1
|
Li Z, Liu X, Li Y, Wang W, Wang N, Xiao F, Gao H, Guo H, Li H, Wang S. Chicken C/EBPζ gene: Expression profiles, association analysis, and identification of functional variants for abdominal fat. Domest Anim Endocrinol 2021; 76:106631. [PMID: 33979717 DOI: 10.1016/j.domaniend.2021.106631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
CCAAT enhancer binding protein ζ (C/EBPζ) plays an important role in adipose proliferation and differentiation in humans. However, very little is known about the effect of C/EBPζ on the growth and development of adipose tissues in domesticated animals. The present study attempted to investigate the mRNA expression profiles of chicken C/EBPζ in a variety of tissues; analyze the association of its variants with abdominal fat; and identify the functional variants for abdominal fat. The tissue expression profiles revealed that C/EBPζ was highly expressed in 19 tissues obtained from broilers. The expression level of C/EBPζ in fat broilers was significantly lower than that in lean broilers in the duodenum, ileum, cecum, kidney, pectoral muscle, and liver (P < 0.05). Among 170 polymorphic loci of C/EBPζ, 9 single nucleotide polymorphisms (SNPs) demonstrated a significant association with chicken abdominal fat traits (P < 0.05) as well as significant discrepancies in their allelic frequencies between fat and lean birds. Particularly, only C/EBPζ g.7085A>C exhibited significant correlation with abdominal fat traits (P < 0.00015) using the Bonferroni method. The results revealed that, in preadipocyte immortalized cells (ICPI), the luciferase activity of the A allele of g.7085A>C locus was remarkably stronger than that of the C allele (P < 0.05). In silico analysis showed that g.7085A>C locus was located in the binding region of the transcription factor SOX5, which possesses the ability to transform C/EBPζ transcription efficiency through binding with SOX5. In summary, the data obtained from this study suggested that C/EBPζ is a potential candidate gene responsible for abdominal fat deposition in chicken and that g.7085A>C is a functional SNP that can be promisingly leveraged for marker assisted selection (MAS) in future chicken breeding programs.
Collapse
Affiliation(s)
- Z Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - X Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - W Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - S Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
The Role of Pref-1 during Adipogenic Differentiation: An Overview of Suggested Mechanisms. Int J Mol Sci 2020; 21:ijms21114104. [PMID: 32526833 PMCID: PMC7312882 DOI: 10.3390/ijms21114104] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity contributes significantly to the global health burden. A better understanding of adipogenesis, the process of fat formation, may lead to the discovery of novel treatment strategies. However, it is of concern that the regulation of adipocyte differentiation has predominantly been studied using the murine 3T3-L1 preadipocyte cell line and murine experimental animal models. Translation of these findings to the human setting requires confirmation using experimental models of human origin. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is an attractive model to study adipogenesis in vitro. Differences in the ability of MSCs isolated from different sources to undergo adipogenic differentiation, may be useful in investigating elements responsible for regulating adipogenic differentiation potential. Genes involved may be divided into three broad categories: early, intermediate and late-stage regulators. Preadipocyte factor-1 (Pref-1) is an early negative regulator of adipogenic differentiation. In this review, we briefly discuss the adipogenic differentiation potential of MSCs derived from two different sources, namely adipose-derived stromal/stem cells (ASCs) and Wharton’s Jelly derived stromal/stem cells (WJSCs). We then discuss the function and suggested mechanisms of action of Pref-1 in regulating adipogenesis, as well as current findings regarding Pref-1’s role in human adipogenesis.
Collapse
|
3
|
Chang E, Kim CY. Natural Products and Obesity: A Focus on the Regulation of Mitotic Clonal Expansion during Adipogenesis. Molecules 2019; 24:molecules24061157. [PMID: 30909556 PMCID: PMC6471203 DOI: 10.3390/molecules24061157] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Obesity is recognized as a worldwide health crisis. Obesity and its associated health complications such as diabetes, dyslipidemia, hypertension, and cardiovascular diseases impose a big social and economic burden. In an effort to identify safe, efficient, and long-term effective methods to treat obesity, various natural products with potential for inhibiting adipogenesis were revealed. This review aimed to discuss the molecular mechanisms underlying adipogenesis and the inhibitory effects of various phytochemicals, including those from natural sources, on the early stage of adipogenesis. We discuss key steps (proliferation and cell cycle) and their regulators (cell-cycle regulator, transcription factors, and intracellular signaling pathways) at the early stage of adipocyte differentiation as the mechanisms responsible for obesity.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea.
| |
Collapse
|
4
|
Effects of yerba maté, a plant extract formulation ("YGD") and resveratrol in 3T3-L1 adipogenesis. Molecules 2014; 19:16909-24. [PMID: 25338179 PMCID: PMC6271528 DOI: 10.3390/molecules191016909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022] Open
Abstract
We aimed to evaluate the in vitro effects of yerba maté, YGD (a herbal preparation containing yerba maté, guarana and damiana), and resveratrol on adipogenesis. The anti-adipogenic effects of yerba mate, YGD, resveratrol and YGD + resveratrol and yerba mate + resveratrol combinations were evaluated in 3T3-L1 cells by Oil Red staining, cellular triglyceride content, and PCR quantitative array. The results demonstrated that all of the tested compounds inhibited adipogenesis. Yerba maté extract significantly down-regulated the expression of genes that play an important role in regulating adipogenesis, such as Adig, Axin, Cebpa, Fgf10, Lep, Lpl, and Pparγ2. In addition, these genes, YGD also repressed Bmp2, Ccnd1, Fasn, and Srebf1. Resveratrol also modulated the expression of Adig, Bmp2, Ccnd1, C/EBPα, Fasn, Fgf10, Lep, Lpl, and Pparγ2. Moreover, resveratrol repressed Cebpb, Cdk4, Fgf2, and Klf15. The yerba maté extract and YGD up-regulated the expression of genes involved in inhibiting adipogenesis, such as Dlk-1, Klf2, and Ucp1. Resveratrol also induced the expression of Klf2 and Ucp1. In addition resveratrol modulated the Ddit3, Foxo1, Sirt1, and Sirt2. The combined effects of these compounds on gene expression showed similar results observed from individual treatments. Our data indicates that the synergy between the compounds favors the inhibition of adipogenesis.
Collapse
|
5
|
Gormand A, Berggreen C, Amar L, Henriksson E, Lund I, Albinsson S, Göransson O. LKB1 signalling attenuates early events of adipogenesis and responds to adipogenic cues. J Mol Endocrinol 2014; 53:117-30. [PMID: 24859970 DOI: 10.1530/jme-13-0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
cAMP-response element-binding protein (CREB) is required for the induction of adipogenic transcription factors such as CCAAT/enhancer-binding proteins (C/EBPs). Interestingly, it is known from studies in other tissues that LKB1 and its substrates AMP-activated protein kinase (AMPK) and salt-inducible kinases (SIKs) negatively regulate gene expression by phosphorylating the CREB co-activator CRTC2 and class IIa histone deacetylases (HDACs), which results in their exclusion from the nucleus where they co-activate or inhibit their targets. In this study, we show that AMPK/SIK signalling is acutely attenuated during adipogenic differentiation of 3T3-L1 preadipocytes, which coincides with the dephosphorylation and nuclear translocation of CRTC2 and HDAC4. When subjected to differentiation, 3T3-L1 preadipocytes in which the expression of LKB1 was stably reduced using shRNA (Lkb1-shRNA), as well as Lkb1-knockout mouse embryonic fibroblasts (Lkb1(-/-) MEFs), differentiated more readily into adipocyte-like cells and accumulated more triglycerides compared with scrambled-shRNA-expressing 3T3-L1 cells or Wt MEFs. In addition, the phosphorylation of CRTC2 and HDAC4 was reduced, and the mRNA expression of adipogenic transcription factors Cebpa, peroxisome proliferator-activated receptor γ (Pparg) and adipocyte-specific proteins such as hormone-sensitive lipase (HSL), fatty acid synthase (FAS), aP2, GLUT4 and adiponectin was increased in the absence of LKB1. The mRNA and protein expression of Ddit3/CHOP10, a dominant-negative member of the C/EBP family, was reduced in Lkb1-shRNA-expressing cells, providing a potential mechanism for the up-regulation of Pparg and Cebpa expression. These results support the hypothesis that LKB1 signalling keeps preadipocytes in their non-differentiated form.
Collapse
Affiliation(s)
- Amélie Gormand
- Department of Experimental Medical ScienceLund University, BMC C11, 221 84 Lund, SwedenDepartment of BiomedicineKarolinska Institute, Stockholm, Sweden
| | - Christine Berggreen
- Department of Experimental Medical ScienceLund University, BMC C11, 221 84 Lund, SwedenDepartment of BiomedicineKarolinska Institute, Stockholm, Sweden
| | - Lahouari Amar
- Department of Experimental Medical ScienceLund University, BMC C11, 221 84 Lund, SwedenDepartment of BiomedicineKarolinska Institute, Stockholm, Sweden
| | - Emma Henriksson
- Department of Experimental Medical ScienceLund University, BMC C11, 221 84 Lund, SwedenDepartment of BiomedicineKarolinska Institute, Stockholm, Sweden
| | - Ingrid Lund
- Department of Experimental Medical ScienceLund University, BMC C11, 221 84 Lund, SwedenDepartment of BiomedicineKarolinska Institute, Stockholm, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical ScienceLund University, BMC C11, 221 84 Lund, SwedenDepartment of BiomedicineKarolinska Institute, Stockholm, Sweden
| | - Olga Göransson
- Department of Experimental Medical ScienceLund University, BMC C11, 221 84 Lund, SwedenDepartment of BiomedicineKarolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Wei S, Zhang L, Zhou X, Du M, Jiang Z, Hausman GJ, Bergen WG, Zan L, Dodson MV. Emerging roles of zinc finger proteins in regulating adipogenesis. Cell Mol Life Sci 2013; 70:4569-84. [PMID: 23760207 PMCID: PMC4100687 DOI: 10.1007/s00018-013-1395-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Proteins containing the zinc finger domain(s) are named zinc finger proteins (ZFPs), one of the largest classes of transcription factors in eukaryotic genomes. A large number of ZFPs have been studied and many of them were found to be involved in regulating normal growth and development of cells and tissues through diverse signal transduction pathways. Recent studies revealed that a small but increasing number of ZFPs could function as key transcriptional regulators involved in adipogenesis. Due to the prevalence of obesity and metabolic disorders, the investigation of molecular regulatory mechanisms of adipocyte development must be more completely understood in order to develop novel and long-term impact strategies for ameliorating obesity. In this review, we discuss recent work that has documented that ZFPs are important functional contributors to the regulation of adipogenesis. Taken together, these data lead to the conclusion that ZFPs may become promising targets to combat human obesity.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Lifan Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Gary J. Hausman
- Animal Science Department, University of Georgia, Athens, GA 30602-2771 USA
| | - Werner G. Bergen
- Program in Cellular and Molecular Biosciences, Department of Animal Sciences, Auburn University, Auburn, AL 36849 USA
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Michael V. Dodson
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
7
|
Peterson JM, Seldin MM, Wei Z, Aja S, Wong GW. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. Am J Physiol Gastrointest Liver Physiol 2013; 305:G214-24. [PMID: 23744740 PMCID: PMC3742855 DOI: 10.1152/ajpgi.00102.2013] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.
Collapse
Affiliation(s)
- Jonathan M. Peterson
- 1Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and ,4Department of Health Sciences, School of Public Health, East Tennessee State University, Johnson City, Tennessee
| | - Marcus M. Seldin
- 1Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Zhikui Wei
- 1Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Susan Aja
- 2Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - G. William Wong
- 1Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; ,3Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
8
|
Wei Z, Seldin MM, Natarajan N, Djemal DC, Peterson JM, Wong GW. C1q/tumor necrosis factor-related protein 11 (CTRP11), a novel adipose stroma-derived regulator of adipogenesis. J Biol Chem 2013; 288:10214-29. [PMID: 23449976 DOI: 10.1074/jbc.m113.458711] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
C1q/TNF-related proteins (CTRPs) are a family of secreted regulators of glucose and lipid metabolism. Here, we describe CTRP11, a novel and phylogenetically conserved member of the C1q family. Our studies revealed that white and brown adipose are major tissues that express CTRP11, and its expression is acutely regulated by changes in metabolic state. Within white adipose tissue, CTRP11 is primarily expressed by stromal vascular cells. As a secreted multimeric protein, CTRP11 forms disulfide-linked oligomers. Although the conserved N-terminal Cys-28 and Cys-32 are dispensable for the assembly of higher-order oligomeric structures, they are unexpectedly involved in modulating protein secretion. When co-expressed, CTRP11 forms heteromeric complexes with closely related CTRP10, CTRP13, and CRF (CTRP14) via the C-terminal globular domains, combinatorial associations that potentially generate functionally distinct complexes. Functional studies revealed a role for CTRP11 in regulating adipogenesis. Ectopic expression of CTRP11 or exposure to recombinant protein inhibited differentiation of 3T3-L1 adipocytes. The expression of peroxisome proliferator-activated receptor-γ and CAAT/enhancer binding protein-α, which drive the adipogenic gene program, was markedly suppressed by CTRP11. Impaired adipogenesis was caused by a CTRP11-mediated decrease in p42/44-MAPK signaling and inhibition of mitotic clonal expansion, a process essential for adipocyte differentiation in culture. These results implicate CTRP11 as a novel secreted regulator of adipogenesis and highlight the potential paracrine cross-talk between adipocytes and cells of the stromal vascular compartment in maintaining adipose tissue homeostasis.
Collapse
Affiliation(s)
- Zhikui Wei
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhang YY, Li X, Qian SW, Guo L, Huang HY, He Q, Liu Y, Ma CG, Tang QQ. Down-regulation of type I Runx2 mediated by dexamethasone is required for 3T3-L1 adipogenesis. Mol Endocrinol 2012; 26:798-808. [PMID: 22422618 DOI: 10.1210/me.2011-1287] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Runx2, a runt-related transcriptional factor family member, is involved in the regulation of osteoblast differentiation. Interestingly, it is abundant in growth-arrested 3T3-L1 preadipocytes and was dramatically down-regulated during adipocyte differentiation. Knockdown of Runx2 expression promoted 3T3-L1 adipocyte differentiation, whereas overexpression inhibited adipocyte differentiation and promoted the trans-differentiation of 3T3-L1 preadipocytes to bone cells. Runx2 was down-regulated specifically by dexamethasone (DEX). Only type I Runx2 was expressed in 3T3-L1 preadipocytes. Using luciferase assay and chromatin immunoprecipitation-quantitative PCR analysis, it was found that DEX repressed this type of Runx2 at the transcriptional level through direct binding of the glucocorticoid receptor (GR) to a GR-binding element in the Runx2 P2 promoter. Further studies indicated that GR recruited histone deacetylase 1 to the Runx2 P2 promoter which then mediated the deacetylation of histone H4 and down-regulated Runx2 expression. Runx2 might play its repressive role through the induction of p27 expression, which blocked 3T3-L1 adipocyte differentiation by inhibiting mitotic clonal expansion. Taken together, we identified Runx2 as a new downstream target of DEX and explored a new pathway between DEX, Runx2, and p27 which contributed to the mechanism of the 3T3-L1 adipocyte differentiation.
Collapse
Affiliation(s)
- You-you Zhang
- Key Laboratory of Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Funnell APW, Crossley M. Homo- and Heterodimerization in Transcriptional Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:105-21. [DOI: 10.1007/978-1-4614-3229-6_7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Berberine exerts anti-adipogenic activity through up-regulation of C/EBP inhibitors, CHOP and DEC2. Biochem Biophys Res Commun 2011; 413:376-82. [DOI: 10.1016/j.bbrc.2011.08.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 08/23/2011] [Indexed: 01/30/2023]
|
12
|
Masciarelli S, Fra AM, Pengo N, Bertolotti M, Cenci S, Fagioli C, Ron D, Hendershot LM, Sitia R. CHOP-independent apoptosis and pathway-selective induction of the UPR in developing plasma cells. Mol Immunol 2010; 47:1356-65. [PMID: 20044139 PMCID: PMC2830287 DOI: 10.1016/j.molimm.2009.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/26/2009] [Accepted: 12/06/2009] [Indexed: 01/28/2023]
Abstract
Upon antigen stimulation, B lymphocytes differentiate into antibody secreting cells (ASC), most of which undergo apoptosis after a few days of intense Ig production. Differentiation entails expansion of the endoplasmic reticulum (ER) and requires XBP1 but not other elements of the unfolded protein response, like PERK. Moreover, normal and malignant ASC are exquisitely sensitive to proteasome inhibitors, but the underlying mechanisms are poorly understood. Here we analyze the role of C/EBP homologous protein (CHOP), a transcription factor mediating apoptosis in many cell types that experience high levels of ER stress. CHOP is transiently induced early upon B cell stimulation: covalent IgM aggregates form more readily and IgM secretion is slower in chop(-/-) cells. Despite these subtle changes, ASC differentiation and lifespan are normal in chop(-/-) mice. Unlike fibroblasts and other cell types, chop(-/-) ASC are equally or slightly more sensitive to proteasome inhibitors and ER stressors, implying tissue-specific roles for CHOP in differentiation and stress.
Collapse
Affiliation(s)
- Silvia Masciarelli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Anna M. Fra
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | - Niccoló Pengo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Universitá Vita-Salute, San Raffaele Scientific Institute, Milano, Italy
| | - Milena Bertolotti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Universitá Vita-Salute, San Raffaele Scientific Institute, Milano, Italy
| | - Claudio Fagioli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - David Ron
- Skirball Institute of Biomolecular Medicine and the Departments of Cell Biology, Medicine and Pharmacology, New York University School of Medicine, New York, NY, USA
| | | | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Universitá Vita-Salute, San Raffaele Scientific Institute, Milano, Italy
- Institute Curie, Paris, France
| |
Collapse
|
13
|
Endoribonuclease L (RNase L) regulates the myogenic and adipogenic potential of myogenic cells. PLoS One 2009; 4:e7563. [PMID: 19851509 PMCID: PMC2762314 DOI: 10.1371/journal.pone.0007563] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 09/29/2009] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle maintenance and repair involve several finely coordinated steps in which pluripotent stem cells are activated, proliferate, exit the cell cycle and differentiate. This process is accompanied by activation of hundreds of muscle-specific genes and repression of genes associated with cell proliferation or pluripotency. Mechanisms controlling myogenesis are precisely coordinated and regulated in time to allow the sequence of activation/inactivation of genes expression. Muscular differentiation is the result of the interplay between several processes such as transcriptional induction, transcriptional repression and mRNA stability. mRNA stability is now recognized as an essential mechanism of control of gene expression. For instance, we previously showed that the endoribonuclease L (RNase L) and its inhibitor (RLI) regulates MyoD mRNA stability and consequently muscle differentiation. We now performed global gene expression analysis by SAGE to identify genes that were down-regulated upon activation of RNase L in C2C12 myogenic cells, a model of satellite cells. We found that RNase L regulates mRNA stability of factors implicated in the control of pluripotency and cell differentiation. Moreover, inappropriate RNase L expression in C2C12 cells led to inhibition of myogenesis and differentiation into adipocytes even when cells were grown in conditions permissive for muscle differentiation. Conversely, over-expression of RLI allowed muscle differentiation of myogenic C2C12 cells even in non permissive conditions. These findings reveal the central role of RNase L and RLI in controlling gene expression and cell fate during myogenesis. Our data should provide valuable insights into the mechanisms that control muscle stem cell differentiation and into the mechanism of metaplasia observed in aging or muscular dystrophy where adipose infiltration of muscle occurs.
Collapse
|
14
|
Huang HY, Li X, Liu M, Song TJ, He Q, Ma CG, Tang QQ. Transcription factor YY1 promotes adipogenesis via inhibiting CHOP-10 expression. Biochem Biophys Res Commun 2008; 375:496-500. [PMID: 18694725 DOI: 10.1016/j.bbrc.2008.07.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/22/2008] [Accepted: 07/27/2008] [Indexed: 10/21/2022]
Abstract
CHOP-10, a dominant-negative member of the C/EBP family of transcription factors, is initially expressed by growth-arrested preadipocytes and sequesters/inactivates C/EBPbeta through heterodimerization with its leucine zipper during 3T3-L1 preadipocyte differentiation. Our previous studies indicated that, FBS leads to the down-regulation of CHOP-10 expression after induction, and releasing C/EBPbeta from inhibitory constraint, allowing the transactivation of C/EBPalpha and PPARgamma genes, transcription factors required for terminal adipocyte differentiation. In the present study, we reported that FBS induced the expression of YY1, which bound to CHOP-10 promoter via two adjacent YY1-binding sites, suppressing its expression. The knock-down of YY1 expression with YY1 siRNA increased the expression of CHOP-10, inhibiting adipocyte differentiation. IGF-1, a growth factor present in greater concentration in FBS, independently induced the expression of YY1, and contributed to the down-regulation of CHOP-10 during the adipocyte differentiation program. Our studies suggested that YY1 can be a new adipocyte differentiation stimulator.
Collapse
Affiliation(s)
- Hai-Yan Huang
- Key Laboratory of Molecular Medicine, The Ministry of Education, Shanghai Medical School, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Frith J, Genever P. Transcriptional control of mesenchymal stem cell differentiation. TRANSFUSION MEDICINE AND HEMOTHERAPY : OFFIZIELLES ORGAN DER DEUTSCHEN GESELLSCHAFT FUR TRANSFUSIONSMEDIZIN UND IMMUNHAMATOLOGIE 2008; 35:216-27. [PMID: 21547119 DOI: 10.1159/000127448s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/31/2008] [Indexed: 12/23/2022]
Abstract
SUMMARY In recent years, transcriptomics and proteomics have provided us with a great deal of information about the expression profiles of various cell types and how these change under different conditions. Stem cell research is one area where this has had a major impact by providing an insight into events at the molecular level that control stem cell growth and differentiation. This includes mesenchymal stem cell (MSC) biology where knowledge about the mechanisms governing differentiation is vital for the development of future therapeutic strategies. Although there is still much to learn, we are starting to build up a picture of the main events in these differentiation processes. This review will discuss control of MSC differentiation at the transcriptional level. Not all the factors which have been shown to play a role in lineage-specific mesenchymal differentiation can be covered here. Instead, we will focus specifically on the key factors that contribute to the regulation of osteogenesis, adipogenesis, and chondrogenesis.
Collapse
Affiliation(s)
- Jess Frith
- Department of Biology (Area 9), University of York, UK
| | | |
Collapse
|
16
|
Frith J, Genever P. Transcriptional Control of Mesenchymal Stem Cell Differentiation. Transfus Med Hemother 2008. [DOI: 10.1159/000127448] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
17
|
Tchkonia T, Pirtskhalava T, Thomou T, Cartwright MJ, Wise B, Karagiannides I, Shpilman A, Lash TL, Becherer JD, Kirkland JL. Increased TNFalpha and CCAAT/enhancer-binding protein homologous protein with aging predispose preadipocytes to resist adipogenesis. Am J Physiol Endocrinol Metab 2007; 293:E1810-9. [PMID: 17911345 DOI: 10.1152/ajpendo.00295.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fat depot sizes peak in middle age but decrease by advanced old age. This phenomenon is associated with ectopic fat deposition, decreased adipocyte size, impaired differentiation of preadipocytes into fat cells, decreased adipogenic transcription factor expression, and increased fat tissue inflammatory cytokine generation. To define the mechanisms contributing to impaired adipogenesis with aging, we examined the release of TNFalpha, which inhibits adipogenesis, and the expression of CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), which blocks activity of adipogenic C/EBP family members, in preadipocytes cultured from young, middle-aged, and old rats. Medium conditioned by fat tissue, as well as preadipocytes, from old rats impeded lipid accumulation by preadipocytes from young animals. More TNFalpha was released by preadipocytes from old than young rats. Differences in TNFalpha-converting enzyme, TNFalpha degradation, or the presence of macrophages in cultures were not responsible. TNFalpha induced rat preadipocyte CHOP expression. CHOP was higher in undifferentiated preadipocytes from old than younger animals. Overexpression of CHOP in young rat preadipocytes inhibited lipid accumulation. TNFalpha short interference RNA reduced CHOP and partially restored lipid accumulation in old rat preadipocytes. CHOP normally increases during late differentiation, potentially modulating the process. This late increase in CHOP was not affected substantially by aging: CHOP was similar in differentiating preadipocytes and fat tissue from old and young animals. Hypoglycemia, which normally causes an adaptive increase in CHOP, was less effective in inducing CHOP in preadipocytes from old than younger animals. Thus increased TNFalpha release by undifferentiated preadipocytes with elevated basal CHOP contributes to impaired adipogenesis with aging.
Collapse
Affiliation(s)
- Tamara Tchkonia
- Evans Department of Medicine, Boston Univ. Medical Center, 88 E. Newton St., Robinson 2, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yamakawa T, Whitson RH, Li SL, Itakura K. Modulator recognition factor-2 is required for adipogenesis in mouse embryo fibroblasts and 3T3-L1 cells. Mol Endocrinol 2007; 22:441-53. [PMID: 17962384 DOI: 10.1210/me.2007-0271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous study showed that mice lacking modulator recognition factor-2 (Mrf-2) were lean, with significant decreases in white adipose tissue. One postulated mechanism for the lean phenotype in Mrf-2 knockout mice is a defect in adipogenesis. In order to investigate this further, we examined the effects of Mrf-2 deficiency on adipogenesis in vitro. In mouse fibroblasts (MEFs) derived from Mrf-2(-/-) embryos, and in 3T3-L1 cells after knockdown of Mrf-2 by small interference RNA (siRNA) there was a potent inhibition of hormone-induced lipid accumulation, and significant decreases in the expression of the adipogenic transcription factors CCAAT/enhancer-binding protein (C/EBP) alpha and peroxisome proliferator-activated receptor-gamma and the mature adipocyte genes they control. Transduction of Mrf-2(-/-) MEFs with a retroviral vector expressing the longer Mrf-2 splice variant (Mrf-2B) stimulated both gene expression and lipid accumulation. Because 3T3-L1 cells are committed to the adipocyte lineage, we used this simpler model system to examine the effects of Mrf-2 deficiency on adipocyte maturation. Analyses of both mRNA and protein revealed that knockdown of Mrf-2 in 3T3-L1 cells prolonged the expression of C/EBP homologous protein-10, a dominant-negative form of C/EBP. Consistent with these findings, suppression of Mrf-2 also inhibited the DNA-binding activity of C/EBPbeta. These data suggest that Mrf-2 facilitates the induction of the two key adipogenic transcription factors C/EBPalpha and peroxisome proliferator-activated receptor-gamma indirectly by permitting hormone-mediated repression of the adipogenic repressor C/EBP homologous protein-10.
Collapse
Affiliation(s)
- Takahiro Yamakawa
- Department of Molecular Biology, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
19
|
Lawrence MC, McGlynn K, Naziruddin B, Levy MF, Cobb MH. Differential regulation of CHOP-10/GADD153 gene expression by MAPK signaling in pancreatic beta-cells. Proc Natl Acad Sci U S A 2007; 104:11518-25. [PMID: 17615236 PMCID: PMC1913886 DOI: 10.1073/pnas.0704618104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CHOP-10 (GADD153/DDIT-3) is a bZIP protein involved in differentiation and apoptosis. Its expression is induced in response to stresses such as nutrient deprivation, perturbation of the endoplasmic reticulum, redox imbalance, and UV exposure. Here we show that CHOP expression is induced in cultured pancreatic beta-cells maintained in a basal glucose concentration of 5.5 mM and repressed by stimulatory glucose (>or=11 mM). Both induction and repression of CHOP are dependent on the MAPKs ERK1 and ERK2. Two regulatory composite sites containing overlapping MafA response elements (MARE) and CAAT enhancer binding (CEB) elements regulate transcription in an ERK1/2-dependent manner. One site (MARE-CEB), from -320 to -300 bp in the promoter, represses transcription. The other site (CEB-MARE), from +2,628 to +2,641 bp in the first intron of the CHOP gene, activates it. MafA can influence transcription of both sites. The MARE-CEB is repressed by MafA, whereas the CEB-MARE site, which is homologous to the A2C1 component of the glucose-sensitive RIPE3b region of the insulin gene promoter, is activated by MafA. These results indicate that ERK1/2 have dual roles in regulating CHOP gene expression via both promoter and intronic regions, depending on environmental and metabolic stresses imposed on pancreatic beta-cells.
Collapse
Affiliation(s)
- Michael C. Lawrence
- *Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Kathleen McGlynn
- *Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Bashoo Naziruddin
- cGMP Islet Cell Processing Laboratory, Islet Cell Transplant Program, Baylor University Medical Center, Dallas, TX 75246
| | - Marlon F. Levy
- cGMP Islet Cell Processing Laboratory, Islet Cell Transplant Program, Baylor University Medical Center, Dallas, TX 75246
| | - Melanie H. Cobb
- *Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
- To whom correspondence should be addressed at:
Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041. E-mail:
| |
Collapse
|
20
|
Lin NY, Lin CT, Chen YL, Chang CJ. Regulation of tristetraprolin during differentiation of 3T3-L1 preadipocytes. FEBS J 2007; 274:867-78. [PMID: 17288565 DOI: 10.1111/j.1742-4658.2007.05632.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tristetraprolin is a zinc-finger-containing RNA-binding protein. Tristetraprolin binds to AU-rich elements of target mRNAs such as proto-oncogenes, cytokines and growth factors, and then induces mRNA rapid degradation. It was observed as an immediate-early gene that was induced in response to several kinds of stimulus, such as insulin and other growth factors and stimulators of innate immunity such as lipopolysaccharides. We observed that tristetraprolin was briefly expressed during a 1-8 h period after induction of differentiation in 3T3-L1 preadipocytes. Detailed analysis showed that tristetraprolin mRNA expression was stimulated by fetal bovine serum and differentiation inducers, and was followed by rapid degradation. The 3'UTR of tristetraprolin mRNAs contain adenine- and uridine-rich elements. Biochemical analyses using RNA pull-down, RNA immunoprecipitation and gel shift experiments demonstrated that adenine- and uridine-rich element-binding proteins, HuR and tristetraprolin itself, were associated with tristetraprolin adenine- and uridine-rich elements. Functional characterization confirmed that tristetraprolin negatively regulated its own expression. Thus, our results indicated that the tight autoregulation of tristetraprolin expression correlated with its critical functional role in 3T3-L1 differentiation.
Collapse
Affiliation(s)
- Nien-Yi Lin
- Department and Graduate Institute of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Dickson ME, Zimmerman MB, Rahmouni K, Sigmund CD. The -20 and -217 promoter variants dominate differential angiotensinogen haplotype regulation in angiotensinogen-expressing cells. Hypertension 2007; 49:631-9. [PMID: 17200439 DOI: 10.1161/01.hyp.0000254350.62876.b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of naturally occurring polymorphisms exist in the human angiotensinogen locus, some of which have been associated with essential hypertension, preeclampsia, and other medical disorders. However, to date there has been no comprehensive determination of the significance of specific haplotypes in relation to the regulation of angiotensinogen expression. We cloned the promoters extending from -1219 to +125 bp from 11 ethnically diverse individuals to acquire a representative cross-section of known haplotype diversity. Eight nonredundant haplotypes were identified, fused to luciferase, and studied for their effect on transcriptional regulation in human astrocyte, proximal tubule, and hepatocyte cell lines endogenously expressing angiotensinogen and in a mouse adipocyte cell line. The studies were carried out under baseline conditions, in the presence of the angiotensinogen enhancer, and in response to hormonal stimulation by dexamethasone, beta-estradiol, or testosterone. A statistical model was then constructed to assess the significance of individual polymorphisms. The polymorphisms with the greatest effect on transcription in these cell lines were located at -20 and -217. There were modest haplotype-specific effects of the angiotensinogen enhancer and no haplotype-specific effects of beta-estradiol, dexamethasone, or testosterone treatment. We conclude the following: (1) the -20 and -217 polymorphisms have the largest influence on angiotensinogen transcription, (2) other polymorphisms have a much smaller impact on angiotensinogen transcription, and (3) the transcriptional influence of the promoter polymorphisms may act cell specifically. Therefore, our data support a hypothesis that polymorphisms in the angiotensinogen promoter may act cell specifically to differentially regulate the level of angiotensinogen transcription in angiotensin-producing tissues.
Collapse
Affiliation(s)
- Matthew E Dickson
- Interdisciplinary Genetics Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
22
|
Li X, Huang HY, Chen JG, Jiang L, Liu HL, Liu DG, Song TJ, He Q, Ma CG, Ma D, Song HY, Tang QQ. Lactacystin inhibits 3T3-L1 adipocyte differentiation through induction of CHOP-10 expression. Biochem Biophys Res Commun 2006; 350:1-6. [PMID: 16996026 DOI: 10.1016/j.bbrc.2006.08.188] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 08/11/2006] [Indexed: 11/29/2022]
Abstract
Hormonal induction triggers a cascade leading to the expression of CCAAT/enhancer-binding protein(C/EBP)alpha and peroxisome proliferator-activated receptor (PPAR) gamma, C/EBPalpha, and PPARgamma turns on series of adipocyte genes that give rise to the adipocyte phenotype. Previous findings indicate that C/EBPbeta, a transcriptional activator of the C/EBPalpha and PPARgamma genes, is rapidly expressed after induction, but lacks DNA-binding activity and therefore cannot activate transcription of the C/EBPalpha and PPARgamma genes early in the differentiation program. Acquisition of DNA-binding activity of C/EBPbeta occurs when CHOP-10, a dominant-negative form of C/EBP family members, is down-regulated and becomes hyperphosphorylated as preadipocytes traverse the G1-S checkpoint of mitotic clonal expansion. Evidences are presented in this report that lactacystin, a proteasome inhibitor, up-regulated the CHOP-10 expression, blocked the DNA-binding activity of C/EBPbeta, and subsequently inhibited MCE as well as adipocyte differentiation.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University Shanghai Medical School, P.O. Box 238, 138 Yi Xue Yuan Road, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|