1
|
Qin J, Lv M, Jiang Z, Meng X, Wang Y, Cui J, Wang J, Wang Q. Tuo-Min-Ding-Chuan Decoction Alleviate Ovalbumin-Induced Allergic Asthma by Inhibiting Mast Cell Degranulation and Down-Regulating the Differential Expression Proteins. Front Pharmacol 2021; 12:725953. [PMID: 34630102 PMCID: PMC8493414 DOI: 10.3389/fphar.2021.725953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Allergic asthma is a stubborn chronic inflammatory disease, and is considered a co-result of various immune cells, especially mast cells, eosinophils and T lymphocytes. At present, the treatment methods of allergic asthma are limited and the side effects are obvious. Traditional Chinese medicine has been used to treat diseases for thousands of years in China. One such example is the treatment of allergic asthma, which take the characteristics of less adverse reactions and obvious curative effect. Tuo-Min-Ding-Chuan Decoction (TMDCD) is a traditional Chinese medicine compound for the treatment of allergic asthma optimized from Ma-Xing-Gan-Shi Decoction (MXGSD), which was put forward in Treatise on Febrile Diseases by Zhang Zhongjing in the Eastern Han Dynasty. The compound shows a significant clinical effect, but the mechanism of its influence on the immune system is still unclear. The purpose of this study was to observe whether TMDCD could alleviate the symptoms of ovalbumin (OVA) challenged allergic asthma mice, and to explore its immune regulatory mechanism, especially on mast cell (MC) degranulation. The results showed TMDCD could not only reduce the airway hyperresponsiveness (AHR), inflammatory cell infiltration and mucus secretion in the lung tissue of OVA challenged mice, but also decrease the levels of total IgE, OVA-specific IgE, histamine and LTC4 in serum. We found that TMDCD can downregulate the expression of Fractalkine, Tryptase ε, IL-25, CCL19, MCP-1, OX40L, Axl, CCL22, CD30, G-CSF, E-selectin, OPN, CCL5, P-selectin, Gas6, TSLP in OVA challenged mice serum by using mouse cytokines antibody array. It has been reported in some literatures that these differentially expressed proteins are related to the occurrence of allergic asthma, such as tryptase ε, MCP-1, CCL5, etc. can be released by MC. And the results of in vitro experiments showed that TMDCD inhibited the degranulation of RBL-2H3 cells stimulated by DNP-IgE/BSA. Taken together, we made the conclusion that TMDCD could reduce the infiltration of inflammatory cells in lung tissue and alleviate airway remodeling in mice with allergic asthma, showed the effects of anti-inflammatory and antiasthmatic. TMDCD could also reduce the levels of IgE, histamine, LTC4, Tryptase ε, and other MC related proteins in the serum of allergic asthma mice, and the in vitro experiments showed that TMDCD could inhibit IgE mediated degranulation and histamine release of RBL-2H3 cells, proved its anti allergic effect.
Collapse
Affiliation(s)
- Jingbo Qin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Mingsheng Lv
- Respiratory Department, BUCM Third Affiliated Hospital, Beijing, China
| | - Zeqiang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Xianghe Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Yi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Jiarui Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, BUCM, Beijing, China
| | - Qi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, BUCM, Beijing, China
| |
Collapse
|
2
|
Raman K, Trivedi NN, Raymond WW, Ganesan R, Kirchhofer D, Verghese GM, Craik CS, Schneider EL, Nimishakavi S, Caughey GH. Mutational tail loss is an evolutionary mechanism for liberating marapsins and other type I serine proteases from transmembrane anchors. J Biol Chem 2013; 288:10588-98. [PMID: 23447538 DOI: 10.1074/jbc.m112.449033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and mouse marapsins (Prss27) are serine proteases preferentially expressed by stratified squamous epithelia. However, mouse marapsin contains a transmembrane anchor absent from the human enzyme. To gain insights into physical forms, activities, inhibition, and roles in epithelial differentiation, we traced tail loss in human marapsin to a nonsense mutation in an ancestral ape, compared substrate preferences of mouse and human marapsins with those of the epithelial peptidase prostasin, designed a selective substrate and inhibitor, and generated Prss27-null mice. Phylogenetic analysis predicts that most marapsins are transmembrane proteins. However, nonsense mutations caused membrane anchor loss in three clades: human/bonobo/chimpanzee, guinea pig/degu/tuco-tuco/mole rat, and cattle/yak. Most marapsin-related proteases, including prostasins, are type I transmembrane proteins, but the closest relatives (prosemins) are not. Soluble mouse and human marapsins are tryptic with subsite preferences distinct from those of prostasin, lack general proteinase activity, and unlike prostasins resist antiproteases, including leupeptin, aprotinin, serpins, and α2-macroglobulin, suggesting the presence of non-canonical active sites. Prss27-null mice develop normally in barrier conditions and are fertile without overt epithelial defects, indicating that marapsin does not play critical, non-redundant roles in development, reproduction, or epithelial differentiation. In conclusion, marapsins are conserved, inhibitor-resistant, tryptic peptidases. Although marapsins are type I transmembrane proteins in their typical form, they mutated independently into anchorless forms in several mammalian clades, including one involving humans. Similar pathways appear to have been traversed by prosemins and tryptases, suggesting that mutational tail loss is an important means of evolving new functions of tryptic serine proteases from transmembrane ancestors.
Collapse
Affiliation(s)
- Kavita Raman
- Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Li W, Danilenko DM, Bunting S, Ganesan R, Sa S, Ferrando R, Wu TD, Kolumam GA, Ouyang W, Kirchhofer D. The serine protease marapsin is expressed in stratified squamous epithelia and is up-regulated in the hyperproliferative epidermis of psoriasis and regenerating wounds. J Biol Chem 2009; 284:218-228. [PMID: 18948266 DOI: 10.1074/jbc.m806267200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The trypsin-like serine protease marapsin is a member of the large protease gene cluster at human chromosome 16p13.3, which also contains the structurally related proteases testisin, tryptase epsilon, tryptase gamma, and EOS. To gain insight into the biological functions of marapsin, we undertook a detailed gene expression analysis. It showed that marapsin expression was restricted to tissues containing stratified squamous epithelia and was absent or only weakly expressed in all other tissues, including the pancreas. Marapsin was constitutively expressed in nonkeratinizing stratified squamous epithelia of human esophagus, tonsil, cervix, larynx, and cornea. In the keratinizing stratified squamous epidermis of skin, however, its expression was induced only during epidermal hyperproliferation, such as in psoriasis and in murine wound healing. In fact, marapsin was the second most strongly up-regulated protease in psoriatic lesions, where expression was localized to the upper region of the hyperplastic epidermis. Similarly, in the hyperproliferative epithelium of regenerating murine skin wounds, marapsin localized to the suprabasal layers, where keratinocytes undergo squamous differentiation. The transient up-regulation of marapsin, which closely correlated with re-epithelialization, was virtually absent in a genetic mouse model of delayed wound closure. These results suggested a function during the process of re-epithelialization. Furthermore, in reconstituted human epidermis, a model system of epidermal differentiation, members of the IL-20 subfamily of cytokines, such as IL-22, induced marapsin expression. Consistent with a physiologic role in marapsin regulation, IL-22 was also strongly expressed in re-epithelializing skin wounds. Marapsin's restricted expression, localization, and cytokine-inducible expression suggest a role in the terminal differentiation of keratinocytes in hyperproliferating squamous epithelia.
Collapse
Affiliation(s)
- Wei Li
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Dimitry M Danilenko
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Stuart Bunting
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Rajkumar Ganesan
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Susan Sa
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Ronald Ferrando
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Thomas D Wu
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Ganesh A Kolumam
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Wenjun Ouyang
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080
| | - Daniel Kirchhofer
- Departments of Protein Engineering, Pathology, Tumor Biology and Angiogenesis, Bioinformatics, and Immunology, Genentech, Inc., South San Francisco, California 94080.
| |
Collapse
|
4
|
Kaushik S, Massey AC, Cuervo AM. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 2006; 25:3921-33. [PMID: 16917501 PMCID: PMC1560360 DOI: 10.1038/sj.emboj.7601283] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 07/25/2006] [Indexed: 12/24/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins in lysosomes. The limiting step of this type of autophagy is the binding of substrates to the lysosome-associated membrane protein type 2A (LAMP-2A). In this work, we identify a dynamic subcompartmentalization of LAMP-2A in the lysosomal membrane, which underlies the molecular basis for the regulation of LAMP-2A function in CMA. A percentage of LAMP-2A localizes in discrete lysosomal membrane regions during resting conditions, but it exits these regions during CMA activation. Disruption of these regions by cholesterol-depleting agents or expression of a mutant LAMP-2A excluded from these regions enhances CMA activity, whereas loading of lysosomes with cholesterol significantly reduces CMA. Organization of LAMP-2A into multimeric complexes, required for translocation of substrates into lysosomes via CMA, only occurs outside the lipid-enriched membrane microdomains, whereas the LAMP-2A located within these regions is susceptible to proteolytic cleavage and degradation. Our results support that changes in the dynamic distribution of LAMP-2A into and out of discrete microdomains of the lysosomal membrane contribute to regulate CMA.
Collapse
Affiliation(s)
- Susmita Kaushik
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ashish C Massey
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Anatomy and Structural Biology, Ullmann Building Room 611D, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Tel.: +1 718 430 2689; Fax: +1 718 430 8975; E-mail:
| |
Collapse
|
5
|
Abstract
In 1960, a trypsin-like activity was found in mast cells [Glenner GG & Cohen LA (1960) Nature 185, 846-847] and this activity is now commonly referred to as 'tryptase'. Over the years, much knowledge about mast cell tryptase has been gathered, and a recent (18 January 2006) PubMed search for the keywords 'tryptase + mast cell*' retrieved 1661 articles. However, still very little is known about its true biological function. For example, the true physiological substrate(s) for mast cell tryptase has not been identified, and the potential role of tryptase in mast cell-related disease is not understood. Mast cell tryptase has several unique features, with perhaps the most remarkable being its organization into a tetrameric state with all of the active sites oriented towards a narrow central pore and its consequent complete resistance towards endogenous macromolecular protease inhibitors. Much effort has been invested to elucidate these properties of tryptase. In this review we summarize the current knowledge of mast cell tryptase, including novel insights into its possible biological functions and mechanisms of regulation.
Collapse
Affiliation(s)
- Jenny Hallgren
- Department of Molecular Biosciences, The Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | |
Collapse
|