-97. [PMID: 17660287 PMCID: PMC2045216 DOI: 10.1128/jb.00088-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.
Collapse
Affiliation(s)
- Kei Nanatani
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fujiki T, Nanatani K, Nishitani K, Yagi K, Ohnishi F, Yoneyama H, Uchida T, Nakajima T, Abea K. Membrane topology of aspartate:alanine antiporter AspT from Comamonas testosteroni. J Biochem 2006; 141:85-91. [PMID: 17158863 DOI: 10.1093/jb/mvm010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We cloned the aspT gene encoding the L-aspartate:L-alanine antiporter AspTCt in Comamonas testosteroni genomic DNA. Analysis of the nucleotide sequence revealed that C. testosteroni has an asp operon containing aspT upstream of the l-aspartate 4-decarboxylase gene, and that the gene order of the asp operon of C. testosteroni is the inverse of that of Tetragenococcus halophilus. We used proteoliposomes to confirm the transport processes of AspTCt. To elucidate the two-dimensional structure of AspTCt, we analysed its membrane topology by means of alkaline phosphatase (PhoA) and beta-lactamase (BlaM) fusion methods. The fusion analyses revealed that AspTCt has seven transmembrane segments (TMs), a large cytoplasmic loop containing approximately 200 amino acid residues between TM4 and TM5, a cytoplasmic N-terminus, and a periplasmic C-terminus. These results suggest that the orientation of the N-terminus of AspTCt differs from that of tetragenococcal AspT, even though these two AspT orthologues catalyse the same transport reactions.
Collapse
Affiliation(s)
- Takashi Fujiki
- Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|