1
|
Wen Y, Shi H, Wu Z, Xiao H, Wang H, Chen L. GR/Sp3/HDAC1/UGDH signaling participated in the maternal dexamethasone-induced dysplasia of the rat fetal growth plate. FASEB J 2020; 34:12834-12846. [PMID: 32767431 DOI: 10.1096/fj.202000106r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/03/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Maternal dexamethasone decreases the body length of the newborn. However, whether dexamethasone inhibits the development of the growth plate of the fetal long bone is still unknown. Here, we found that lengths of fetal femur and growth plate were both shorter in the fetuses with maternal dexamethasone (0.2 mg/kg.d from gestation day 9 to 20), with a decreased proteoglycan content of the growth plate in the fetal rat. Notable decreases in both the gene expression and H3K9 acetylation of UDP-glucose dehydrogenase (Ugdh) gene, which codes a key enzyme in the proteoglycan biosynthesis in the chondrocyte, were also observed. Meanwhile, up-regulation of glucocorticoid receptor (GR), specific protein 3 (Sp3), and histone deacetylase 1 (Hdac1) gene expression were detected in the fetal growth plate. Similar changes were also observed in the chondrogenic rat bone marrow stromal cells (BMSCs) with excessive exogenous dexamethasone. However, antagonizing GR with RU486 and silencing Hdac1 or Sp3 with specific siRNAs could all stimulate the H3K9 acetylation and gene expression of Ugdh previously inhibited by dexamethasone. Meanwhile, dexamethasone also induced the nuclear translocation of GR, which further directly bound to the Ugdh promoter and interacted with HDAC1 and Sp3, respectively. Collectively, our study revealed that maternal dexamethasone induced the direct binding of GR to the Ugdh promoter of the chondrocyte in the rat fetal growth plate, which recruited HDAC1 and Sp3, induced deacetylation of the H3K9, and subsequently inhibited Ugdh gene expression. Such changes further led to attenuated proteoglycan synthesis in the developing chondrocyte and therefore disrupted the development of growth plate and fetal long bone.
Collapse
Affiliation(s)
- Yinxian Wen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Huasong Shi
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhixin Wu
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Xiao
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Liaobin Chen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
2
|
Zimmer BM, Barycki JJ, Simpson MA. Integration of Sugar Metabolism and Proteoglycan Synthesis by UDP-glucose Dehydrogenase. J Histochem Cytochem 2020; 69:13-23. [PMID: 32749901 DOI: 10.1369/0022155420947500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels. Here, we review the cellular mechanisms that regulate UGDH expression, discuss the structural features of the enzyme, and use the structures to provide a context for recent studies that link post-translational modifications and allosteric modulators of UGDH to its function in downstream pathways.
Collapse
Affiliation(s)
- Brenna M Zimmer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Joseph J Barycki
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
3
|
Srivastava A, Mishra RK. Interactome of vertebrate GAF/ThPOK reveals its diverse functions in gene regulation and DNA repair. J Biosci 2020. [DOI: 10.1007/s12038-020-0014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Srivastava A, Kumar AS, Mishra RK. Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation. Cell Mol Life Sci 2018; 75:623-633. [PMID: 28856379 PMCID: PMC11105447 DOI: 10.1007/s00018-017-2633-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
GAGA factor of Drosophila melanogaster (DmGAF) is a multifaceted transcription factor with diverse roles in chromatin regulation. Recently, ThPOK/c-Krox was identified as its vertebrate homologue (vGAF), which has a basic domain structure similar to DmGAF and is decorated with a number of post-translationally modified residues. In vertebrate genomes, vGAF associates with purine-rich GAGA sequences and performs diverse chromatin-mediated functions, viz., gene activation, repression and enhancer blocking. Expansion of regulatory chromatin proteins with the acquisition of PTMs appears to be the general trend that facilitated the evolution of complexity in vertebrates. Here, we compare the structural and functional features of vGAF with those of DmGAF and also assess the possible functional redundancy among paralogues of vGAF. We also discuss the underlying mechanisms which aid in the diverse and context-dependent functions of this protein.
Collapse
Affiliation(s)
- Avinash Srivastava
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Amitha Sampath Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
5
|
Wen Y, Li J, Wang L, Tie K, Magdalou J, Chen L, Wang H. UDP-glucose dehydrogenase modulates proteoglycan synthesis in articular chondrocytes: its possible involvement and regulation in osteoarthritis. Arthritis Res Ther 2014; 16:484. [PMID: 25465897 PMCID: PMC4298080 DOI: 10.1186/s13075-014-0484-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022] Open
Abstract
Introduction The objective of this study was to investigate the possible role of UDP-glucose dehydrogenase (UGDH) in osteoarthritis (OA) and uncover whether, furthermore how interleukin-1beta (IL-1β) affects UGDH gene expression. Methods UGDH specific siRNAs were applied to determine the role of UGDH in proteoglycan (PG) synthesis in human articular chondrocytes. Protein levels of UGDH and Sp1 in human and rat OA cartilage were detected. Then, human primary chondrocytes were treated with IL-1β to find out whether and how IL-1β could regulate the gene expression of UGDH and its trans-regulators, that is Sp1, Sp3 and c-Krox. Finally, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) inhibitor SP600125 were used to pick out the pathway that mediated the IL-1β-modulated PGs synthesis and gene expression of UGDH, Sp1, Sp3 and c-Krox. Results UGDH specific siRNAs markedly inhibited UGDH mRNA and protein expression, and thus led to an obvious suppression of PGs synthesis in human articular chondrocytes. UGDH protein level in human and rat OA cartilage were much lower than the corresponding controls and negatively correlated to the degree of OA. Decrease in Sp1 protein level was also observed in human and rat OA cartilage respectively. Meanwhile, IL-1β suppressed UGDH gene expression in human articular chondrocytes in the late phase, which also modulated gene expression of Sp1, Sp3 and c-Krox and increased both Sp3/Sp1 and c-Krox/Sp1 ratio. Moreover, the inhibition of SAP/JNK and p38 MAPK pathways both resulted in an obvious attenuation of the IL-1β-induced suppression on the UGDH gene expression. Conclusions UGDH is essential in the PGs synthesis of articular chondrocytes, while the suppressed expression of UGDH might probably be involved in advanced OA, partly due to the modulation of p38 MAPK and SAP/JNK pathways and its trans-regulators by IL-1β. Electronic supplementary material The online version of this article (doi:10.1186/s13075-014-0484-2) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Legendre F, Ollitrault D, Hervieu M, Baugé C, Maneix L, Goux D, Chajra H, Mallein-Gerin F, Boumediene K, Galera P, Demoor M. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods 2013; 19:550-67. [PMID: 23270543 DOI: 10.1089/ten.tec.2012.0508] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.
Collapse
Affiliation(s)
- Florence Legendre
- Laboratoire Microenvironnement Cellulaire et Pathologies, MILPAT, EA 4652, SFR ICORE 146, Université de Caen Basse-Normandie, UFR de Médecine, Caen, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kenth G, Puzhko S, Goodyer CG. Human growth hormone receptor gene expression is regulated by Gfi-1/1b and GAGA cis-elements. Mol Cell Endocrinol 2011; 335:135-47. [PMID: 21238539 DOI: 10.1016/j.mce.2011.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/15/2022]
Abstract
Human growth hormone receptor (hGHR) gene regulation is complex: mRNAs are transcribed from multiple variant (V) 5'UTR exons, several ubiquitously while others only in the postnatal hepatocyte. The liver-specific V1 exon promoter contains Gfi-1/1b repressor sites adjacent to a GAGA box, a GH response element (GHRE) in several mammalian genes. GAGA boxes are also present in the ubiquitously expressing V3 exon promoter. Heterologous sites in bovine, ovine and murine GHR genes suggest conserved roles. GAGA factor stimulated V1 and V3 promoters while Gfi-1/1b repressed basal and GAF-stimulated V1 transcription. HGH treatment of HepG2 cells resulted in a new complex forming with V3 GAGA elements, suggesting a functional GHRE. Data suggest liver-specific V1 transcription is regulated by inhibitory Gfi-1/1b and stimulatory GAGA cis-elements and Gfi-1/1b may control the lack of V1 expression in fetal liver, hepatic tumours and non-hepatic tissues. In addition, hGH may regulate hGHR expression through V3 GAGA boxes.
Collapse
Affiliation(s)
- Gurvinder Kenth
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
8
|
Clarkin CE, Allen S, Kuiper NJ, Wheeler BT, Wheeler-Jones CP, Pitsillides AA. Regulation of UDP-glucose dehydrogenase is sufficient to modulate hyaluronan production and release, control sulfated GAG synthesis, and promote chondrogenesis. J Cell Physiol 2011; 226:749-61. [PMID: 20717929 DOI: 10.1002/jcp.22393] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycosaminoglycans (GAGs) are critical for extracellular matrix (ECM) integrity in cartilage but mechanisms regulating their synthesis are not defined. UDP-glucose dehydrogenase (UGDH) catalyses UDP-glucose oxidation to UDP-glucuronic acid, an essential monosaccharide in many GAGs. Our previous studies in articular surface (AS) cells from embryonic joints have established pivotal roles for mitogen-activated protein kinases (MAPK) in synthesis of the unsulfated GAG, hyaluronan (HA). We investigated the functional significance of UGDH in GAG production and chondrogenesis, and determined roles for MEK-ERK and p38MAPK pathways in regulating UGDH expression and function. Inhibitors of MEK and p38MAPK reduced UGDH protein in AS cells. Treatment with TGF-β (archetypal growth factor) increased UGDH expression, sulfated (s)-GAG/HA release and pericellular matrix formation in a p38MAPK-dependent manner. Retroviral overexpression of UGDH augmented HA/sGAG release and pericellular matrix elaboration, which were blocked by inhibiting MEK but not p38MAPK. UGDH overexpression increased cartilage nodule size in bone marrow culture, promoted chondrogenesis in limb bud micromass culture and selectively suppressed medium HA levels and modified GAG sulfation, as assessed by FACE analysis. Our data provide evidence that: (i) TGF-β regulates UGDH expression via p38MAPK to modulate sGAG/HA secretion, (ii) MEK-ERK, but not p38MAPK facilitates UGDH-induced HA and sGAG release, and (iii) increased UGDH expression promotes chondrogenesis directly and differential modifies GAG levels and sulfation. These results indicate a more diverse role for UGDH in the support of selective GAG production than previously described. Factors regulating UGDH may provide novel candidates for restoring ECM integrity in degenerative cartilage diseases, such as osteoarthritis.Arthritis Research Campaign.
Collapse
Affiliation(s)
- Claire E Clarkin
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, London, UK
| | | | | | | | | | | |
Collapse
|
9
|
Hautier A, Salentey V, Aubert-Foucher E, Bougault C, Beauchef G, Ronzière MC, De Sobarnitsky S, Paumier A, Galéra P, Piperno M, Damour O, Mallein-Gerin F. Bone morphogenetic protein-2 stimulates chondrogenic expression in human nasal chondrocytes expanded in vitro. Growth Factors 2008; 26:201-11. [PMID: 18720162 DOI: 10.1080/08977190802242488] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Articular cartilage contains an extracellular matrix with characteristic macromolecules such as type II collagen. Because this tissue is avascular and mature chondrocytes do not proliferate, cartilage lesions have a limited capacity for healing after trauma. Autologous chondrocyte implantation (ACI) is widely used for the treatment of patients with focal damage to articular cartilage. However, this method faces a major issue: dedifferentiation of chondrocytes occurs during the long-term culture necessary for mass cell production. The aim of this study was to determine if the step of cell amplification required for ACI could benefit from the use of bone morphogenetic protein (BMP)-2, a potent regulator of chondrogenic expression. Chondrocytes were isolated from human nasal cartilage, a hyaline cartilage like articular cartilage and were serially cultured in monolayers. After one, two or three passages, BMP-2 was used to evaluate the chondrogenic potential of the dedifferentiated chondrocytes, at the gene and protein level. We found that BMP-2 can reactivate the program of chondrogenic expression in dedifferentiated chondrocytes. To gain insight into the molecular mechanisms involved in the responsiveness of chondrocytes to BMP-2, we examined the phosphorylation of Smad proteins and the interaction of the Sry-type high-mobility-group box (Sox) transcription factors with the cartilage-specific enhancer of the type II procollagen gene. Our results show that BMP-2 acts by stimulating Smad phosphorylation and by enhancing DNA-binding of the Sox transcription factors to the specific enhancer of the type II procollagen gene. Thus, this study reveals the potential use of BMP-2 as a stimulatory agent in conventional ACI strategies.
Collapse
|
10
|
Hu Z, Hu B, Collins JF. Prediction of synergistic transcription factors by function conservation. Genome Biol 2008; 8:R257. [PMID: 18053230 PMCID: PMC2246259 DOI: 10.1186/gb-2007-8-12-r257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/19/2007] [Accepted: 12/05/2007] [Indexed: 11/30/2022] Open
Abstract
A new strategy is proposed for identifying synergistic transcription factors by function conservation, leading to the identification of 51 homotypic transcription-factor combinations. Background Previous methods employed for the identification of synergistic transcription factors (TFs) are based on either TF enrichment from co-regulated genes or phylogenetic footprinting. Despite the success of these methods, both have limitations. Results We propose a new strategy to identify synergistic TFs by function conservation. Rather than aligning the regulatory sequences from orthologous genes and then identifying conserved TF binding sites (TFBSs) in the alignment, we developed computational approaches to implement the novel strategy. These methods include combinatorial TFBS enrichment utilizing distance constraints followed by enrichment of overlapping orthologous genes from human and mouse, whose regulatory sequences contain the enriched TFBS combinations. Subsequently, integration of function conservation from both TFBS and overlapping orthologous genes was achieved by correlation analyses. These techniques have been used for genome-wide promoter analyses, which have led to the identification of 51 homotypic TF combinations; the validity of these approaches has been exemplified by both known TF-TF interactions and function coherence analyses. We further provide computational evidence that our novel methods were able to identify synergistic TFs to a much greater extent than phylogenetic footprinting. Conclusion Function conservation based on the concordance of combinatorial TFBS enrichment along with enrichment of overlapping orthologous genes has been proven to be a successful means for the identification of synergistic TFs. This approach avoids the limitations of phylogenetic footprinting as it does not depend upon sequence alignment. It utilizes existing gene annotation data, such as those available in GO, thus providing an alternative method for functional TF discovery and annotation.
Collapse
Affiliation(s)
- Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Biostatistics, Department of Medicine, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
11
|
Porée B, Kypriotou M, Chadjichristos C, Beauchef G, Renard E, Legendre F, Melin M, Gueret S, Hartmann DJ, Malléin-Gerin F, Pujol JP, Boumediene K, Galéra P. Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J Biol Chem 2007; 283:4850-65. [PMID: 18065760 DOI: 10.1074/jbc.m706387200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type II collagen is composed of alpha1(II) chains encoded by the COL2A1 gene. Alteration of this cartilage marker is a common feature of osteoarthritis. Interleukin-6 (IL-6) is a pro-inflammatory cytokine that needs a soluble form of receptor called sIL-6R to exert its effects in some cellular models. In that case, sIL-6R exerts agonistic action. This mechanism can make up for the partial or total absence of membrane-anchored IL-6 receptors in some cell types, such as chondrocytes. Our study shows that IL-6, sIL-6R, or both inhibit type II collagen production by rabbit articular chondrocytes through a transcriptional control. The cytokine and/or sIL-6R repress COL2A1 transcription by a -63/-35 sequence that binds Sp1.Sp3. Indeed, IL-6 and/or sIL-6R inhibit Sp1 and Sp3 expression and their binding activity to the 63-bp promoter. In chromatin immunoprecipitation experiments, IL-6.sIL-6R induced an increase in Sp3 recruitment to the detriment of Sp1. Knockdown of Sp1.Sp3 by small interference RNA and decoy strategies were found to prevent the IL-6- and/or sIL-6R-induced inhibition of COL2A1 transcription, indicating that each of these Sp proteins is required for down-regulation of the target gene and that a heterotypic Sp1.Sp3 complex is involved. Additionally, Sp1 was shown to interact with Sp3 and HDAC1. Indeed, overexpression of a full-length Sp3 cDNA blocked the Sp1 up-regulation of the 63-bp COL2A1 promoter activity, and by itself, inhibits COL2A1 transcription. We can conclude that IL-6, sIL-6R, or both in combination decrease both the Sp1.Sp3 ratio and DNA-binding activities, thus inhibiting COL2A1 transcription.
Collapse
Affiliation(s)
- Benoît Porée
- Laboratoire de Biochimie du Tissu Conjonctif, Université de Caen/Basse-Normandie, IFR ICORE 146, Faculté de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kypriotou M, Beauchef G, Chadjichristos C, Widom R, Renard E, Jimenez SA, Korn J, Maquart FX, Oddos T, Von Stetten O, Pujol JP, Galéra P. Human Collagen Krox Up-regulates Type I Collagen Expression in Normal and Scleroderma Fibroblasts through Interaction with Sp1 and Sp3 Transcription Factors. J Biol Chem 2007; 282:32000-14. [PMID: 17698844 DOI: 10.1074/jbc.m705197200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite several investigations, the transcriptional mechanisms that regulate the expression of both type I collagen genes (COL1A1 and COL1A2) in either physiological or pathological situations, such as scleroderma, are not completely known. We have investigated the role of hc-Krox transcription factor on type I collagen expression by human dermal fibroblasts. hc-Krox exerted a stimulating effect on type I collagen protein synthesis and enhanced the corresponding mRNA steady-state levels of COL1A1 and COL1A2 in foreskin fibroblasts (FF), adult normal fibroblasts (ANF), and scleroderma fibroblasts (SF). Forced hc-Krox expression was found to up-regulate COL1A1 transcription through a -112/-61-bp sequence in FF, ANF, and SF. Knockdown of hc-Krox by short interfering RNA and decoy strategies confirmed the transactivating effect of hc-Krox and decreased substantially COL1A1 transcription levels in all fibro-blast types. The -112/-61-bp sequence bound specifically hc-Krox but also Sp1 and CBF. Attempts to elucidate the potential interactions between hc-Krox, Sp1, and Sp3 revealed that all of them co-immunoprecipitate from FF cellular extracts when a c-Krox antibody was used and bind to the COL1A1 promoter in chromatin immunoprecipitation assays. Moreover, hc-Krox DNA binding activity to its COL1A1-responsive element is increased in SF, cells producing higher amounts of type I collagen compared with ANF and FF. These data suggest that the regulation of COL1A1 gene transcription in human dermal fibroblasts involves a complex machinery that implicates at least three transcription proteins, hc-Krox, Sp1, and Sp3, which could act in concert to up-regulate COL1A1 transcriptional activity and provide evidence for a pro-fibrotic role of hc-Krox.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratoire de Biochimie du Tissu Conjonctif, Université de Caen/Basse-Normandie, IFR ICORE 146, FacultédeMédecine, CHU Niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Badariotti F, Kypriotou M, Lelong C, Dubos MP, Renard E, Galera P, Favrel P. The phylogenetically conserved molluscan chitinase-like protein 1 (Cg-Clp1), homologue of human HC-gp39, stimulates proliferation and regulates synthesis of extracellular matrix components of mammalian chondrocytes. J Biol Chem 2006; 281:29583-96. [PMID: 16882657 DOI: 10.1074/jbc.m605687200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of chitinase-like proteins (CLPs) have attracted much attention because of their ability to promote cell proliferation in insects (imaginal disc growth factors) and mammals (YKL-40). To gain insights into the molecular processes underlying the physiological control of growth and development in Lophotrochozoa, we report here the cloning and biochemical characterization of the first Lophotrochozoan CLP from the oyster Crassostrea gigas (Cg-Clp1). Gene expression profiles monitored by real time quantitative reverse transcription-PCR in different adult tissues and during development support the involvement of this protein in the control of growth and development in C. gigas. Recombinant Cg-Clp1 demonstrates a strong affinity for chitin but no chitinolytic activity, as was described for the HC-gp39 mammalian homolog. Furthermore, transient expression of Cg-Clp1 in primary cultures of rabbit articular chondrocytes as well as the use of both purified recombinant protein and conditioned medium from Cg-Clp1-expressing rabbit articular chondrocytes established that Cg-Clp1 stimulates cell proliferation and regulates extracellular matrix component synthesis, showing for the first time a possible involvement of a CLP on type II collagen synthesis regulation. These observations together with the fact that Cg-Clp1 gene organization strongly resembles that of its mammalian homologues argue for an early evolutionary origin and a high conservation of this class of proteins at both the structural and functional levels.
Collapse
Affiliation(s)
- Fabien Badariotti
- Institut de Biologie Fondamentale et Appliquée, UMR 100 Institut Français de Recherche pour l'Exploitation de la Mer-Université de Caen, Physiologie et Ecophysiologie des Mollusques Marins, 14032 Caen Cedex, France
| | | | | | | | | | | | | |
Collapse
|