1
|
Faraj SE, Valsecchi WM, Cerf NT, Fedosova NU, Rossi RC, Montes MR. The interaction of Na +, K +, and phosphate with the gastric H,K-ATPase. Kinetics of E1-E2 conformational changes assessed by eosin fluorescence measurements. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183477. [PMID: 32949561 DOI: 10.1016/j.bbamem.2020.183477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
H,K-ATPase and Na,K-ATPase show the highest degree of sequence similarity among all other members of the P-type ATPases family. To explore their common features in terms of ligand binding, we evaluated conformational transitions due to the binding of Na+, K+ and Pi in the H,K-ATPase, and compared the results with those obtained for the Na,K-ATPase. This work shows that eosin fluorescence time courses provide a reasonably precise method to study the kinetics of the E1-E2 conformational changes in the H,K-ATPase. We found that, although Na+ shifts the equilibrium toward the E1 conformation and seems to compete with H+ in ATPase activity assays, it was neither possible to isolate a Na+-occluded state, nor to reveal an influx of Na+ related to H,K-ATPase activity. The high rate of the E2K → E1 transition found for the H,K-ATPase, which is not compatible with the presence of a K+-occluded form, agrees with the negligible level of occluded Rb+ (used as a K+ congener) found in the absence of added ligands. The use of vanadate and fluorinated metals to induce E2P-like states increased the level of occluded Rb+ and suggests that-during dephosphorylation-the probability of K+ to remain occluded increases from the E2P-ground to the E2P-product state. From kinetic experiments we found an unexpected increase in the values of kobs for E2P formation with [Pi]; consequently, to obey the Albers-Post model, the binding of Pi to the E2 state cannot be a rapid-equilibrium reaction.
Collapse
Affiliation(s)
- S E Faraj
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - W M Valsecchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N T Cerf
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N U Fedosova
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - R C Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - M R Montes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Lahner E, Marzinotto I, Brigatti C, Davidson H, Wenzlau J, Piemonti L, Annibale B, Lampasona V. Measurement of Autoantibodies to Gastric H+,K+-ATPase (ATP4A/B) Using a Luciferase Immunoprecipitation System (LIPS). Methods Mol Biol 2019; 1901:113-131. [PMID: 30539573 DOI: 10.1007/978-1-4939-8949-2_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Luciferase Immuno Precipitation System (LIPS) enables the detection of specific serum antibodies by immunoprecipitation of recombinant antigens tagged with a luciferase reporter. Here we describe LIPS assays for the quantification of autoantibodies to the H+, K+-ATPase A (ATP4A) and B (ATP4B) subunits, two serological markers of autoimmune atrophic gastritis and pernicious anemia. In particular, we will describe the expression of luciferase-tagged recombinant ATP4A and ATP4B, their immunoprecipitation with test sera, the recovery and washing of immune-complexes with a protein-A coated resin, and the quantification of autoantibodies by addition of a luciferase substrate and the measurement of the light output from captured luciferase-tagged antigens.
Collapse
Affiliation(s)
- Edith Lahner
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Ilaria Marzinotto
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Brigatti
- Beta Cell Biology Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Howard Davidson
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janet Wenzlau
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lorenzo Piemonti
- Beta Cell Biology Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Annibale
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Vito Lampasona
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Lahner E, Brigatti C, Marzinotto I, Carabotti M, Scalese G, Davidson HW, Wenzlau JM, Bosi E, Piemonti L, Annibale B, Lampasona V. Luminescent Immunoprecipitation System (LIPS) for Detection of Autoantibodies Against ATP4A and ATP4B Subunits of Gastric Proton Pump H+,K+-ATPase in Atrophic Body Gastritis Patients. Clin Transl Gastroenterol 2017; 8:e215. [PMID: 28102858 PMCID: PMC5288605 DOI: 10.1038/ctg.2016.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Circulating autoantibodies targeting the H+/K+-ATPase proton pump of gastric parietal cells are considered markers of autoimmune gastritis, whose diagnostic accuracy in atrophic body gastritis, the pathological lesion of autoimmune gastritis, remains unknown. This study aimed to assess autoantibodies against ATP4A and ATP4B subunits of parietal cells H+, K+-ATPase in atrophic body gastritis patients and controls. METHODS One-hundred and four cases with atrophic body gastritis and 205 controls were assessed for serological autoantibodies specific for ATP4A or ATP4B subunits using luminescent immunoprecipitation system (LIPS). Recombinant luciferase-reporter-fused-antigens were expressed by in vitro transcription-translation (ATP4A) or after transfection in Expi293F cells (ATP4B), incubated with test sera, and immune complexes recovered using protein-A-sepharose. LIPS assays were compared with a commercial enzyme immunoassay (EIA) for parietal cell autoantibodies. RESULTS ATP4A and ATP4B autoantibody titers were higher in cases compared to controls (P<0.0001). The area under the receiver-operating characteristic curve was 0.98 (95% CI 0.965-0.996) for ATP4A, and 0.99 (95% CI 0.979-1.000) for ATP4B, both higher as compared with that of EIA: 0.86 (95% CI 0.809-0.896), P<0.0001. Sensitivity-specificity were 100-89% for ATP4A and 100-90% for ATP4B assay. Compared with LIPS, EIA for parietal cell autoantibodies showed a lower sensitivity (72%, P<0.0001) at a similar specificity (92%, P=0.558). CONCLUSIONS Positivity to both, ATP4A and ATP4B autoantibodies is closely associated with atrophic body gastritis. Both assays had the highest sensitivity, at the cost of diagnostic accuracy (89 and 90% specificity), outperforming traditional EIA. Once validated, these LIPS assays should be valuable screening tools for detecting biomarkers of damaged atrophic oxyntic mucosa.
Collapse
Affiliation(s)
- Edith Lahner
- Clinical and Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy
| | - Cristina Brigatti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marilia Carabotti
- Department of Internal Medicine and Medical Specialties, University Sapienza, Rome, Italy
| | - Giulia Scalese
- Clinical and Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy
| | - Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Janet M Wenzlau
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Annibale
- Clinical and Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, School of Medicine, University Sapienza, Rome, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Internal Medicine and Medical Specialties, University Sapienza, Rome, Italy
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Divisione di Genetica e Biologia Cellulare, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Affiliation(s)
- A. Subha Mahadevi
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| | - G. Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| |
Collapse
|
5
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 782] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|
6
|
Analyzing coordination preferences of Mg2+ complexes: insights from computational and database study. Struct Chem 2012. [DOI: 10.1007/s11224-012-0113-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
First principles study and database analyses of structural preferences for sodium ion (Na+) solvation and coordination. Struct Chem 2012. [DOI: 10.1007/s11224-012-0032-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Bohari MH, Sastry GN. FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols. J Mol Model 2012; 18:4263-74. [PMID: 22562231 DOI: 10.1007/s00894-012-1416-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/26/2012] [Indexed: 11/29/2022]
Abstract
Efficient drug discovery programs can be designed by utilizing existing pools of knowledge from the already approved drugs. This can be achieved in one way by repositioning of drugs approved for some indications to newer indications. Complex of drug to its target gives fundamental insight into molecular recognition and a clear understanding of putative binding site. Five popular docking protocols, Glide, Gold, FlexX, Cdocker and LigandFit have been evaluated on a dataset of 199 FDA approved drug-target complexes for their accuracy in predicting the experimental pose. Performance for all the protocols is assessed at default settings, with root mean square deviation (RMSD) between the experimental ligand pose and the docked pose of less than 2.0 Å as the success criteria in predicting the pose. Glide (38.7 %) is found to be the most accurate in top ranked pose and Cdocker (58.8 %) in top RMSD pose. Ligand flexibility is a major bottleneck in failure of docking protocols to correctly predict the pose. Resolution of the crystal structure shows an inverse relationship with the performance of docking protocol. All the protocols perform optimally when a balanced type of hydrophilic and hydrophobic interaction or dominant hydrophilic interaction exists. Overall in 16 different target classes, hydrophobic interactions dominate in the binding site and maximum success is achieved for all the docking protocols in nuclear hormone receptor class while performance for the rest of the classes varied based on individual protocol.
Collapse
Affiliation(s)
- Mohammed H Bohari
- Molecular Modeling Group, Indian Institute of Chemical Technology, Hyderabad,, 500 607, Andhra Pradesh, India
| | | |
Collapse
|
9
|
Chourasia M, Sastry GN. The nucleotide, inhibitor, and cation binding sites of P-type II ATPases. Chem Biol Drug Des 2012; 79:617-27. [PMID: 22260628 DOI: 10.1111/j.1747-0285.2012.01334.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
P-type ATPases constitute a ubiquitous superfamily of cation transport enzymes, responsible for carrying out actions of paramount importance in biology such as ion transport and expulsion of toxic ions from cells. The harmonized toggling of gates in the extra- and intracellular domains explain the phenomenon of specific cation binding in selective physiological states. A quantitative understanding of the fundamental aspects of ion transport mechanism and regulation of P-type ATPases requires detailed knowledge of thermodynamical, structural, and functional properties. Computational studies have made significant contributions to our understanding of biological ion pumps. Various 3D structures of Ca(2+) -ATPase between E1 and E2 transition states have given a impetus to the theorists to work on the Na(+) K(+) - and H(+) K(+) -ATPase to address important questions about their function. The current review delineates the importance of cation, nucleotide, and inhibitor binding domains, with a focus on the therapeutic potential and biological relevance of the three P-type II ATPases. This will give an insight into the ion selectivity and their conduction across the transmembrane helices of P-type II ATPases, which may pave the way to a range of fundamental questions about the mechanism and aid in the efforts of structure- and analog-based drug design.
Collapse
Affiliation(s)
- Mukesh Chourasia
- Molecular Modeling Group, Indian Institute of Chemical Technology, Hyderabad, India
| | | |
Collapse
|
10
|
Badrinarayan P, Sastry GN. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach. J Mol Graph Model 2012; 34:89-100. [PMID: 22306417 DOI: 10.1016/j.jmgm.2011.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/19/2011] [Accepted: 12/27/2011] [Indexed: 02/02/2023]
Abstract
In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds.
Collapse
Affiliation(s)
- Preethi Badrinarayan
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | | |
Collapse
|
11
|
Chourasia M, Sastry GM, Sastry GN. Aromatic–Aromatic Interactions Database, A2ID: An analysis of aromatic π-networks in proteins. Int J Biol Macromol 2011; 48:540-52. [DOI: 10.1016/j.ijbiomac.2011.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/12/2011] [Indexed: 11/16/2022]
|
12
|
Kim L, Gabrielli C, Pailleret A, Perrot H. Correlation between ion-exchange properties and swelling/shrinking processes in hexasulfonated calix[6]arene doped polypyrrole films: ac-electrogravimetry and electrochemical atomic force microscopy investigations. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2010.11.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Sharma B, Rao JS, Sastry GN. Effect of Solvation on Ion Binding to Imidazole and Methylimidazole. J Phys Chem A 2011; 115:1971-84. [DOI: 10.1021/jp1120492] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bhaskar Sharma
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 607, AP, India
| | - J. Srinivasa Rao
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 607, AP, India
| | - G. Narahari Sastry
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 607, AP, India
| |
Collapse
|
14
|
Ranga Rao R, Tiwari AK, Prabhakar Reddy P, Suresh Babu K, Suresh G, Ali AZ, Madhusudana K, Agawane SB, Badrinarayan P, Narahari Sastry G, Madhusudana Rao J. Synthesis of antihyperglycemic, α-glucosidase inhibitory, and DPPH free radical scavenging furanochalcones. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9583-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Pigga JM, Teprovich JA, Flowers RA, Antonio MR, Liu T. Selective monovalent cation association and exchange around Keplerate polyoxometalate macroanions in dilute aqueous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9449-56. [PMID: 20408519 DOI: 10.1021/la100467p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.
Collapse
Affiliation(s)
- Joseph M Pigga
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | | | | | |
Collapse
|
16
|
Hydrogen entry into iron after potential jumps from cathodic to anodic polarization in 0.1M NaOH without and with EDTA or sodium molybdate. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.10.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Rao JS, Zipse H, Sastry GN. Explicit Solvent Effect on Cation−π Interactions: A First Principle Investigation. J Phys Chem B 2009; 113:7225-36. [DOI: 10.1021/jp900013e] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J. Srinivasa Rao
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500 607, India, and Department Chemie and Biochemie, LMU München, Butenandtstrasse 5-13, D-81377, München, Germany
| | - Hendrik Zipse
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500 607, India, and Department Chemie and Biochemie, LMU München, Butenandtstrasse 5-13, D-81377, München, Germany
| | - G. Narahari Sastry
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500 607, India, and Department Chemie and Biochemie, LMU München, Butenandtstrasse 5-13, D-81377, München, Germany
| |
Collapse
|
18
|
Abstract
Cation-aromatic database (CAD) is a publicly available web-based database that aims to provide further understanding of interaction between a cation and the pi interactions. A tool to identify the interactions in a user-given protein is also added to the database. CAD is freely accessible via the Internet at http://203.199.182.73/gnsmmg/databases/cad/.
Collapse
Affiliation(s)
- A Srinivas Reddy
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | | | | |
Collapse
|
19
|
Stoyanov ES, Reed CA. IR Spectrum of the H5O2+ Cation in the Context of Proton Disolvates L−H+−L. J Phys Chem A 2006; 110:12992-3002. [PMID: 17134158 DOI: 10.1021/jp062879w] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The H(5)O(2)(+) ion has been studied in chlorocarbon, benzene, and weakly coordinating anion environments to bridge the gap between the gas-phase and traditional condensed-phase investigations. Symmetrical cations of the type [H(5)O(2)(+) x 4Solv] are formed via H-bonding with the terminal O-H groups. In the infrared spectrum, the nu(s)OH and nu(as)OH vibrations behave in a manner similar to those of common water molecules: the stronger is the H-bonding interaction with the surroundings, the lower is the frequency shift. A consistent pattern of IR bands from the central O-H(+)-O group is identified, regardless of the strength of the interaction of H(5)O(2)(+) with its environment. Three intense bands develop: a (860-995 cm-1), b (1045-1101 cm(-1)), and c (1672-1700 cm(-1)), as well as two weak bands, d ( approximately 1300 cm(-1)) and e ( approximately 1400-1500 cm(-1)). These fingerprint bands are highly characteristic for vibrations of O-H-O group irrespective of formal charge. They are seen in symmetrical proton disolvates of the type L-H(+)-L, where L is an O-atom donor (alcohol, ether, ketone, phosphate, etc.), and in [A-H-A](-) acid salts (A(-) = oxyanion). The commonality is equivalency of the two O-atoms, a short O...O distance (ca. 2.40 Angstrom), and a flat-bottomed potential well for the bridging proton, that is, a short, strong, low-barrier H-bond. Assignments for bands a-e are suggested in an attempt to resolve inconsistencies between experimental and calculated data.
Collapse
Affiliation(s)
- Evgenii S Stoyanov
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA
| | | |
Collapse
|