1
|
Solé A, Ciudad CJ, Chasin LA, Noé V. Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells. Biochem Pharmacol 2016; 110-111:16-24. [PMID: 27063945 DOI: 10.1016/j.bcp.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Correction of point mutations that lead to aberrant transcripts, often with pathological consequences, has been the focus of considerable research. In this work, repair-PPRHs are shown to be a new powerful tool for gene correction. A repair-PPRH consists of a PolyPurine Reverse Hoogsteen hairpin core bearing an extension sequence at one end, homologous to the DNA strand to be repaired but containing the wild type nucleotide instead of the mutation. Previously, we had corrected a single-point mutation with repair-PPRHs using a mutated version of a dihydrofolate reductase (dhfr) minigene. To further evaluate the utility of these molecules, different repair-PPRHs were designed to correct insertions, deletions, substitutions and a double substitution present in a collection of mutants at the endogenous locus of the dhfr gene, the product of which is the target of the chemotherapeutic agent methotrexate. We also describe an approach to use when the point mutation is far away from the homopyrimidine target domain. This strategy consists in designing Long-Distance- and Short-Distance-Repair-PPRHs where the PPRH core is bound to the repair tail by a five-thymidine linker. Surviving colonies in a DHFR selective medium, lacking glycine and sources of purines and thymidine, were analyzed by DNA sequencing, and by mRNA, protein and enzymatic measurements, confirming that all the dhfr mutants had been corrected. These results show that repair-PPRHs can be effective tools to accomplish a permanent correction of point mutations in the DNA sequence of mutant mammalian cells.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| | - Lawrence A Chasin
- Department of Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Véronique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Rivera-Torres N, Kmiec EB. Genetic spell-checking: gene editing using single-stranded DNA oligonucleotides. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:463-70. [PMID: 26402400 PMCID: PMC11388886 DOI: 10.1111/pbi.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
Single-stranded oligonucleotides (ssODNs) can be used to direct the exchange of a single nucleotide or the repair of a single base within the coding region of a gene in a process that is known, generically, as gene editing. These molecules are composed of either all DNA residues or a mixture of RNA and DNA bases and utilize inherent metabolic functions to execute the genetic alteration within the context of a chromosome. The mechanism of action of gene editing is now being elucidated as well as an understanding of its regulatory circuitry, work that has been particularly important in establishing a foundation for designing effective gene editing strategies in plants. Double-strand DNA breakage and the activation of the DNA damage response pathway play key roles in determining the frequency with which gene editing activity takes place. Cellular regulators respond to such damage and their action impacts the success or failure of a particular nucleotide exchange reaction. A consequence of such activation is the natural slowing of replication fork progression, which naturally creates a more open chromatin configuration, thereby increasing access of the oligonucleotide to the DNA template. Herein, how critical reaction parameters influence the effectiveness of gene editing is discussed. Functional interrelationships between DNA damage, the activation of DNA response pathways and the stalling of replication forks are presented in detail as potential targets for increasing the frequency of gene editing by ssODNs in plants and plant cells.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Eric B Kmiec
- Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| |
Collapse
|
3
|
Disterer P, Papaioannou I, Evans VC, Simons JP, Owen JS. Oligonucleotide-mediated gene editing is underestimated in cells expressing mutated green fluorescent protein and is positively associated with target protein expression. J Gene Med 2012; 14:109-19. [PMID: 22228477 DOI: 10.1002/jgm.1639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Single-stranded DNA oligonucleotides (ssODNs) can introduce small, specific sequence alterations into genomes. Potential applications include creating disease-associated mutations in cell lines or animals, functional studies of single nucleotide polymorphisms and, ultimately, clinical therapy by correcting genetic point mutations. Here, we report feasibility studies into realizing this potential by targeting a reporter gene, mutated enhanced green fluorescent protein (mEGFP). METHODS Three mammalian cell lines, CHO, HEK293T and HepG2, expressing multiple copies of mEGFP were transfected with a 27-mer ssODN capable of restoring fluorescence. Successful cell correction was quantified by flow cytometry. RESULTS Gene editing in each isogenic cell line, as measured by percentage of green cells, correlated tightly with target protein levels, and thus gene expression. In the total population, 2.5% of CHO-mEGFP cells were successfully edited, although, remarkably, in the highest decile producing mEGFP protein, over 20% of the cells had restored green fluorescence. Gene-edited clones initially selected for green fluorescence lost EGFP expression during cell passaging, which partly reflected G2-phase cycle arrest and perhaps eventual cell death. The major cause, however, was epigenetic down-regulation; incubation with sodium butyrate or 5-aza-2'-deoxycytidine reactivated fluorescent EGFP expression and hence established that the repaired genotype was stable. CONCLUSIONS Our data establish that ssODN-mediated gene editing is underestimated in cultured mammalian cells expressing nonfluorescent mutated EGFP, because of variable expression of this mEGFP target gene in the cell population. This conclusion was endorsed by studies in HEK293T-mEGFP and HepG2-mEGFP cells. We infer that oligonucleotide-directed editing of endogenous genes is feasible, particularly for those that are transcriptionally active.
Collapse
|
4
|
Rios X, Briggs AW, Christodoulou D, Gorham JM, Seidman JG, Church GM. Stable gene targeting in human cells using single-strand oligonucleotides with modified bases. PLoS One 2012; 7:e36697. [PMID: 22615794 PMCID: PMC3351460 DOI: 10.1371/journal.pone.0036697] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/09/2012] [Indexed: 11/19/2022] Open
Abstract
Recent advances allow multiplexed genome engineering in E. coli, employing easily designed oligonucleotides to edit multiple loci simultaneously. A similar technology in human cells would greatly expedite functional genomics, both by enhancing our ability to test how individual variants such as single nucleotide polymorphisms (SNPs) are related to specific phenotypes, and potentially allowing simultaneous mutation of multiple loci. However, oligo-mediated targeting of human cells is currently limited by low targeting efficiencies and low survival of modified cells. Using a HeLa-based EGFP-rescue reporter system we show that use of modified base analogs can increase targeting efficiency, in part by avoiding the mismatch repair machinery. We investigate the effects of oligonucleotide toxicity and find a strong correlation between the number of phosphorothioate bonds and toxicity. Stably EGFP-corrected cells were generated at a frequency of ~0.05% with an optimized oligonucleotide design combining modified bases and reduced number of phosphorothioate bonds. We provide evidence from comparative RNA-seq analysis suggesting cellular immunity induced by the oligonucleotides might contribute to the low viability of oligo-corrected cells. Further optimization of this method should allow rapid and scalable genome engineering in human cells.
Collapse
Affiliation(s)
- Xavier Rios
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adrian W. Briggs
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Danos Christodoulou
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Josh M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Optimizing the design of oligonucleotides for homology directed gene targeting. PLoS One 2011; 6:e14795. [PMID: 21483664 PMCID: PMC3071677 DOI: 10.1371/journal.pone.0014795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 01/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background Gene targeting depends on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. A robust mechanistic model of homologous recombination is necessary to fully exploit gene targeting for therapeutic benefit. Methodology/Principal Findings In this work, our recently developed numerical simulation model for homology search is employed to develop rules for the design of oligonucleotides used in gene targeting. A Metropolis Monte-Carlo algorithm is used to predict the pairing dynamics of an oligonucleotide with the target double-stranded DNA. The model calculates the base-alignment between a long, target double-stranded DNA and a probe nucleoprotein filament comprised of homologous recombination proteins (Rad51 or RecA) polymerized on a single strand DNA. In this study, we considered different sizes of oligonucleotides containing 1 or 3 base heterologies with the target; different positions on the probe were tested to investigate the effect of the mismatch position on the pairing dynamics and stability. We show that the optimal design is a compromise between the mean time to reach a perfect alignment between the two molecules and the stability of the complex. Conclusion and Significance A single heterology can be placed anywhere without significantly affecting the stability of the triplex. In the case of three consecutive heterologies, our modeling recommends using long oligonucleotides (at least 35 bases) in which the heterologous sequences are positioned at an intermediate position. Oligonucleotides should not contain more than 10% consecutive heterologies to guarantee a stable pairing with the target dsDNA. Theoretical modeling cannot replace experiments, but we believe that our model can considerably accelerate optimization of oligonucleotides for gene therapy by predicting their pairing dynamics with the target dsDNA.
Collapse
|
6
|
Aarts M, te Riele H. Progress and prospects: oligonucleotide-directed gene modification in mouse embryonic stem cells: a route to therapeutic application. Gene Ther 2010; 18:213-9. [PMID: 21160530 DOI: 10.1038/gt.2010.161] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising technique for introducing site-specific sequence alterations without affecting the genomic organization of the target locus. Here, we discuss the significant progress that has been made over the last 5 years in unraveling the mechanisms and reaction parameters underlying ssODN-mediated gene targeting. We will specifically focus on ssODN-mediated gene targeting in murine embryonic stem cells (ESCs) and the impact of the DNA mismatch repair (MMR) system on the targeting process. Implications of novel findings for routine application of ssODN-mediated gene targeting and challenges that need to be overcome for future therapeutic applications are highlighted.
Collapse
Affiliation(s)
- M Aarts
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Liu C, Wang Z, Huen MSY, Lu LY, Liu DP, Huang JD. Cell death caused by single-stranded oligodeoxynucleotide-mediated targeted genomic sequence modification. Oligonucleotides 2009; 19:281-6. [PMID: 19653881 DOI: 10.1089/oli.2009.0191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeted gene repair directed by single-stranded oligodeoxynucleotides (ssODNs) offers a promising tool for biotechnology and gene therapy. However, the methodology is currently limited by its low frequency of repair events, variability, and low viability of "corrected" cells. In this study, we showed that during ssODN-mediated gene repair reaction, a significant population of corrected cells failed to divide, and were much more prone to undergo apoptosis, as marked by processing of caspases and PARP-1. In addition, we found that apoptotic cell death triggered by ssODN-mediated gene repair was largely independent of the ATM/ATR kinase. Furthermore, we examined the potential involvement of the mismatch repair (MMR) proteins in this "correction reaction-induced" cell death. Result showed that while defective MMR greatly enhanced the efficiency of gene correction, compromising the MMR system did not yield any viable corrected clone, indicating that the MMR machinery, although plays a critical role in determining ssODN-directed repair, was not involved in the observed cellular genotoxic responses.
Collapse
Affiliation(s)
- Chenli Liu
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Shang XY, Hao DL, Wu XS, Yin WX, Guo ZC, Liu DP, Liang CC. Improvement of SSO-mediated gene repair efficiency by nonspecific oligonucleotides. Biochem Biophys Res Commun 2008; 376:74-9. [PMID: 18771655 DOI: 10.1016/j.bbrc.2008.08.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Targeted gene repair mediated by single-stranded DNA oligonucleotides (SSOs) is a promising method to correct the mutant gene precisely in prokaryotic and eukaryotic systems. We used a HeLa cell line, which was stably integrated with mutant enhanced green fluorescence protein gene (mEGFP) in the genome, to test the efficiency of SSO-mediated gene repair. We found that the mEGFP gene was successfully repaired by specific SSOs, but the efficiency was only approximately 0.1%. Then we synthesized a series of nonspecific oligonucleotides, which were single-stranded DNA with different lengths and no significant similarity with the SSOs. We found the efficiency of SSO-mediated gene repair was increased by 6-fold in nonspecific oligonucleotides-treated cells. And this improvement in repair frequency correlated with the doses of the nonspecific oligonucleotides, instead of the lengths. Our evidence suggested that this increased repair efficiency was achieved by the transient alterations of the cellular proteome. We also found the obvious strand bias that antisense SSOs were much more effective than sense SSOs in the repair experiments with nonspecific oligonucleotides. These results provide a fresh clue into the mechanism of SSO-mediated targeted gene repair in mammalian cells.
Collapse
Affiliation(s)
- Xi-Ying Shang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Department of Biochemistry, 5 Dong Dan San Tiao, Beijing 100005, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang Z, Zhou ZJ, Liu DP, Huang JD. Double-stranded break can be repaired by single-stranded oligonucleotides via the ATM/ATR pathway in mammalian cells. Oligonucleotides 2008; 18:21-32. [PMID: 18321160 DOI: 10.1089/oli.2007.0093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-stranded oligonucleotide (SSO)-mediated gene modification is a newly developed tool for site-specific gene repair in mammalian cells; however, the corrected cells always show G2/M arrest and cannot divide to form colonies. This phenomenon and the unclear mechanism seriously challenge the future application of this technique. In this study, we developed an efficient SSO-mediated DNA repair system based on double-stranded break (DSB) induction. We generated a mutant EGFP gene with insertions of 24 bp to 1.6 kb in length as a reporter integrated in mammalian cell lines. SSOs were successfully used to delete the insertion fragments upon DSB induction at a site near the insertion. We demonstrated that this process is dependent on the ATM/ATR pathway. Importantly, repaired cell clones were viable. Effects of deletion length, SSO length, strand bias, and SSO modification on gene repair frequency were also investigated.
Collapse
Affiliation(s)
- Zai Wang
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Lu LY, Huen MSY, Tai ACP, Liu DP, Cheah KSE, Huang JD. Highly efficient deletion method for the engineering of plasmid DNA with single-stranded oligonucleotides. Biotechniques 2008; 44:217-20, 222, 224. [PMID: 18330349 DOI: 10.2144/000112684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The lamda phage Red recombination system has been used to modify plasmid, bacterial artificial chromosome (BAC), and chromosomal DNA in a highly precise and versatile manner Linear double-stranded DNA fragments or synthetic single-stranded oligonucleotides (SSOs) with short flanking homologies (<50 bp) to the target loci can be used as substrates to direct changes, including point mutations, insertions, and deletions. In attempts to explore mechanistic bases under this recombination process, we and others have previously identified factors that influence SSO-mediated single base substitutions. In this report, we focus our study on SSO-mediated deletion on plasmids. We found that SSOs as short as 63 bp were sufficient to mediate deletion as long as 2 kb with efficiency higher than 1%. Strand bias was consistently observed, and SSOs with sequences identical to the nascent lagging strand during replication always resulted in higher efficiency. Unlike SSO-mediated single nucleotide substitution, homology on each side of SSO flanking the fragment to be deleted was important for successful deletion, and abolishing the host methyl-directed mismatch repair (MMR) system did not lead to detectable changes in deletion efficiency. Finally, we showed that by optimizing its design, SSO-mediated deletion was efficient enough to make it possible to manipulate plasmids without selectable markers.
Collapse
Affiliation(s)
- Lin-Yu Lu
- University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | | | | | | | | | | |
Collapse
|
11
|
Hegele H, Wuepping M, Ref C, Kenner O, Kaufmann D. Simultaneous targeted exchange of two nucleotides by single-stranded oligonucleotides clusters within a region of about fourteen nucleotides. BMC Mol Biol 2008; 9:14. [PMID: 18226192 PMCID: PMC2266939 DOI: 10.1186/1471-2199-9-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/28/2008] [Indexed: 11/23/2022] Open
Abstract
Background Transfection of cells with gene-specific, single-stranded oligonucleotides can induce the targeted exchange of one or two nucleotides in the targeted gene. To characterize the features of the DNA-repair mechanisms involved, we examined the maximal distance for the simultaneous exchange of two nucleotides by a single-stranded oligonucleotide. The chosen experimental system was the correction of a hprt-point mutation in a hamster cell line, the generation of an additional nucleotide exchange at a variable distance from the first exchange position and the investigation of the rate of simultaneous nucleotide exchanges. Results The smaller the distance between the two exchange positions, the higher was the probability of a simultaneous exchange. The detected simultaneous nucleotide exchanges were found to cluster in a region of about fourteen nucleotides upstream and downstream from the first exchange position. Conclusion We suggest that the mechanism involved in the repair of the targeted DNA strand utilizes only a short sequence of the single-stranded oligonucleotide, which may be physically incorporated into the DNA or be used as a matrix for a repair process.
Collapse
Affiliation(s)
- Heike Hegele
- Institute of Human Genetics, University of Ulm, D 89070 Ulm, Germany.
| | | | | | | | | |
Collapse
|
12
|
Parekh-Olmedo H, Kmiec EB. Progress and Prospects: targeted gene alteration (TGA). Gene Ther 2007; 14:1675-80. [DOI: 10.1038/sj.gt.3303053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Todaro M, Quigley A, Kita M, Chin J, Lowes K, Kornberg AJ, Cook MJ, Kapsa R. Effective detection of corrected dystrophin loci in mdx mouse myogenic precursors. Hum Mutat 2007; 28:816-23. [PMID: 17394239 DOI: 10.1002/humu.20494] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Targeted corrective gene conversion (TCGC) holds much promise as a future therapy for many hereditary diseases in humans. Mutation correction frequencies varying between 0.0001% and 40% have been reported using chimeraplasty, oligoplasty, triplex-forming oligonucleotides, and small corrective PCR amplicons (CPA). However, PCR technologies used to detect correction events risk either falsely indicating or greatly exaggerating the presence of corrected loci. This is a problem that is considerably exacerbated by attempted improvement of the TCGC system using high corrective nucleic acid (CNA) to nuclear ratios. Small fragment homologous replacement (SFHR)-mediated correction of the exon 23 dystrophin (DMD) gene mutation in the mdx mouse model of DMD has been used in this study to evaluate the effect of increasing CPA amounts. In these experiments, we detected extremely high levels of apparently corrected loci and determined that at higher CNA to nuclear ratios the extent of locus correction was highly exaggerated by residual CNA species in the nucleic acids extracted from the treated cells. This study describes a generic locus-specific detection protocol designed to eradicate residual CNA species and avoid the artifactual or exaggerated detection of gene correction.
Collapse
Affiliation(s)
- Marian Todaro
- National Muscular Dystrophy Research Centre, Howard Florey Institute, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fichou Y, Férec C. The potential of oligonucleotides for therapeutic applications. Trends Biotechnol 2006; 24:563-70. [PMID: 17045686 DOI: 10.1016/j.tibtech.2006.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/21/2006] [Accepted: 10/03/2006] [Indexed: 12/15/2022]
Abstract
Viral-derived particles have been widely used and described in gene therapy clinical trials. Although substantial results have been achieved, major safety issues have also arisen. For more than a decade, oligonucleotides have been seen as an alternative to gene complementation by viral vectors or DNA plasmids, either to correct the genetic defect or to silence gene expression. The development of RNA interference has strengthened the potential of this approach. Recent clinical trials have also tested the ability of aptamer molecules and decoy oligonucleotides to sequestrate pathogenic proteins. Here, we review the potential of oligonucleotides in gene therapy, outline what has already been accomplished, and consider what remains to be done.
Collapse
Affiliation(s)
- Yann Fichou
- Inserm U613, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, 29275 Brest Cedex, France
| | | |
Collapse
|
15
|
Wang Z, Zhou ZJ, Liu DP, Huang JD. Single-stranded oligonucleotide-mediated gene repair in mammalian cells has a mechanism distinct from homologous recombination repair. Biochem Biophys Res Commun 2006; 350:568-73. [PMID: 17026965 DOI: 10.1016/j.bbrc.2006.09.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 09/17/2006] [Indexed: 11/30/2022]
Abstract
Single-stranded DNA oligonucleotide (SSO)-mediated gene repair has great potentials for gene therapy and functional genomic studies. However, its underlying mechanism remains unclear. Previous studies from other groups have suggested that DNA damage response via the ATM/ATR pathway may be involved in this process. In this study, we measured the effect of two ATM/ATR inhibitors caffeine and pentoxifylline on the correction efficiency in SSO-mediated gene repair. We also checked their effect on double-stranded break (DSB)-induced homologous recombination repair (HRR) as a control, which is well known to be dependent on the ATM/ATR pathway. We found these inhibitors could completely inhibit DSB-induced HRR, but could only partially inhibit SSO-mediated process, indicating SSO-mediated gene repair is not dependent on the ATM/ATR pathway. Furthermore, we found that thymidine treatment promotes SSO-mediated gene repair, but inhibits DSB-induced HRR. Collectively, our results demonstrate that SSO-mediated and DSB-induced gene repairs have distinct mechanisms.
Collapse
Affiliation(s)
- Zai Wang
- Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
16
|
Abstract
ICS-283 was developed within Intradigm Corporation as a system that is designed for the systemic delivery of therapeutic small interfering (siRNA) to sites of pathological angiogenesis. The non-viral siRNA delivery system is based on synthetic nanoparticles, known as Targe (Intradigm Corporation), which functions as a broad-platform technology to deliver siRNA to specific target cells in diseased tissues. The system is constructed to incorporate different functionalities that address critical needs for successful nucleic acid delivery. The TargeTran synthetic vector is a self-assembling, layered nanoparticle that protects and targets siRNA to specific cell types in pathological tissues. At present, ICS-283 is the only antiangiogenic siRNA delivery system that is designed for intravenous administration to treat angiogenesis-driven diseases.
Collapse
Affiliation(s)
- Raymond M Schiffelers
- Department of Pharmaceutics, Room Z735A, Utrecht Institute for Pharmaceutical Sciences, PO Box 80082, 3508 TB, Utrecht, The Netherlands.
| | | |
Collapse
|