1
|
Kim K, Oh S, Jeong D, Lee Y, Moon D, Lee S, Cho J. Systematic Electronic Tuning on the Property and Reactivity of Cobalt-(Hydro)peroxo Intermediates. Inorg Chem 2023; 62:7141-7149. [PMID: 37139810 DOI: 10.1021/acs.inorgchem.3c00826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A series of cobalt(III)-peroxo complexes, [CoIII(R2-TBDAP)(O2)]+ (1R2; R2 = Cl, H, and OMe), and cobalt(III)-hydroperoxo complexes, [CoIII(R2-TBDAP)(O2H)(CH3CN)]2+ (2R2), bearing electronically tuned tetraazamacrocyclic ligands (R2-TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)-p-R2-pyridinophane) were prepared from their cobalt(II) precursors and characterized by various physicochemical methods. The X-ray diffraction and spectroscopic analyses unambiguously showed that all 1R2 compounds have similar octahedral geometry with a side-on peroxocobalt(III) moiety, but the O-O bond lengths of 1Cl [1.398(3) Å] and 1OMe [1.401(4) Å] were shorter than that of 1H [1.456(3) Å] due to the different spin states. For 2R2, the O-O bond vibration energies of 2Cl and 2OMe were identical at 853 cm-1 (856 cm-1 for 2H), but their Co-O bond vibration frequencies were observed at 572 cm-1 for 2Cl and 550 cm-1 for 2OMe, respectively, by resonance Raman spectroscopy (560 cm-1 for 2H). Interestingly, the redox potentials (E1/2) of 2R2 increased in the order of 2OMe (0.19 V) < 2H (0.24 V) < 2Cl (0.34 V) according to the electron richness of the R2-TBDAP ligands, but the oxygen-atom-transfer reactivities of 2R2 showed a reverse trend (k2: 2Cl < 2H < 2OMe) with a 13-fold rate enhancement at 2OMe over 2Cl in a sulfoxidation reaction with thioanisole. Although the reactivity trend contradicts the general consideration that electron-rich metal-oxygen species with low E1/2 values have sluggish electrophilic reactivity, this could be explained by a weak Co-O bond vibration of 2OMe in the unusual reaction pathway. These results provide considerable insight into the electronic nature-reactivity relationship of metal-oxygen species.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seongmin Oh
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Zhao R, Zhang BB, Liu Z, Cheng GJ, Wang ZX. DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal-Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. JACS AU 2022; 2:745-761. [PMID: 35373207 PMCID: PMC8970012 DOI: 10.1021/jacsau.2c00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 05/12/2023]
Abstract
Aldehyde deformylations occurring in organisms are catalyzed by metalloenzymes through metal-dioxygen active cores, attracting great interest to study small-molecule metal-dioxygen complexes for understanding relevant biological processes and developing biomimetic catalysts for aerobic transformations. As the known deformylation mechanisms, including nucleophilic attack, aldehyde α-H-atom abstraction, and aldehyde hydrogen atom abstraction, undergo outer-sphere pathways, we herein report a distinct inner-sphere mechanism based on density functional theory (DFT) mechanistic studies of aldehyde deformylations with a copper (II)-superoxo complex. The inner-sphere mechanism proceeds via a sequence mainly including aldehyde end-on coordination, homolytic aldehyde C-C bond cleavage, and dioxygen O-O bond cleavage, among which the C-C bond cleavage is the rate-determining step with a barrier substantially lower than those of outer-sphere pathways. The aldehyde C-C bond cleavage, enabled through the activation of the dioxygen ligand radical in a second-order nucleophilic substitution (SN2)-like fashion, leads to an alkyl radical and facilitates the subsequent dioxygen O-O bond cleavage. Furthermore, we deduced the rules for the reactions of metal-dioxygen complexes with aldehydes and nitriles via the inner-sphere mechanism. Expectedly, our proposed inner-sphere mechanisms and the reaction rules offer another perspective to understand relevant biological processes involving metal-dioxygen cores and to discover metal-dioxygen catalysts for aerobic transformations.
Collapse
Affiliation(s)
- Ruihua Zhao
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Bei-Bei Zhang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| | - Zheyuan Liu
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Gui-Juan Cheng
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Zhi-Xiang Wang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| |
Collapse
|
3
|
Saunders AC, Burch CR, Goldsmith CR. Towards gallium(III)-catalyzed aldehyde deformylation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Ritacco I, Spinello A, Ippoliti E, Magistrato A. Post-Translational Regulation of CYP450s Metabolism As Revealed by All-Atoms Simulations of the Aromatase Enzyme. J Chem Inf Model 2019; 59:2930-2940. [PMID: 31033287 DOI: 10.1021/acs.jcim.9b00157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphorylation by kinases enzymes is a widespread regulatory mechanism able of rapidly altering the function of target proteins. Among these are cytochrome P450s (CYP450), a superfamily of enzymes performing the oxidation of endogenous and exogenous substrates thanks to the electron supply of a redox partner. In spite of its pivotal role, the molecular mechanism by which phosphorylation modulates CYP450s metabolism remains elusive. Here by performing microsecond-long all-atom molecular dynamics simulations, we disclose how phosphorylation regulates estrogen biosynthesis, catalyzed by the Human Aromatase (HA) enzyme. Namely, we unprecedentedly propose that HA phosphorylation at Y361 markedly stabilizes its adduct with the flavin mononucleotide domain of CYP450s reductase (CPR), the redox partner of microsomal CYP450s, and a variety of other proteins. With CPR present at physiological conditions in a limiting ratio with respect to its multiple oxidative partners, the enhanced stability of the CPR/HA adduct may favor HA in the competition with the other proteins requiring CPR's electron supply, ultimately facilitating the electron transfer and estrogen biosynthesis. As a result, our work elucidates at atomic-level the post-translational regulation of CYP450s catalysis. Given the potential for rational clinical management of diseases associated with steroid metabolism disorders, unraveling this mechanism is of utmost importance, and raises the intriguing perspective of exploiting this knowledge to devise novel therapies.
Collapse
Affiliation(s)
- Ida Ritacco
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| | - Angelo Spinello
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| | - Emiliano Ippoliti
- IAS-5/INM-9 Computational Biomedicine Institute and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Straße , 52425 Jülich , Germany
| | - Alessandra Magistrato
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| |
Collapse
|
5
|
Viciano I, Martí S. Theoretical Study of the Mechanism of Exemestane Hydroxylation Catalyzed by Human Aromatase Enzyme. J Phys Chem B 2016; 120:3331-43. [PMID: 26972150 DOI: 10.1021/acs.jpcb.6b01014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human aromatase (CYP19A1) aromatizes the androgens to form estrogens via a three-step oxidative process. The estrogens are necessary in humans, mainly in women, because of the role they play in sexual and reproductive development. However, these also are involved in the development and growth of hormone-dependent breast cancer. Therefore, inhibition of the enzyme aromatase, by means of drugs known as aromatase inhibitors, is the frontline therapy for these types of cancers. Exemestane is a suicidal third-generation inhibitor of aromatase, currently used in breast cancer treatment. In this study, the hydroxylation of exemestane catalyzed by aromatase has been studied by means of hybrid QM/MM methods. The Free Energy Perturbation calculations provided a free energy of activation for the hydrogen abstraction step (rate-limiting step) of 17 kcal/mol. The results reveal that the hydroxylation of exemestane is not the inhibition stage, suggesting a possible competitive mechanism between the inhibitor and the natural substrate androstenedione in the first catalytic subcycle of the enzyme. Furthermore, the analysis of the interaction energy for the substrate and the cofactor in the active site shows that the role of the enzymatic environment during this reaction consists of a transition state stabilization by means of electrostatic effects.
Collapse
Affiliation(s)
- Ignacio Viciano
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| | - Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| |
Collapse
|
6
|
Faletrov YV, Bialevich KI, Edimecheva IP, Kostsin DG, Rudaya EV, Slobozhanina EI, Shkumatov VM. 22-NBD-cholesterol as a novel fluorescent substrate for cholesterol-converting oxidoreductases. J Steroid Biochem Mol Biol 2013; 134:59-66. [PMID: 23124253 DOI: 10.1016/j.jsbmb.2012.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/12/2012] [Accepted: 09/23/2012] [Indexed: 01/26/2023]
Abstract
Docking simulations and experimental data indicate that 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (22-NBD-cholesterol), a common fluorescent sterol analog, binds into active sites of bovine cytochrome P450scc and microbial cholesterol dehydrogenases (CHDHs) and then undergoes regiospecific oxidations by these enzymes. The P450scc-dependent system was established to realize N-dealkylation activity toward 22-NBD-cholesterol, resulting in 7-nitrobenz[c][1,2,5]oxadiazole-4-amine (NBD-NH(2)) formation as a dominant fluorescent product. Basing on LC-MS data of the probes derivatized with hydroxylamine or cholesterol oxidase, both pregnenolone and 20-formyl-pregn-5-en-3β-ol were deduced to be steroidal co-products of NBD-NH(2), indicating intricate character of the reaction. Products of CHDH-mediated conversions of 22-NBD-cholesterol were defined as 3-oxo-4-en and 3-oxo-5-en derivatives of the steroid. Moreover, the 3-oxo-4-en derivative was also found to be formed after 22-NBD-cholesterol incubation with pathogenic bacterium Pseudomonas aeruginosa, indicating a possible application of the reaction for a selective and sensitive detection of some microbes. The 3-keto-4-en derivative of 22-NBD-cholesterol may be also suitable as a new fluorescent probe for steroid hormone-binding enzymes or receptors.
Collapse
Affiliation(s)
- Yaroslav V Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str 14, 220030 Minsk, Belarus.
| | | | | | | | | | | | | |
Collapse
|