1
|
Kane BJ, Okuda‐Shimazaki J, Andrews MM, Kerrigan JA, Murphy KV, Sode K. Discovery of periplasmic solute binding proteins with specificity for ketone bodies: β-hydroxybutyrate binding proteins. Protein Sci 2024; 33:e5025. [PMID: 38864689 PMCID: PMC11167705 DOI: 10.1002/pro.5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
Polyhydroxyalkanoates are a class of biodegradable, thermoplastic polymers which represent a major carbon source for various bacteria. Proteins which mediate the translocation of polyhydroxyalkanoate breakdown products, such as β-hydroxybutyrate (BHB)-a ketone body which in humans serves as an important biomarker, have not been well characterized. In our investigation to screen a solute-binding protein (SBP) which can act as a suitable recognition element for BHB, we uncovered insights at the intersection of bacterial metabolism and diagnostics. Herein, we identify SBPs associated with putative ATP-binding cassette transporters that specifically recognize BHB, with the potential to serve as recognition elements for continuous quantification of this analyte. Through bioinformatic analysis, we identified candidate SBPs from known metabolizers of polyhydroxybutyrate-including proteins from Cupriavidus necator, Ensifer meliloti, Paucimonas lemoignei, and Thermus thermophilus. After recombinant expression in Escherichia coli, we demonstrated with intrinsic tryptophan fluorescence spectroscopy that four candidate proteins interacted with BHB, ranging from nanomolar to micromolar affinity. Tt.2, an intrinsically thermostable protein from Thermus thermophilus, was observed to have the tightest binding and specificity for BHB, which was confirmed by isothermal calorimetry. Structural analyses facilitated by AlphaFold2, along with molecular docking and dynamics simulations, were used to hypothesize key residues in the binding pocket and to model the conformational dynamics of substrate unbinding. Overall, this study provides strong evidence identifying the cognate ligands of SBPs which we hypothesize to be involved in prokaryotic cellular translocation of polyhydroxyalkanoate breakdown products, while highlighting these proteins' promising biotechnological application.
Collapse
Affiliation(s)
- Bryant J. Kane
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Junko Okuda‐Shimazaki
- Department of Biotechnology and Life Science, Graduate School of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Madelyn M. Andrews
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Joseph A. Kerrigan
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Kyle V. Murphy
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Koji Sode
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Mossine VV, Mawhinney TP. 1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives. Adv Carbohydr Chem Biochem 2023; 83:27-132. [PMID: 37968038 DOI: 10.1016/bs.accb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Fructosamine has long been considered as a key intermediate of the Maillard reaction, which to a large extent is responsible for specific aroma, taste, and color formation in thermally processed or dehydrated foods. Since the 1980s, however, as a product of the Amadori rearrangement reaction between glucose and biologically significant amines such as proteins, fructosamine has experienced a boom in biomedical research, mainly due to its relevance to pathologies in diabetes and aging. In this chapter, we assess the scope of the knowledge on and applications of fructosamine-related molecules in chemistry, food, and health sciences, as reflected mostly in publications within the past decade. Methods of fructosamine synthesis and analysis, its chemical, and biological properties, and degradation reactions, together with fructosamine-modifying and -recognizing proteins are surveyed.
Collapse
Affiliation(s)
- Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
4
|
Hatada M, Tran TT, Tsugawa W, Sode K, Mulchandani A. Affinity sensor for haemoglobin A1c based on single-walled carbon nanotube field-effect transistor and fructosyl amino acid binding protein. Biosens Bioelectron 2018; 129:254-259. [PMID: 30297174 DOI: 10.1016/j.bios.2018.09.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 01/11/2023]
Abstract
Haemoglobin A1c (HbA1c) is a significant glycaemic marker for diabetes mellitus. The level of HbA1c reflects the mean blood glucose level over the prior 2-3 months and it is useful for the assessment of therapeutic effectiveness and for diagnosis. In this study, we report the label-free affinity sensor for HbA1c based on the chemiresistor-type field-effect transistor, which has a simple sensor configuration. Single-walled carbon nanotubes (SWNTs) were used as the transducing element. The fructosyl amino acid binding protein from Rhizobium radiobacter (SocA), which binds to α-fructosyl amino acid specifically, was used as the biorecognition element for fructosyl valine (FV), the product of the proteolytic hydrolysis of HbA1c. The developed sensor shows the ability to measure as low as 1.2 nM FV, which is 14-fold more sensitive compared to the previously reported fluorescence-based sensor using SocA. This sensor also exhibits high specificity where no significant response is observed from either fructosyl lysine (FK) or glucose, which are potential interferents. FK is the ε-fructosyl amino acid from glycated albumin, another glycated protein, whereas glucose is naturally present at very high concentration in the blood. We propose that the modulation of the surface charges on the SWNTs caused by the conformational change in SocA upon ligand binding leads to the proportionate changes in the number of carriers in the SWNT channel.
Collapse
Affiliation(s)
- Mika Hatada
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Thien-Toan Tran
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, and Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Marty L, Vigouroux A, Aumont-Nicaise M, Dessaux Y, Faure D, Moréra S. Structural Basis for High Specificity of Amadori Compound and Mannopine Opine Binding in Bacterial Pathogens. J Biol Chem 2016; 291:22638-22649. [PMID: 27609514 DOI: 10.1074/jbc.m116.745562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/31/2016] [Indexed: 11/06/2022] Open
Abstract
Agrobacterium tumefaciens pathogens genetically modify their host plants to drive the synthesis of opines in plant tumors. Opines are either sugar phosphodiesters or the products of condensed amino acids with ketoacids or sugars. They are Agrobacterium nutrients and imported into the bacterial cell via periplasmic-binding proteins (PBPs) and ABC-transporters. Mannopine, an opine from the mannityl-opine family, is synthesized from an intermediate named deoxy-fructosyl-glutamine (DFG), which is also an opine and abundant Amadori compound (a name used for any derivative of aminodeoxysugars) present in decaying plant materials. The PBP MotA is responsible for mannopine import in mannopine-assimilating agrobacteria. In the nopaline-opine type agrobacteria strain, SocA protein was proposed as a putative mannopine binding PBP, and AttC protein was annotated as a mannopine binding-like PBP. Structural data on mannityl-opine-PBP complexes is currently lacking. By combining affinity data with analysis of seven x-ray structures at high resolution, we investigated the molecular basis of MotA, SocA, and AttC interactions with mannopine and its DFG precursor. Our work demonstrates that AttC is not a mannopine-binding protein and reveals a specific binding pocket for DFG in SocA with an affinity in nanomolar range. Hence, mannopine would not be imported into nopaline-type agrobacteria strains. In contrast, MotA binds both mannopine and DFG. We thus defined one mannopine and two DFG binding signatures. Unlike mannopine-PBPs, selective DFG-PBPs are present in a wide diversity of bacteria, including Actinobacteria, α-,β-, and γ-proteobacteria, revealing a common role of this Amadori compound in pathogenic, symbiotic, and opportunistic bacteria.
Collapse
Affiliation(s)
- Loïc Marty
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Armelle Vigouroux
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Magali Aumont-Nicaise
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Yves Dessaux
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Denis Faure
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Solange Moréra
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
6
|
Kameya M, Sakaguchi-Mikami A, Ferri S, Tsugawa W, Sode K. Advancing the development of glycated protein biosensing technology: next-generation sensing molecules. J Diabetes Sci Technol 2015; 9:183-91. [PMID: 25627465 PMCID: PMC4604589 DOI: 10.1177/1932296814565784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research advances in biochemical molecules have led to the development of convenient and reproducible biosensing molecules for glycated proteins, such as those based on the enzymes fructosyl amino acid oxidase (FAOX) or fructosyl peptide oxidase (FPOX). Recently, more attractive biosensing molecules with potential applications in next-generation biosensing of glycated proteins have been aggressively reported. We review 2 such molecules, fructosamine 6-kinase (FN6K) and fructosyl amino acid-binding protein, as well as their recent applications in the development of glycated protein biosensing systems. Research on FN6K and fructosyl amino acid-binding protein has been opening up new possibilities for the development of highly sensitive and proteolytic-digestion-free biosensing systems for glycated proteins.
Collapse
Affiliation(s)
- Miho Kameya
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akane Sakaguchi-Mikami
- Department of Medical Technology, School of Health Sciences, Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Stefano Ferri
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wakako Tsugawa
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koji Sode
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan Ultizyme International Ltd, Tokyo, Japan
| |
Collapse
|
7
|
Sakaguchi-Mikami A, Ferri S, Katayama S, Tsugawa W, Sode K. Identification and functional analysis of fructosyl amino acid-binding protein from Gram-positive bacterium Arthrobacter
sp. J Appl Microbiol 2013; 114:1449-56. [DOI: 10.1111/jam.12152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/26/2012] [Accepted: 01/20/2013] [Indexed: 01/16/2023]
Affiliation(s)
- A. Sakaguchi-Mikami
- Graduate School of Bionics; Computer and Media Sciences; Tokyo University of Technology; Hachioji Japan
| | - S. Ferri
- Department of Biotechnology; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - S. Katayama
- Department of Biotechnology; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - W. Tsugawa
- Department of Biotechnology; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - K. Sode
- Department of Biotechnology; Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| |
Collapse
|
8
|
Kojima K, Mikami-Sakaguchi A, Kameya M, Miyamoto Y, Ferri S, Tsugawa W, Sode K. Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase. Biotechnol Lett 2012; 35:253-8. [DOI: 10.1007/s10529-012-1062-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/04/2012] [Indexed: 11/30/2022]
|
9
|
Sakaguchi-Mikami A, Taniguchi A, Sode K, Yamazaki T. Construction of a novel glucose-sensing molecule based on a substrate-binding protein for intracellular sensing. Biotechnol Bioeng 2010; 108:725-33. [PMID: 21404246 DOI: 10.1002/bit.23006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/14/2010] [Accepted: 10/20/2010] [Indexed: 01/29/2023]
Abstract
A novel transcriptional regulator responding to glucose was designed with a substrate-binding protein (SBP) as a probe towards intracellular sensing system for glucose in mammalian cells. A chimeric protein of an SBP for glucose (GBP) and a LacI-type regulator, LacI (SLCP(GL) ), was designed, constructed and characterized using Escherichia coli recombinant protein. We report that SLCP(GL) has a glucose-specific binding ability and an operator-sequence specific DNA-binding ability. The loss of its DNA-binding ability in the presence of glucose suggests a role as a transcriptional regulator in vitro. The glucose-dependent gene regulation function of SLCP(GL) in cells was investigated using mammalian cells co-transfected with SLCP(GL) and Lac operator-fused luciferase gene constructs. The luciferase activity of the transfected cells increased with the glucose concentration in the medium, showing that the expression of the luciferase gene is regulated by SLCP(GL) , which can dissociate from DNA in a glucose concentration-dependent manner. Therefore, we demonstrated that SLCP(GL) functions as a glucose-sensitive transcriptional regulator in mammalian cells. These results reveal the possibility of developing an SBP-based regulator as a probe of intracellular sensing and gene regulation system for mammalian cells in response to a desired ligands depending on the SBP ligand specificity.
Collapse
Affiliation(s)
- Akane Sakaguchi-Mikami
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki, Tsukuba, 305-0044 Ibaraki, Japan
| | | | | | | |
Collapse
|
10
|
|
11
|
Ferri S, Kim S, Tsugawa W, Sode K. Review of fructosyl amino acid oxidase engineering research: a glimpse into the future of hemoglobin A1c biosensing. J Diabetes Sci Technol 2009; 3:585-92. [PMID: 20144298 PMCID: PMC2769878 DOI: 10.1177/193229680900300324] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glycated proteins, particularly glycated hemoglobin A1c, are important markers for assessing the effectiveness of diabetes treatment. Convenient and reproducible assay systems based on the enzyme fructosyl amino acid oxidase (FAOD) have become attractive alternatives to conventional detection methods. We review the available FAOD-based assays for measurement of glycated proteins as well as the recent advances and future direction of FAOD research. Future research is expected to lead to the next generation of convenient, simple, and economical sensors for glycated protein, ideally suited for point-of-care treatment and self-monitoring applications.
Collapse
Affiliation(s)
- Stefano Ferri
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Seungsu Kim
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Wakako Tsugawa
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
- Department of Technology Risk Management, Graduate School of Technology Management, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koji Sode
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
- Department of Technology Risk Management, Graduate School of Technology Management, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
12
|
Sakaguchi-Mikami A, Taneoka A, Yamoto R, Ferri S, Sode K. Engineering of ligand specificity of periplasmic binding protein for glucose sensing. Biotechnol Lett 2008; 30:1453-60. [DOI: 10.1007/s10529-008-9712-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
13
|
Rajkumar R, Warsinke A, Möhwald H, Scheller FW, Katterle M. Development of fructosyl valine binding polymers by covalent imprinting. Biosens Bioelectron 2007; 22:3318-25. [PMID: 17419046 DOI: 10.1016/j.bios.2007.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 11/23/2022]
Abstract
Molecularly imprinted polymers (MIPs) against fructosyl valine (Fru-Val), the N-terminal constituent of hemoglobin A1c beta-chains, were prepared by cross-linking of beta-D-Fru-Val-O-bis(4-vinylphenylboronate) with an excess of ethylene glycol dimethacrylate (EDMA) or trimethylolpropane trimethacrylate (TRIM). Control MIPs were prepared in analogy by cross-linking the corresponding vinylphenylboronate esters of fructose and pinacol. After template extraction batch rebinding studies were performed using different pH values and buffer compositions. The Fru-Val imprinted TRIM cross-linked polymer binds about 1.4 times more Fru-Val than the fructose imprinted polymer and 2.7 times more Fru-Val than pinacol imprinted polymer. The highest imprinting effect was obtained in 100 mM sodium carbonate/10% methanol (pH 11.4). The TRIM cross-linked Fru-Val imprinted polymer showed a better specificity than the EDMA cross-linked polymer. The binding of valine was very low. Thermo gravimetric analysis indicated that the generated Fru-Val imprinted polymer has high thermo stability. No change in binding was observed after incubation of the polymers in buffer at 80 degrees C for 36 h. Since the functional group of the polymers (phenyl boronic acid) targets the sugar part of Fru-Val the imprint technique used should also be applicable for the development of MIPs against other glycated amino acids and peptides.
Collapse
|