1
|
Ali U, Ali Shah SW, Khan AU, Badshah H, Darwish HW, Aschner M, Alam W, Khan H. Preclinical and in silico studies of 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea: A promising agent for depression and anxiety. Eur J Pharmacol 2025; 989:177226. [PMID: 39798915 DOI: 10.1016/j.ejphar.2024.177226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
The study investigated the anxiolytic, antidepressant, sedative/hypnotic and in silico molecular docking properties of the synthetic ephedrine-based derivative of thiourea, 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea. Safety profile of the compound at various doses was determined in an acute toxicity test. Results showed significant anti-anxiety effects of the compound in all mice studies. In the elevated plus maze (EPM), the time spent and entries into open arms were significantly increased upon treatment with the test compound. In the light-dark (LD) box test the drug increased the time spent in the light compartment. In hole board (HB) assay, exploration of hole and rearing significantly increased. For anxiolytic activity, 20 mg/kg was determined to represent the optimal dose, while at a higher dose (i.e., 40 mg/kg), it caused significant sedation and increased sleep duration in thiopental-induced sleep test. Escape latency in the tail suspension test (TST) and in the forced swim test (FST) increased and immobility was significantly reduced upon 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea administration. The molecular docking analysis was performed against the various protein target involved in the pathogenesis of anxiety. The molecular docking, molecular dynamic (MD) simulation and free energy calculation showed high binding affinity and stability of ligand with the 7VOD and 2C65 protein. Taken together, it is concluded from both the in vivo assays and molecular modeling studies that 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea possesses significant anxiolytic and antidepressant activity in concomitant with a high safety profile.
Collapse
Affiliation(s)
- Usman Ali
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | | | - Ashraf Ullah Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan.
| | - Haroon Badshah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Schulze CE, Cafiero M. Pairwise Additivity and Three-Body Contributions for Density Functional Theory-Based Protein-Ligand Interaction Energies. J Phys Chem B 2024; 128:2326-2336. [PMID: 38422383 PMCID: PMC10945476 DOI: 10.1021/acs.jpcb.3c07456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
The prediction of protein-ligand binding energies is crucial in computer-assisted drug design. This property can be calculated in a straightforward fashion as the difference in the energies between a binding site-ligand complex and the separated binding site and ligand. Often, though, there is value in knowing how different amino acid residues in the protein binding site interact with the ligand. In this case, the interaction energy can be calculated as the sum of pairwise energies between each amino acid residue in the binding site and the ligand, and the sum of these energies is often equated with the total interaction energy. The validity of this pairwise additivity approximation can be assessed by experimental evidence, such as double-mutant cycles. In this work, we test the pairwise additivity approximation on the sulfotransferase-l-DOPA complex for 16 density functional theory (DFT) methods with varying degrees of exact (Hartree-Fock) exchange. Several "families" of functionals are studied, including BLYP, B3LYP, and CAM-B3LYP, as well as M06L, M06, and M062X. We also calculate the three-body contributions to interaction energy for the same DFT methods and assess when they are significant. We find that the amount of exact exchange or other nonlocal contributions has a direct influence on how closely the sum of pairwise energies approximates the total interaction energy. We also find that three-body interactions can be significant and that their significance can be predicted with good accuracy.
Collapse
Affiliation(s)
| | - Mauricio Cafiero
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AP, U.K.
| |
Collapse
|
3
|
Toth D, Dudas B, Miteva MA, Balog E. Role of Conformational Dynamics of Sulfotransferases SULT1A1 and SULT1A3 in Substrate Specificity. Int J Mol Sci 2023; 24:16900. [PMID: 38069221 PMCID: PMC10706399 DOI: 10.3390/ijms242316900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Sulfotransferases (SULTs) are phase II metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3'-Phosphoadenosine 5'-Phosphosulfate (PAPS) to a wide variety of endogenous compounds, drugs and natural products. Although SULT1A1 and SULT1A3 share 93% identity, SULT1A1, the most abundant SULT isoform in humans, exhibits a broad substrate range with specificity for small phenolic compounds, while SULT1A3 displays a high affinity toward monoamine neurotransmitters like dopamine. To elucidate the factors determining the substrate specificity of the SULT1 isoenzymes, we studied the dynamic behavior and structural specificities of SULT1A1 and SULT1A3 by using molecular dynamics (MD) simulations and ensemble docking of common and specific substrates of the two isoforms. Our results demonstrated that while SULT1A1 exhibits a relatively rigid structure by showing lower conformational flexibility except for the lip (loop L1), the loop L2 and the cap (L3) of SULT1A3 are extremely flexible. We identified protein residues strongly involved in the recognition of different substrates for the two isoforms. Our analyses indicated that being more specific and highly flexible, the structure of SULT1A3 has particularities in the binding site, which are crucial for its substrate selectivity.
Collapse
Affiliation(s)
- Daniel Toth
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Balint Dudas
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Maria A. Miteva
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
4
|
Harps LC, Jendretzki AL, Wolf CA, Girreser U, Wolber G, Parr MK. Development of an HPLC-MS/MS Method for Chiral Separation and Quantitation of ( R)- and ( S)-Salbutamol and Their Sulfoconjugated Metabolites in Urine to Investigate Stereoselective Sulfonation. Molecules 2023; 28:7206. [PMID: 37894685 PMCID: PMC10609612 DOI: 10.3390/molecules28207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4'-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings.
Collapse
Affiliation(s)
- Lukas Corbinian Harps
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| | - Annika Lisa Jendretzki
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (C.A.W.); (G.W.)
| | - Ulrich Girreser
- Institute of Pharmacy, Christian-Albrechts University Kiel, Gutenbergstr. 76, 24118 Kiel, Germany;
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (C.A.W.); (G.W.)
| | - Maria Kristina Parr
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| |
Collapse
|
5
|
Harle J, Slater C, Cafiero M. Investigating Paracetamol's Role as a Potential Treatment for Parkinson's Disease: Ab Initio Analysis of Dopamine, l-DOPA, Paracetamol, and NAPQI Interactions with Enzymes Involved in Dopamine Metabolism. ACS OMEGA 2023; 8:38053-38063. [PMID: 37867718 PMCID: PMC10586264 DOI: 10.1021/acsomega.3c03888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Recently, it was found that paracetamol can extend the therapeutic window of l-DOPA treatment for Parkinson's disease [Golding (2019) BJPharm, 4(2), Article 619]. It has been posited that the effect could be due to paracetamol and its metabolite, NAPQI, inhibiting pain signals in the spinal column. In this work, we examine the possibility that the therapeutic effect of the paracetamol for the Parkinson's disease patient may be due to an inhibition of the enzymes that metabolize dopamine and/or l-DOPA, thus effectively extending the lifetime of the l-DOPA treatment. In this work, we use the M062X/6-311+G* level of theory to calculate the electronic binding energies (including explicit desolvation) of several ligands (paracetamol, NAPQI, dopamine, and l-DOPA) with a series of enzymes important to the production and metabolism of dopamine and compare them to calculated binding energy values for the natural substrates for those enzymes in order to predict possible inhibition. Benchmark interaction energies for a subset of the systems studied are calculated using the more accurate second-order Møller-Plesset perturbation (MP2) method in order to calibrate the accuracy of the M062X method. If we assume that the interaction energies calculated here can serve as a proxy for in vivo inhibition, then we can predict that paracetamol and NAPQI should not inhibit the natural production of dopamine and may in fact inhibit the metabolism of l-DOPA and dopamine, thus extending the length of l-DOPA treatments.
Collapse
Affiliation(s)
- Joshua Harle
- School
of Chemistry Food and Pharmacy, University
of Reading, Reading RG6 6AD, U.K.
| | - Catherine Slater
- School
of Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, U.K.
| | - Mauricio Cafiero
- School
of Chemistry Food and Pharmacy, University
of Reading, Reading RG6 6AD, U.K.
| |
Collapse
|
6
|
Ceauranu S, Ciorsac A, Ostafe V, Isvoran A. Evaluation of the Toxicity Potential of the Metabolites of Di-Isononyl Phthalate and of Their Interactions with Members of Family 1 of Sulfotransferases-A Computational Study. Molecules 2023; 28:6748. [PMID: 37764524 PMCID: PMC10536557 DOI: 10.3390/molecules28186748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Di-isononyl phthalates are chemicals that are widely used as plasticizers. Humans are extensively exposed to these compounds by dietary intake, through inhalation and skin absorption. Sulfotransferases (SULTs) are enzymes responsible for the detoxification and elimination of numerous endogenous and exogenous molecules from the body. Consequently, SULTs are involved in regulating the biological activity of various hormones and neurotransmitters. The present study considers a computational approach to predict the toxicological potential of the metabolites of di-isononyl phthalate. Furthermore, molecular docking was considered to evaluate the inhibitory potential of these metabolites against the members of family 1 of SULTs. The metabolites of di-isononyl phthalate reveal a potency to cause liver damage and to inhibit receptors activated by peroxisome proliferators. These metabolites are also usually able to inhibit the activity of the members of family 1 of SULTs, except for SULT1A3 and SULT1B1. The outcomes of this study are important for an enhanced understanding of the risk of human exposure to di-isononyl phthalates.
Collapse
Affiliation(s)
- Silvana Ceauranu
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (S.C.); (V.O.)
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Alecu Ciorsac
- Department of Physical Education and Sport, University Politehnica Timisoara, 2. Piata Victoriei, 300006 Timisoara, Romania;
| | - Vasile Ostafe
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (S.C.); (V.O.)
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (S.C.); (V.O.)
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| |
Collapse
|
7
|
Isvoran A, Peng Y, Ceauranu S, Schmidt L, Nicot AB, Miteva MA. Pharmacogenetics of human sulfotransferases and impact of amino acid exchange on Phase II drug metabolism. Drug Discov Today 2022; 27:103349. [PMID: 36096358 DOI: 10.1016/j.drudis.2022.103349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes (DMEs) catalyzing the sulfation of a variety of endogenous compounds, natural products, and drugs. Various drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS) can inhibit SULTs, affecting drug-drug interactions. Several polymorphisms have been identified for SULTs that might be crucial for interindividual variability in drug response and toxicity or for increased disease risk. Here, we review current knowledge on non-synonymous single nucleotide polymorphisms (nsSNPs) of human SULTs, focusing on the coded SULT allozymes and molecular mechanisms explaining their variable activity, which is essential for personalized medicine. We discuss the structural and dynamic bases of key amino acid (AA) variants implicated in the impacts on drug metabolism in the case of SULT1A1, as revealed by molecular modeling approaches.
Collapse
Affiliation(s)
- Adriana Isvoran
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Yunhui Peng
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France
| | - Silvana Ceauranu
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Leon Schmidt
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Arnaud B Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France.
| | - Maria A Miteva
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
8
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
9
|
Pedersen LC, Yi M, Pedersen LG, Kaminski AM. From Steroid and Drug Metabolism to Glycobiology, Using Sulfotransferase Structures to Understand and Tailor Function. Drug Metab Dispos 2022; 50:1027-1041. [PMID: 35197313 PMCID: PMC10753775 DOI: 10.1124/dmd.121.000478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Sulfotransferases are ubiquitous enzymes that transfer a sulfo group from the universal cofactor donor 3'-phosphoadenosine 5'-phosphosulfate to a broad range of acceptor substrates. In humans, the cytosolic sulfotransferases are involved in the sulfation of endogenous compounds such as steroids, neurotransmitters, hormones, and bile acids as well as xenobiotics including drugs, toxins, and environmental chemicals. The Golgi associated membrane-bound sulfotransferases are involved in post-translational modification of macromolecules from glycosaminoglycans to proteins. The sulfation of small molecules can have profound biologic effects on the functionality of the acceptor, including activation, deactivation, or enhanced metabolism and elimination. Sulfation of macromolecules has been shown to regulate a number of physiologic and pathophysiological pathways by enhancing binding affinity to regulatory proteins or binding partners. Over the last 25 years, crystal structures of these enzymes have provided a wealth of information on the mechanisms of this process and the specificity of these enzymes. This review will focus on the general commonalities of the sulfotransferases, from enzyme structure to catalytic mechanism as well as providing examples into how structural information is being used to either design drugs that inhibit sulfotransferases or to modify the enzymes to improve drug synthesis. SIGNIFICANCE STATEMENT: This manuscript honors Dr. Masahiko Negishi's contribution to the understanding of sulfotransferase mechanism, specificity, and roles in biology by analyzing the crystal structures that have been solved over the last 25 years.
Collapse
Affiliation(s)
- Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - MyeongJin Yi
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Lee G Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| |
Collapse
|
10
|
Cook I, Cacace M, Wang T, Darrah K, Deiters A, Leyh TS. Small-molecule control of neurotransmitter sulfonation. J Biol Chem 2021; 296:100094. [PMID: 33485192 PMCID: PMC7948405 DOI: 10.1074/jbc.ra120.015177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022] Open
Abstract
Controlling unmodified serotonin levels in brain synapses is a primary objective when treating major depressive disorder-a disease that afflicts ∼20% of the world's population. Roughly 60% of patients respond poorly to first-line treatments and thus new therapeutic strategies are sought. To this end, we have constructed isoform-specific inhibitors of the human cytosolic sulfotransferase 1A3 (SULT1A3)-the isoform responsible for sulfonating ∼80% of the serotonin in the extracellular brain fluid. The inhibitor design includes a core ring structure, which anchors the inhibitor into a SULT1A3-specific binding pocket located outside the active site, and a side chain crafted to act as a latch to inhibit turnover by fastening down the SULT1A3 active-site cap. The inhibitors are allosteric, they bind with nanomolar affinity and are highly specific for the 1A3 isoform. The cap-stabilizing effects of the latch can be accurately calculated and are predicted to extend throughout the cap and into the surrounding protein. A free-energy correlation demonstrates that the percent inhibition at saturating inhibitor varies linearly with cap stabilization - the correlation is linear because the rate-limiting step of the catalytic cycle, nucleotide release, scales linearly with the fraction of enzyme in the cap-open form. Inhibitor efficacy in cultured cells was studied using a human mammary epithelial cell line that expresses SULT1A3 at levels comparable with those found in neurons. The inhibitors perform similarly in ex vivo and in vitro studies; consequently, SULT1A3 turnover can now be potently suppressed in an isoform-specific manner in human cells.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mary Cacace
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kristie Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
11
|
Bairam AF, Kermasha ZW, Liu MC, Kurogi K, Yamamoto K. Functional analysis of novel sulfotransferases in the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21671. [PMID: 32227386 DOI: 10.1002/arch.21671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Sulfoconjugation plays a vital role in the detoxification of xenobiotics and in the metabolism of endogenous compounds. In this study, we aimed to identify new members of the sulfotransferase (SULT) superfamily in the silkworm Bombyx mori. Based on amino acid sequence and phylogenetic analyses, two new enzymes, swSULT ST1 and swSULT ST2, were identified that appear to belong to a distinct group of SULTs including several other insect SULTs. We expressed, purified, and characterized recombinant SULTs. While swSULT ST1 sulfated xanthurenic acid and pentachlorophenol, swSULT ST2 exclusively utilized xanthurenic acid as a substrate. Based on these results, and those concerning the tissue distribution and substrate specificity toward pentachlorophenol analyses, we hypothesize that swSULT ST1 plays a role in the detoxification of xenobiotics, including insecticides, in the silkworm midgut and in the induction of gametogenesis in silkworm ovary and testis. Collectively, the data obtained herein contribute to a better understanding of SULT enzymatic functions in insects.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Zainab W Kermasha
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Fukuoka, Japan
| |
Collapse
|
12
|
Impact of SULT1A3/SULT1A4 genetic polymorphisms on the sulfation of phenylephrine and salbutamol by human SULT1A3 allozymes. Pharmacogenet Genomics 2020; 29:99-105. [PMID: 31145702 DOI: 10.1097/fpc.0000000000000371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Phenylephrine and salbutamol are drugs that are used widely to treat diseases/disorders, such as nasal congestion, hypotension, and asthma, in individuals of different age groups. Human cytosolic sulfotransferase (SULT) SULT1A3 has been shown to be critically involved in the metabolism of these therapeutic agents. This study was carried out to investigate the effects of single nucleotide polymorphisms of human SULT1A3 and SULT1A4 genes on the sulfation of phenylephrine and salbutamol by SULT1A3 allozymes. MATERIALS AND METHODS Wild-type and SULT1A3 allozymes, prepared previously by site-directed mutagenesis in conjunction with bacterial expression and affinity purification, were analyzed for sulfating activity using an established assay procedure. RESULTS Purified SULT1A3 allozymes, in comparison with the wild-type enzyme, showed differential sulfating activities toward phenylephrine and salbutamol. Kinetic studies showed further significant variations in their substrate-binding affinity and catalytic activity toward phenylephrine and salbutamol. CONCLUSION The results obtained showed clearly the differential enzymatic characteristics of SULT1A3 allozymes in mediating the sulfation of phenylephrine and salbutamol. This information may contribute toward a better understanding of the pharmacokinetics of these two drugs in individuals with distinct SULT1A3 and/or SULT1A4 genotypes.
Collapse
|
13
|
Ji Y, Islam S, Cui H, Dhoke GV, Davari MD, Mertens AM, Schwaneberg U. Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00063a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Loop engineering of aryl sulfotransferase B improves catalytic performance in regioselective sulfation.
Collapse
Affiliation(s)
- Yu Ji
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Shohana Islam
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alan M. Mertens
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| |
Collapse
|
14
|
Darrah K, Wang T, Cook I, Cacace M, Deiters A, Leyh TS. Allosteres to regulate neurotransmitter sulfonation. J Biol Chem 2019; 294:2293-2301. [PMID: 30545938 PMCID: PMC6378965 DOI: 10.1074/jbc.ra118.006511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Catecholamine neurotransmitter levels in the synapses of the brain shape human disposition-cognitive flexibility, aggression, depression, and reward seeking-and manipulating these levels is a major objective of the pharmaceutical industry. Certain neurotransmitters are extensively sulfonated and inactivated by human sulfotransferase 1A3 (SULT1A3). To our knowledge, sulfonation as a therapeutic means of regulating transmitter activity has not been explored. Here, we describe the discovery of a SULT1A3 allosteric site that can be used to inhibit the enzyme. The structure of the new site is determined using spin-label-triangulation NMR. The site forms a cleft at the edge of a conserved ∼30-residue active-site cap that must open and close during the catalytic cycle. Allosteres anchor into the site via π-stacking interactions with two residues that sandwich the planar core of the allostere and inhibit the enzyme through cap-stabilizing interactions with substituents attached to the core. Changes in cap free energy were calculated ab initio as a function of core substituents and used to design and synthesize a series of inhibitors intended to progressively stabilize the cap and slow turnover. The inhibitors bound tightly (34 nm to 7.4 μm) and exhibited progressive inhibition. The cap-stabilizing effects of the inhibitors were experimentally determined and agreed remarkably well with the theoretical predictions. These studies establish a reliable heuristic for the design of SULT1A3 allosteric inhibitors and demonstrate that the free-energy changes of a small, dynamic loop that is critical for SULT substrate selection and turnover can be calculated accurately.
Collapse
Affiliation(s)
- Kristie Darrah
- From the Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 and
| | - Ting Wang
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ian Cook
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Mary Cacace
- From the Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 and
| | - Alexander Deiters
- From the Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 and
| | - Thomas S Leyh
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| |
Collapse
|
15
|
Roman BI, Guedes RC, Stevens CV, García-Sosa AT. Recovering Actives in Multi-Antitarget and Target Design of Analogs of the Myosin II Inhibitor Blebbistatin. Front Chem 2018; 6:179. [PMID: 29881723 PMCID: PMC5976736 DOI: 10.3389/fchem.2018.00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 11/18/2022] Open
Abstract
In multitarget drug design, it is critical to identify active and inactive compounds against a variety of targets and antitargets. Multitarget strategies thus test the limits of available technology, be that in screening large databases of compounds vs. a large number of targets, or in using in silico methods for understanding and reliably predicting these pharmacological outcomes. In this paper, we have evaluated the potential of several in silico approaches to predict the target, antitarget and physicochemical profile of (S)-blebbistatin, the best-known myosin II ATPase inhibitor, and a series of analogs thereof. Standard and augmented structure-based design techniques could not recover the observed activity profiles. A ligand-based method using molecular fingerprints was, however, able to select actives for myosin II inhibition. Using further ligand- and structure-based methods, we also evaluated toxicity through androgen receptor binding, affinity for an array of antitargets and the ADME profile (including assay-interfering compounds) of the series. In conclusion, in the search for (S)-blebbistatin analogs, the dissimilarity distance of molecular fingerprints to known actives and the computed antitarget and physicochemical profile of the molecules can be used for compound design for molecules with potential as tools for modulating myosin II and motility-related diseases.
Collapse
Affiliation(s)
- Bart I Roman
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium.,Cancer Research Institute Ghent Ghent, Belgium
| | - Rita C Guedes
- Department of Medicinal Chemistry, Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa Lisbon, Portugal
| | - Christian V Stevens
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium.,Cancer Research Institute Ghent Ghent, Belgium
| | - Alfonso T García-Sosa
- Department of Molecular Technology, Institute of Chemistry, University of Tartu Tartu, Estonia
| |
Collapse
|
16
|
Bairam AF, Rasool MI, Alherz FA, Abunnaja MS, El Daibani AA, Kurogi K, Liu MC. Effects of human SULT1A3/SULT1A4 genetic polymorphisms on the sulfation of acetaminophen and opioid drugs by the cytosolic sulfotransferase SULT1A3. Arch Biochem Biophys 2018; 648:44-52. [PMID: 29705271 DOI: 10.1016/j.abb.2018.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
Sulfoconjugation has been shown to be critically involved in the metabolism of acetaminophen (APAP), morphine, tapentadol and O-desmethyl tramadol (O-DMT). The objective of this study was to investigate the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the sulfating activity of SULT1A3 allozymes toward these analgesic compounds. Twelve non-synonymous coding SNPs (cSNPs) of SULT1A3/SULT1A4 were investigated, and the corresponding cDNAs were generated by site-directed mutagenesis. SULT1A3 allozymes, bacterially expressed and purified, exhibited differential sulfating activity toward each of the four analgesic compounds tested as substrates. Kinetic analyses of SULT1A3 allozymes further revealed significant differences in binding affinity and catalytic activity toward the four analgesic compounds. Collectively, the results derived from the current study showed clearly the impact of cSNPs of the coding genes, SULT1A3 and SULT1A4, on the sulfating activity of the coded SULT1A3 allozymes toward the tested analgesic compounds. These findings may have implications in the pharmacokinetics as well as the toxicity profiles of these analgesics administered in individuals with distinct SULT1A3 and/or SULT1A4 genotypes.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, 43614, USA.
| |
Collapse
|
17
|
Bairam AF, Rasool MI, Alherz FA, Abunnaja MS, El Daibani AA, Gohal SA, Kurogi K, Sakakibara Y, Suiko M, Liu MC. Sulfation of catecholamines and serotonin by SULT1A3 allozymes. Biochem Pharmacol 2018. [PMID: 29524394 DOI: 10.1016/j.bcp.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated the involvement of sulfoconjugation in the metabolism of catecholamines and serotonin. The current study aimed to clarify the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the enzymatic characteristics of the sulfation of dopamine, epinephrine, norepinephrine and serotonin by SULT1A3 allozymes. Following a comprehensive search of different SULT1A3 and SULT1A4 genotypes, twelve non-synonymous (missense) coding SNPs (cSNPs) of SULT1A3/SULT1A4 were identified. cDNAs encoding the corresponding SULT1A3 allozymes, packaged in pGEX-2T vector were generated by site-directed mutagenesis. SULT1A3 allozymes were expressed, and purified. Purified SULT1A3 allozymes exhibited differential sulfating activity toward catecholamines and serotonin. Kinetic analyses demonstrated differences in both substrate affinity and catalytic efficiency of the SULT1A3 allozymes. Collectively, these findings provide useful information relevant to the differential metabolism of dopamine, epinephrine, norepinephrine and serotonin through sulfoconjugation in individuals having different SULT1A3/SULT1A4 genotypes.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Saud A Gohal
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
18
|
Cook I, Wang T, Leyh TS. Tetrahydrobiopterin regulates monoamine neurotransmitter sulfonation. Proc Natl Acad Sci U S A 2017; 114:E5317-E5324. [PMID: 28630292 PMCID: PMC5502633 DOI: 10.1073/pnas.1704500114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Monoamine neurotransmitters are among the hundreds of signaling small molecules whose target interactions are switched "on" and "off" via transfer of the sulfuryl-moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and amines of their scaffolds. These transfer reactions are catalyzed by a small family of broad-specificity enzymes-the human cytosolic sulfotransferases (SULTs). The first structure of a SULT allosteric-binding site (that of SULT1A1) has recently come to light. The site is conserved among SULT1 family members and is promiscuous-it binds catechins, a naturally occurring family of flavanols. Here, the catechin-binding site of SULT1A3, which sulfonates monoamine neurotransmitters, is modeled on that of 1A1 and used to screen in silico for endogenous metabolite 1A3 allosteres. Screening predicted a single high-affinity allostere, tetrahydrobiopterin (THB), an essential cofactor in monoamine neurotransmitter biosynthesis. THB is shown to bind and inhibit SULT1A3 with high affinity, 23 (±2) nM, and to bind weakly, if at all, to the four other major SULTs found in brain and liver. The structure of the THB-bound binding site is determined and confirms that THB binds the catechin site. A structural comparison of SULT1A3 with SULT1A1 (its immediate evolutionary progenitor) reveals how SULT1A3 acquired high affinity for THB and that the majority of residue changes needed to transform 1A1 into 1A3 are clustered at the allosteric and active sites. Finally, sequence records reveal that the coevolution of these sites played an essential role in the evolution of simian neurotransmitter metabolism.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461-1926
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461-1926
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461-1926
| |
Collapse
|
19
|
Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism. Sci Rep 2017. [PMID: 28646214 PMCID: PMC5482895 DOI: 10.1038/s41598-017-04539-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sulphotransferases are a diverse group of enzymes catalysing the transfer of a sulfuryl group from 3'-phosphoadenosine 5'-phosphosulphate (PAPS) to a broad range of secondary metabolites. They exist in all kingdoms of life. In Arabidopsis thaliana (L.) Heynh. twenty-two sulphotransferase (SOT) isoforms were identified. Three of those are involved in glucosinolate (Gl) biosynthesis, glycosylated sulphur-containing aldoximes containing chemically different side chains, whose break-down products are involved in stress response against herbivores, pathogens, and abiotic stress. To explain the differences in substrate specificity of desulpho (ds)-Gl SOTs and to understand the reaction mechanism of plant SOTs, we determined the first high-resolution crystal structure of the plant ds-Gl SOT AtSOT18 in complex with 3'-phosphoadenosine 5'-phosphate (PAP) alone and together with the Gl sinigrin. These new structural insights into the determination of substrate specificity were complemented by mutagenesis studies. The structure of AtSOT18 invigorates the similarity between plant and mammalian sulphotransferases, which illustrates the evolutionary conservation of this multifunctional enzyme family. We identified the essential residues for substrate binding and catalysis and demonstrated that the catalytic mechanism is conserved between human and plant enzymes. Our study indicates that the loop-gating mechanism is likely to be a source of the substrate specificity in plants.
Collapse
|
20
|
The structure of the catechin-binding site of human sulfotransferase 1A1. Proc Natl Acad Sci U S A 2016; 113:14312-14317. [PMID: 27911811 DOI: 10.1073/pnas.1613913113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We are just beginning to understand the allosteric regulation of the human cytosolic sulfotransferase (SULTs) family-13 disease-relevant enzymes that regulate the activities of hundreds, if not thousands, of signaling small molecules. SULT1A1, the predominant isoform in adult liver, harbors two noninteracting allosteric sites, each of which binds a different molecular family: the catechins (naturally occurring flavonols) and nonsteroidal antiinflammatory drugs (NSAIDs). Here, we present the structure of an SULT allosteric binding site-the catechin-binding site of SULT1A1 bound to epigallocatechin gallate (EGCG). The allosteric pocket resides in a dynamic region of the protein that enables EGCG to control opening and closure of the enzyme's active-site cap. Furthermore, the structure offers a molecular explanation for the isozyme specificity of EGCG, which is corroborated experimentally. The binding-site structure was obtained without X-ray crystallography or multidimensional NMR. Instead, a SULT1A1 apoprotein structure was used to guide positioning of a small number of spin-labeled single-Cys mutants that coat the entire enzyme surface with a paramagnetic field of sufficient strength to determine its contribution to the bound ligand's transverse (T2) relaxation from its 1D solution spectrum. EGCG protons were mapped to the protein surface by triangulation using the T2 values to calculate their distances to a trio of spin-labeled Cys mutants. The final structure was obtained using distance-constrained molecular dynamics docking. This approach, which is readily extensible to other systems, is applicable over a wide range of ligand affinities, requires little protein, avoids the need for isotopically labeled protein, and has no protein molecular weight limitations.
Collapse
|
21
|
Bigler DJ, Peterson LW, Cafiero M. DFT and MP2 study of the effects of mutations on the binding of ligands within the SULT1A3 active site. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015; 30:3-20. [DOI: 10.1016/j.dmpk.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
23
|
Callear SK, Johnston A, McLain SE, Imberti S. Conformation and interactions of dopamine hydrochloride in solution. J Chem Phys 2015; 142:014502. [DOI: 10.1063/1.4904291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Samantha K. Callear
- ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Andrew Johnston
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Sylvia E. McLain
- Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Silvia Imberti
- ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
24
|
Bigler DJ, Peterson LW, Cafiero M. Effects of implicit solvent and relaxed amino acid side chains on the MP2 and DFT calculations of ligand–protein structure and electronic interaction energies of dopaminergic ligands in the SULT1A3 enzyme active site. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Wang T, Cook I, Falany CN, Leyh TS. Paradigms of sulfotransferase catalysis: the mechanism of SULT2A1. J Biol Chem 2014; 289:26474-26480. [PMID: 25056952 DOI: 10.1074/jbc.m114.573501] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytosolic sulfotransferases (SULTs) regulate the activities of thousands of signaling small molecules via transfer of the sulfuryl moiety (-SO3) from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the hydroxyls and primary amines of acceptors. Sulfonation controls the affinities of ligands for their targets, and thereby regulates numerous receptors, which, in turn, regulate complex cellular responses. Despite their biological and medical relevance, basic SULT mechanism issues remain unresolved. To settle these issues, and to create an in-depth model of SULT catalysis, the complete kinetic mechanism of a representative member of the human SULT family, SULT2A1, was determined. The mechanism is composed of eight enzyme forms that interconvert via 22 rate constants, each of which was determined independently. The result is a complete quantitative description of the mechanism that accurately predicts complex enzymatic behavior. This is the first description of a SULT mechanism at this resolution, and it reveals numerous principles of SULT catalysis and resolves previously ambiguous issues. The structures and catalytic behaviors SULTs are highly conserved; hence, the mechanism presented here should prove paradigmatic for the family.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Charles N Falany
- Departments of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294-0019 and
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926.
| |
Collapse
|
26
|
In silico mechanistic profiling to probe small molecule binding to sulfotransferases. PLoS One 2013; 8:e73587. [PMID: 24039991 PMCID: PMC3765257 DOI: 10.1371/journal.pone.0073587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/28/2013] [Indexed: 01/01/2023] Open
Abstract
Drug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing severe side effects and adverse drug reactions, or their inhibition can lead to drug–drug interactions. We focus on sulfotransferases (SULTs), a family of phase II metabolizing enzymes, acting on a large number of drugs and hormones and showing important structural flexibility. Here we report a novel in silico structure-based approach to probe ligand binding to SULTs. We explored the flexibility of SULTs by molecular dynamics (MD) simulations in order to identify the most suitable multiple receptor conformations for ligand binding prediction. Then, we employed structure-based docking-scoring approach to predict ligand binding and finally we combined the predicted interaction energies by using a QSAR methodology. The results showed that our protocol successfully prioritizes potent binders for the studied here SULT1 isoforms, and give new insights on specific molecular mechanisms for diverse ligands’ binding related to their binding sites plasticity. Our best QSAR models, introducing predicted protein-ligand interaction energy by using docking, showed accuracy of 67.28%, 78.00% and 75.46%, for the isoforms SULT1A1, SULT1A3 and SULT1E1, respectively. To the best of our knowledge our protocol is the first in silico structure-based approach consisting of a protein-ligand interaction analysis at atomic level that considers both ligand and enzyme flexibility, along with a QSAR approach, to identify small molecules that can interact with II phase dug metabolizing enzymes.
Collapse
|
27
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
28
|
Han SW, Lee SW, Bahar O, Schwessinger B, Robinson MR, Shaw JB, Madsen JA, Brodbelt JS, Ronald PC. Tyrosine sulfation in a Gram-negative bacterium. Nat Commun 2013; 3:1153. [PMID: 23093190 DOI: 10.1038/ncomms2157] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/14/2012] [Indexed: 01/03/2023] Open
Abstract
Tyrosine sulfation, a well-characterized post-translation modification in eukaryotes, has not previously been reported in prokaryotes. Here, we demonstrate that the RaxST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase. We used a newly developed sulfotransferase assay and ultraviolet photodissociation mass spectrometry to demonstrate that RaxST catalyses sulfation of tyrosine 22 of the Xoo Ax21 (activator of XA21-mediated immunity) protein. These results demonstrate a previously undescribed post-translational modification in a prokaryotic species with implications for studies of host immune responses and bacterial cell-cell communication systems.
Collapse
Affiliation(s)
- Sang-Wook Han
- Department of Plant Pathology and the Genome Center, University of California, One Shields Ave, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
MP2//DFT calculations of interaction energies between acetaminophen and acetaminophen analogues and the aryl sulfotransferase active site. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Zhou T, Huang C, Chen Y, Xu J, Shanbhag PD, Chen G. Methamphetamine regulation of sulfotransferase 1A1 and 2A1 expression in rat brain sections. Neurotoxicology 2012; 34:212-8. [PMID: 23026138 DOI: 10.1016/j.neuro.2012.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/25/2012] [Accepted: 09/21/2012] [Indexed: 11/15/2022]
Abstract
Sulfotransferase catalyzed sulfation regulates the biological activities of various neurotransmitters/hormones and detoxifies xenobiotics. Rat sulfotransferase rSULT1A1 catalyzes the sulfation of neurotransmitters and xenobiotic phenolic compounds. rSULT2A1 catalyzes the sulfation of hydroxysteroids and xenobiotic alcoholic compounds. In this work, Western blot and real-time RT-PCR were used to investigate the effect of methamphetamine on rSULT1A1 and rSULT2A1 protein and mRNA expression in rat cerebellum, frontal cortex, hippocampus, and striatum. After 1-day treatment, significant induction of rSULT1A1 was observed only in the cerebellum; rSULT2A1 was induced significantly in the cerebellum, frontal cortex, and hippocampus. After 7 days of exposure, rSULT1A1 was induced in the cerebellum, frontal cortex, and hippocampus, while rSULT2A1 was induced significantly in all four regions. Western blot results agreed with the real-time RT-PCR results, suggesting that the induction occurred at the gene transcriptional level. Results indicate that rSULT1A1 and rSULT2A1 are expressed in rat frontal cortex, cerebellum, striatum, and hippocampus. rSULT1A1 and rSULT2A1are inducible by methamphetamine in rat brain sections in a time dependable manner. rSULT2A1 is more inducible than rSULT1A1 by methamphetamine in rat brain sections. Induction activity of methamphetamine is in the order of cerebellum>frontal cortex, hippocampus>striatum. These results suggest that the physiological functions of rSULT1A1 and rSULT2A1 in different brain regions can be affected by methamphetamine.
Collapse
Affiliation(s)
- Tianyan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
31
|
Grouzmann E, Gualtierotti JB, Gerber-Lemaire S, Abid K, Brakch N, Pedretti A, Testa B, Vistoli G. Lack of Enantioselectivity in the SULT1A3-catalyzed Sulfoconjugation of Normetanephrine Enantiomers: An In Vitro
and Computational Study. Chirality 2012; 25:28-34. [DOI: 10.1002/chir.22108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/24/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Eric Grouzmann
- Service de Biomédecine; Lausanne University Hospital (CHUV); Lausanne Switzerland
| | | | | | - Karim Abid
- Service de Biomédecine; Lausanne University Hospital (CHUV); Lausanne Switzerland
| | - Noureddine Brakch
- Department of Internal Medicine, Service of Nephrology; Lausanne University Hospital (CHUV); Lausanne Switzerland
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Facoltà di Farmacia; Università degli Studi di Milano; Milano Italy
| | - Bernard Testa
- Department of Pharmacy; Lausanne University Hospital (CHUV); Lausanne Switzerland
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Facoltà di Farmacia; Università degli Studi di Milano; Milano Italy
| |
Collapse
|
32
|
Dong D, Ako R, Wu B. Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity. Expert Opin Drug Metab Toxicol 2012; 8:635-46. [PMID: 22512672 DOI: 10.1517/17425255.2012.677027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Cytosolic sulfotransferases (SULTs) are the enzymes that catalyze the sulfonation reaction, an important metabolic pathway for numerous endogenous and exogenous compounds. Human SULTs exhibit complex patterns of broad, differential and overlapping substrate selectivity. Moreover, these enzymes often display substrate inhibition kinetics (i.e., inhibition of the enzyme activity at high substrate concentrations). AREAS COVERED At present, the crystal structures for 12 human SULTs (i.e., SULT1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, 1E1, 2A1, 2B1a, 2B1b and 4A1) are available, many of which are in complex with a substrate. This review describes the similarities and differences in these structures (particularly the active-site structures) of SULT enzymes. The authors also discuss the structural basis for understanding the catalytic mechanism, the substrate inhibition mechanisms, the cofactor (3'-phosphoadenosine 5'-phosphosulfate or PAPS) binding and the substrate recognition. EXPERT OPINION Correlations of the structural features (including conformational flexibility) in the active sites with the substrate profiles of several SULTs have been well established. One is encouraged to closely integrate in silico approaches with the structural knowledge of the active sites for development of a rationalized and accurate tool that is able to predict metabolism of SULTs toward chemicals and drug candidates.
Collapse
Affiliation(s)
- Dong Dong
- University of Houston, College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, Houston, TX 77030, USA
| | | | | |
Collapse
|
33
|
Meng S, Wu B, Singh R, Yin T, Morrow JK, Zhang S, Hu M. SULT1A3-mediated regiospecific 7-O-sulfation of flavonoids in Caco-2 cells can be explained by the relevant molecular docking studies. Mol Pharm 2012; 9:862-73. [PMID: 22352375 DOI: 10.1021/mp200400s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flavonoids are polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5'-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 monohydroxyl flavonoids with a -OH group at the 3, 4', 5 or 7 position, followed by 5 dihydroxyl flavonoids, and 2 trihydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at the 7-OH position in Caco-2 cell lysates with minor amounts of 4'-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 μM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells.
Collapse
Affiliation(s)
- Shengnan Meng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Crystal structure of sulfotransferase STF9 from Mycobacterium avium. Mol Cell Biochem 2011; 361:97-104. [PMID: 21959978 DOI: 10.1007/s11010-011-1093-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Sulfotransferases catalyze the sulfate conjugation of a wide variety of endogenous and exogenous molecules. Human pathogenic mycobacteria produce numerous sulfated molecules including sulfolipids which are well related to the virulence of several strains. The genome of Mycobacterium avium encodes eight putative sulfotransferases (stf1, stf4-stf10). Among them, STF9 shows higher similarity to human heparan sulfate 3-O-sulfotransferase isoforms than to the bacterial STs. Here, we determined the crystal structure of sulfotransferase STF9 in complex with a sulfate ion and palmitic acid at a resolution of 2.6 Å. STF9 has a spherical structure utilizing the classical sulfotransferase fold. STF9 exclusively possesses three N-terminal α-helices (α1, α2, α3) parallel to the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) binding motif. The sulfate ion binds to the PAPS binding structural motif and the palmitic acid molecule binds in the deep cleft of the predicted substrate binding site suggesting the nature of endogenous acceptor substrate of STF9 resembles palmitic acid. The substrate binding site is covered by a flexible loop which may have involvement in endogenous substrate recognition. Based on the mutational study (Hossain et al., Mol Cell Biochem 350:155-162; 2011) and structural resemblance of STF9-sulfate ion-palmitic acid complex to the hHS3OST3 complex with PAP (3'-phosphoadenosine-5'-phosphate) and an acceptor sugar chain, Glu170 and Arg96 are appeared to be catalytic residues in STF9 sulfuryl transfer mechanism.
Collapse
|
35
|
Abstract
Inhibition of enzyme activity at high substrate concentrations, so-called "substrate inhibition," is commonly observed and has been recognized in drug metabolism reactions since the last decade. Although the importance of such "atypical" kinetics in vivo remains poorly understood, a substrate with substrate inhibition kinetics has been shown to unconventionally alter the metabolism of other substrates. In recent years, it is becoming increasingly evident that the mechanisms for substrate inhibition are highly complex, which are possibly contributed by multiple (at least two) binding sites within the enzyme protein, the formation of a ternary dead-end enzyme complex, and/or the ligand-induced changes in enzyme conformation. This review primarily discusses the mechanisms for substrate inhibition displayed by the important drug-metabolizing enzymes, such as cytochrome p450s, UDP-glucuronyltransferases, and sulfotransferases. Kinetic modeling of substrate inhibition in the absence or presence of a modifier is another central issue in this review because of its importance in the determination of kinetic parameters and in vitro/in vivo predictions.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas, USA.
| |
Collapse
|
36
|
Yalcin EB, Stangl H, Pichu S, Mather TN, King RS. Monoamine neurotransmitters as substrates for novel tick sulfotransferases, homology modeling, molecular docking, and enzyme kinetics. ACS Chem Biol 2011; 6:176-84. [PMID: 21043483 DOI: 10.1021/cb100266g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blacklegged ticks (Ixodes scapularis) transmit the causative agent of Lyme disease in the Northeastern United States. Current research focuses on elucidating biochemical pathways that may be disrupted to prevent pathogen transmission, thereby preventing disease. Genome screening reported transcripts coding for two putative sulfotransferases in whole tick extracts of the nymphal and larval stages. Sulfotransferases are known to sulfonate phenolic and alcoholic receptor agonists such as 17β-estradiol, thereby inactivating the receptor ligands. We used bioinformatic approaches to predict substrates for Ixosc Sult 1 and Ixosc Sult 2 and tested the predictions with biochemical assays. Homology models of 3D protein structure were prepared, and visualization of the electrostatic surface of the ligand binding cavities showed regions of negative electrostatic charge. Molecular docking identified potential substrates including dopamine, R-octopamine and S-octopamine, which docked into Ixosc Sult 1 with favorable binding affinity and correct conformation for sulfonation. Dopamine, but not R- or S-octopamine, also docked into Ixosc Sult 2 in catalytic binding mode. The predictions were confirmed using cytosolic fractions of whole tick extracts. Dopamine was a good substrate (K(m) = 0.1-0.4 μM) for the native Ixodes scapularis sulfotransferases from larval and nymphal stages regardless of their fed/unfed status. Octopamine sulfonation was detected only after feeding when gene expression data suggests that Ixosc Sult 1 is present. Because dopamine is known to stimulate salivation in ticks through receptor stimulation, these results imply that the function(s) of Ixosc Sult 1 or 2 may include inactivation of the salivation signal via sulfonation of dopamine and/or octopamine.
Collapse
Affiliation(s)
- Emine Bihter Yalcin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and ‡ Center for Vector-Borne Disease, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Hubert Stangl
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and ‡ Center for Vector-Borne Disease, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sivakamasundari Pichu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and ‡ Center for Vector-Borne Disease, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Thomas N. Mather
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and ‡ Center for Vector-Borne Disease, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Roberta S. King
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and ‡ Center for Vector-Borne Disease, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
37
|
Santos SM, Costa PJ, Lankshear MD, Beer PD, Félix V. Molecular dynamics study of a heteroditopic-calix[4]diquinone-assisted transfer of KCl and dopamine through a water-chloroform liquid-liquid interface. J Phys Chem B 2010; 114:11173-80. [PMID: 20690692 DOI: 10.1021/jp100724e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of two heteroditopic calix[4]diquinone receptors to transport a KCl ion-pair and a dopamine zwitterion through a water-chloroform interface was investigated via molecular dynamics (MD) simulations. Gas-phase conformational analysis has been carried on KCl and dopamine receptor binding associations and the lowest energy structures found in both cases show that the recognition of KCl and dopamine zwitterion occurs through multiple and cooperative N-H...anion and O...cation bonding interactions, with the receptor adopting equivalent folded conformations stabilized by pi-stacking interactions. The unconstrained MD simulations performed on KCl and dopamine complexes inserted in either the chloroform or water phase revealed that receptors are preferentially located at the interface with the hydrophobic tert-butyl groups of the calix[4]diquinone moiety immersed in the chloroform bulk while the polar anion binding cavity is directed toward the water phase. When the KCl complex is placed in chloroform, the release of the ion-pair occurs only after the first contact with the water interface, being a nonsimultaneous event, with the chloride anion leaving the receptor before the potassium cation. The dopamine, via the -NH(3)(+) binding entity, remains bound to the receptor during the entire time of the MD simulation (10 ns). In contrast, when both complexes were inserted in the water bulk, the full release of KCl and dopamine are fast events. The potentials of mean force (PMFs), associated with the migration of the complexes from chloroform to water through the interface, were calculated from steered molecular dynamics (SMD) simulations. The PMFs for the free KCl and zwitterionic dopamine migrations were also obtained for comparison purposes. The transport of KCl from water to chloroform (the reverse path) mediated by the receptor has a free energy barrier estimated in 6.50 kcal mol(-1), which is 3.0 kcal mol(-1) smaller than that found for the free KCl. The transport of dopamine complex along the reverse path is characterized by downhill energy profile, with a small free energy barrier of 6.56 kcal mol(-1).
Collapse
Affiliation(s)
- Sérgio M Santos
- Departamento de Química-CICECO and Secção Autonóma de Ciências da Saúde, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
38
|
Lu J, Li H, Zhang J, Li M, Liu MY, An X, Liu MC, Chang W. Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2. Biochem Biophys Res Commun 2010; 396:429-34. [PMID: 20417180 DOI: 10.1016/j.bbrc.2010.04.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 11/29/2022]
Abstract
The cytosolic sulfotransferases (SULTs) in vertebrates catalyze the sulfonation of endogenous thyroid/steroid hormones and catecholamine neurotransmitters, as well as a variety of xenobiotics, using 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as the sulfonate donor. In this study, we determined the structures of SULT1A2 and an allozyme of SULT1A1, SULT1A1 *3, bound with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.4 and 2.3A resolution, respectively. The conformational differences between the two structures revealed a plastic substrate-binding pocket with two channels and a switch-like substrate selectivity residue Phe247, providing clearly a structural basis for the substrate inhibition. In SULT1A2, Tyr149 extends approximately 2.1A further to the inside of the substrate-binding pocket, compared with the corresponding His149 residue in SULT1A1 *3. Site-directed mutagenesis study showed that, compared with the wild-type SULT1A2, mutant Tyr149Phe SULT1A2 exhibited a 40 times higher K(m) and two times lower V(max) with p-nitrophenol as substrate. These latter data imply a significant role of Tyr149 in the catalytic mechanism of SULT1A2.
Collapse
Affiliation(s)
- Jinghua Lu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hsu CC, Lu LY, Yang YS. From sequence and structure of sulfotransferases and dihydropyrimidinases to an understanding of their mechanisms of action and function. Expert Opin Drug Metab Toxicol 2010; 6:591-601. [DOI: 10.1517/17425251003601987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
|
41
|
Huang C, Chen Y, Zhou T, Chen G. Sulfation of dietary flavonoids by human sulfotransferases. Xenobiotica 2009; 39:312-22. [PMID: 19350454 DOI: 10.1080/00498250802714915] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dietary flavonoids catechin, epicatechin, eriodictyol, and hesperetin were investigated as substrates and inhibitors of human sulfotransferases (hSULTs). Purified recombinant proteins and human intestine cytosol were used as enzyme sources. hSULT1A1 and hSULT1A3 as well as human intestine cytosol can catalyse the sulfation of the investigated flavonoids. Sulfation of catechin, epicatechin, eriodictyol, and hesperetin by recombinant hSULTs showed substrate inhibition at high flavonoid concentrations. Hesperetin and eriodictyol are potent inhibitors of purified hSULT1A1, hSULT1A3, hSULT1E1, and hSULT2A1. Catechin and epicatechin inhibited hSULT1A1 and hSULT1A3, but not hSULT1E1 and hSULT2A1. The sulfation efficacy and potency of inhibition is related to the C-ring structure of flavonoids. These results suggest that dietary flavonoids may regulate human SULT activity and, therefore, affect the regulation of hormones and neurotransmitters, detoxification of drugs, and the bioactivation of pro- carcinogens and pro-mutagens.
Collapse
Affiliation(s)
- C Huang
- Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|
42
|
Yasuda S, Yasuda T, Hui Y, Liu MY, Suiko M, Sakakibara Y, Liu MC. Concerted action of the cytosolic sulfotransferase, SULT1A3, and catechol-O-methyltransferase in the metabolism of dopamine in SK-N-MC human neuroblastoma cells. Neurosci Res 2009; 64:273-9. [PMID: 19447296 DOI: 10.1016/j.neures.2009.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/06/2009] [Accepted: 03/19/2009] [Indexed: 11/27/2022]
Abstract
Conjugation reactions catalyzed by the cytosolic sulfotransferase, SULT1A3, or catechol-O-methyltransferase (COMT) are known to be involved in the regulation and homeostasis of dopamine and other monoamine neurotransmitters. Whether different conjugation reactions may act in a concerted manner, however, remains unclear. The current study aimed to investigate the concerted action of SULT1A3 and COMT in dopamine metabolism. Analysis of the medium of SK-N-MC cells, metabolically labeled with [(35)S]sulfate in the presence of dopamine, revealed the generation and release of predominantly [(35)S]sulfated 3-methyldopamine and, to a lesser extent [(35)S]sulfated dopamine. Addition to the labeling medium of tropolone, a COMT inhibitor, enhanced the production of [(35)S]sulfated dopamine, with a concomitant decrease of [(35)S]sulfated 3-methyldopamine. Enzymatic assays using the eleven known human cytosolic SULTs revealed SULT1A3 as the major enzyme responsible for the sulfation of both dopamine and 3-methyldopamine. Kinetic analysis showed that the catalytic efficiency of SULT1A3 with 3-methyldopamine was 1.6 times than that with dopamine. Using subcellular fractions prepared from SK-N-MC cells, the majority of COMT dopamine-methylating activity was found to be present in the cytosol. Collectively, these results imply a concerted action of sulfation and methylation in the irreversible inactivation and disposal of excess dopamine in SK-N-MC cells.
Collapse
Affiliation(s)
- Shin Yasuda
- Department of Pharmacology, College of Pharmacy, The University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Crystal structure of mSULT1D1, a mouse catecholamine sulfotransferase. FEBS Lett 2008; 582:3909-14. [DOI: 10.1016/j.febslet.2008.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 11/30/2022]
|
44
|
Conformation, catalytic site, and enzymatic mechanism of the PR10 allergen-related enzyme norcoclaurine synthase. Biochem J 2008; 413:281-90. [DOI: 10.1042/bj20080306] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The enzyme NCS [(S)-norcoclaurine synthase; EC 4.2.1.78] found in the common meadow rue, Thalictrum flavum, and other plant species, is involved in the biosynthesis of BIAs (benzylisoquinoline alkaloids). This group of plant secondary metabolites comprises pharmacologically-active compounds such as morphine and codeine. NCS catalyses the condensation of 4-HPAA (4-hydroxyphenylacetaldehyde) and dopamine to (S)-norcoclaurine, the common precursor of all plant BIAs. Although enzymatic properties of NCS and mechanistic aspects of the reaction have been studied in detail, no structural information on NCS was available so far. The enzyme shows significant sequence homology to members of the PR10 proteins (class 10 of pathogenesis-related proteins) such as the major birch pollen allergen Bet v 1. Our CD and NMR spectroscopic data indicated high similarity of the NCS and the Bet v 1 fold and allowed us to model NCS using Bet v 1 as a template. Virtually complete backbone assignment of the NCS sequence was used to study substrate binding by NMR titration experiments. Although binding of 4-HPAA seems to induce side-chain rearrangements in an extensive part of the protein, the putative distinct interaction site for dopamine could be clearly identified. The oligomerization state of NCS that reportedly plays an important role in enzyme functionality was determined to be concentration-dependent by SEC (size-exclusion chromatography) as well as NMR relaxation measurements, and the enzyme was found to be predominantly a monomer at the low micromolar concentrations used for activity assays.
Collapse
|
45
|
Lu LY, Hsieh YC, Liu MY, Lin YH, Chen CJ, Yang YS. Identification and characterization of two amino acids critical for the substrate inhibition of human dehydroepiandrosterone sulfotransferase (SULT2A1). Mol Pharmacol 2008; 73:660-8. [PMID: 18042734 DOI: 10.1124/mol.107.041038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Substrate inhibition is a characteristic feature of many cytosolic sulfotransferases. The differences between the complex structures of SULT2A1/DHEA and SULT2A1/PAP or SULT2A1/ADT (Protein Data Bank codes are 1J99, 1EFH, and 1OV4, respectively) have enabled us to elucidate the specific amino acids responsible for substrate inhibition. Based on the structural analyses, substitution of the smaller residue alanine for Tyr-238 (Y238A) significantly increases the K(i) value for dehydroepiandrosterone (DHEA) and totally eliminates substrate inhibition for androsterone (ADT). In addition, Met-137 was proposed to regulate the binding orientations of DHEA and ADT in SULT2A1. Complete elimination or regeneration of substrate inhibition for SULT2A1 with DHEA or ADT as substrate, respectively, was demonstrated with the mutations of Met-137 on Y238A mutant. Analysis of the Met-137 mutants and Met-137/Tyr-238 double mutants uncovered the relationship between substrate binding orientations and inhibition in SULT2A1. Our data indicate that, in the substrate inhibition mode, Tyr-238 regulates the release of bound substrate, and Met-137 controls substrate binding orientation of DHEA and ADT in SULT2A1. The proposed substrate inhibition mechanism is further confirmed by the crystal structures of SULT2A1 mutants at Met-137. We propose that both substrate binding orientations exhibited substrate inhibition. In addition, a corresponding residue in other cytosolic sulfotransferases was shown to have a function similar to that of Tyr-238 in SULT2A1.
Collapse
Affiliation(s)
- Lu-Yi Lu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC, 75 Po-Ai Street, Hsinchu30050, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
46
|
Itäaho K, Alakurtti S, Yli-Kauhaluoma J, Taskinen J, Coughtrie MWH, Kostiainen R. Regioselective sulfonation of dopamine by SULT1A3 in vitro provides a molecular explanation for the preponderance of dopamine-3-O-sulfate in human blood circulation. Biochem Pharmacol 2007; 74:504-10. [PMID: 17548063 DOI: 10.1016/j.bcp.2007.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/28/2007] [Accepted: 05/03/2007] [Indexed: 11/29/2022]
Abstract
SULT1A3 is an enzyme that catalyzes the sulfonation of many endogenous and exogenous phenols and catechols. The most important endogenous substrate is dopamine (DA), which is often used as a probe substrate for SULT1A3. We developed a new method for analyzing the SULT1A3 reaction products by high-performance liquid chromatography (HPLC) with electrochemical detection. The sulfonate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), DA and the two dopamine sulfates, DA-3-O-sulfate and DA-4-O-sulfate, can be separated within 3 min. This enables quantitation of the sulfates without radioactive PAPS or the precipitation of unreacted PAPS. Both sulfates were synthesized as reference substances and characterized by (1)H and (13)C nuclear magnetic resonance (NMR), mass spectrometry (MS) and tandem mass spectrometry (MS/MS). The purity of the dopamine sulfates was estimated by HPLC using a diode array detector. We determined the enzyme kinetic parameters for formation of DA-3-O-sulfate and DA-4-O-sulfate using purified recombinant human SULT1A3. The reactions followed Michaelis-Menten kinetics up to 50 microM DA concentration, and strong substrate inhibition was observed at higher concentrations. The apparent K(m) values for sulfonation at both hydroxy groups were similar (2.21+/-0.764 and 2.59+/-1.06 microM for DA-4-O-sulfate and DA-3-O-sulfate, respectively), but the V(max) was approximately six times higher for the formation of the 3-O-sulfate (344+/-139 nmol/min/mg protein) than the 4-O-sulfate (45.4+/-16.5 nmol/min/mg protein). These results are in accordance with the observation that DA-3-O-sulfate is more abundant in human blood than DA-4-O-sulfate and that in the crystal structure of SULT1A3 with dopamine bound to the active site, the 3-hydroxy group is aligned to form hydrogen bonds with catalytic residues of the enzyme.
Collapse
Affiliation(s)
- Katriina Itäaho
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, PO Box 56 (Viikinkaari 5 E), FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
47
|
Allali-Hassani A, Pan PW, Dombrovski L, Najmanovich R, Tempel W, Dong A, Loppnau P, Martin F, Thonton J, Edwards AM, Bochkarev A, Plotnikov AN, Vedadi M, Arrowsmith CH. Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol 2007; 5:e97. [PMID: 17425406 PMCID: PMC1847840 DOI: 10.1371/journal.pbio.0050097] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 02/09/2007] [Indexed: 11/05/2022] Open
Abstract
The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity is crucial for understanding steroid and hormone metabolism, drug sensitivity, pharmacogenomics, and response to environmental toxins. We have determined the crystal structures of five hSULTs for which structural information was lacking, and screened nine of the 12 hSULTs for binding and activity toward a panel of potential substrates and inhibitors, revealing unique "chemical fingerprints" for each protein. The family-wide analysis of the screening and structural data provides a comprehensive, high-level view of the determinants of substrate binding, the mechanisms of inhibition by substrates and environmental toxins, and the functions of the orphan family members SULT1C3 and SULT4A1. Evidence is provided for structural "priming" of the enzyme active site by cofactor binding, which influences the spectrum of small molecules that can bind to each enzyme. The data help explain substrate promiscuity in this family and, at the same time, reveal new similarities between hSULT family members that were previously unrecognized by sequence or structure comparison alone.
Collapse
Affiliation(s)
| | - Patricia W Pan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ludmila Dombrovski
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Rafael Najmanovich
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- European Bioinformatics Institute, Cambridge, United Kingdom
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Martin
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Janet Thonton
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- European Bioinformatics Institute, Cambridge, United Kingdom
| | - Aled M Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Bochkarev
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexander N Plotnikov
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Shi R, Lamb SS, Bhat S, Sulea T, Wright GD, Matte A, Cygler M. Crystal structure of StaL, a glycopeptide antibiotic sulfotransferase from Streptomyces toyocaensis. J Biol Chem 2007; 282:13073-86. [PMID: 17329243 DOI: 10.1074/jbc.m611912200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the past decade, antimicrobial resistance has emerged as a major public health crisis. Glycopeptide antibiotics such as vancomycin and teicoplanin are clinically important for the treatment of Gram-positive bacterial infections. StaL is a 3'-phosphoadenosine 5'-phosphosulfate-dependent sulfotransferase capable of sulfating the cross-linked heptapeptide substrate both in vivo and in vitro, yielding the product A47934, a unique teicoplanin-class glycopeptide antibiotic. The sulfonation reaction catalyzed by StaL constitutes the final step in A47934 biosynthesis. Here we report the crystal structure of StaL and its complex with the cofactor product 3'-phosphoadenosine 5'-phosphate. This is only the second prokaryotic sulfotransferase to be structurally characterized. StaL belongs to the large sulfotransferase family and shows higher similarity to cytosolic sulfotransferases (ST) than to the bacterial ST (Stf0). StaL has a novel dimerization motif, different from any other STs that have been structurally characterized. We have also applied molecular modeling to investigate the binding mode of the unique substrate, desulfo-A47934. Based on the structural analysis and modeling results, a series of residues was mutated and kinetically characterized. In addition to the conserved residues (Lys(12), His(67), and Ser(98)), molecular modeling, fluorescence quenching experiments, and mutagenesis studies identified several other residues essential for substrate binding and/or activity, including Trp(34), His(43), Phe(77), Trp(132), and Glu(205).
Collapse
Affiliation(s)
- Rong Shi
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|
49
|
Najmanovich RJ, Allali-Hassani A, Morris RJ, Dombrovsky L, Pan PW, Vedadi M, Plotnikov AN, Edwards A, Arrowsmith C, Thornton JM. Analysis of binding site similarity, small-molecule similarity and experimental binding profiles in the human cytosolic sulfotransferase family. Bioinformatics 2007; 23:e104-9. [PMID: 17237076 DOI: 10.1093/bioinformatics/btl292] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION In the present work we combine computational analysis and experimental data to explore the extent to which binding site similarities between members of the human cytosolic sulfotransferase family correlate with small-molecule binding profiles. Conversely, from a small-molecule point of view, we explore the extent to which structural similarities between small molecules correlate to protein binding profiles. RESULTS The comparison of binding site structural similarities and small-molecule binding profiles shows that proteins with similar small-molecule binding profiles tend to have a higher degree of binding site similarity but the latter is not sufficient to predict small-molecule binding patterns, highlighting the difficulty of predicting small-molecule binding patterns from sequence or structure. Likewise, from a small-molecule perspective, small molecules with similar protein binding profiles tend to be topologically similar but topological similarity is not sufficient to predict their protein binding patterns. These observations have important consequences for function prediction and drug design.
Collapse
Affiliation(s)
- Rafael J Najmanovich
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus Cambridge CB10 1SD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dombrovski L, Dong A, Bochkarev A, Plotnikov AN. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP). Proteins 2006; 64:1091-4. [PMID: 16804942 DOI: 10.1002/prot.21048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luidmila Dombrovski
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|