1
|
Li G, Zhang L, Xue P. Codon usage divergence of important functional genes in Mycobacterium tuberculosis. Int J Biol Macromol 2022; 209:1197-1204. [PMID: 35460756 DOI: 10.1016/j.ijbiomac.2022.04.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022]
Abstract
Sequence characteristics are usually used to explain the adaptive ability to hosts, metabolism, genetic diversity, drug resistance, and infectivity of Mycobacterium tuberculosis. Exploring the codon usage pattern of coding sequences in Mycobacterium tuberculosis is of great significance. In the present study, two hundred random complete genomes of Mycobacterium tuberculosis were downloaded from the National Center for Biotechnology Information database. The important codon usage pattern, such as the codon bias index, the effective number of codons, the relative synonymous codon usage as well as the base component, of twenty one specific functional genes were counted or calculated. The differences of the relative synonymous codon usage values among those functional genes, and the summation of the standard deviations of codon usage parameters were used to evaluate the divergence degree of the concerned genes. The results show that among the concerned genes, 1) all genes are high GC sequences, the codon usage frequency corresponding to each amino acid of these functional genes had a significant bias; 2) the genes of those with high effective number of codons, such as the coding sequences of Myco-bacterial membrane protein large family, usually have higher divergences; and 3) genes with lower divergences, such as the ag85A and the sigH, are usually highly conserved and are often used as drug target genes. The findings of the present work would improve new understandings on the evolution of Mycobacterium tuberculosis and on the measures to prevent and control tuberculosis from the gene engineering.
Collapse
Affiliation(s)
- Gun Li
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China.
| | - Liang Zhang
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| | - Pei Xue
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| |
Collapse
|
2
|
Hamidieh F, Farnia P, Nowroozi J, Farnia P, Velayati AA. An Overview of Genetic Information of Latent Mycobacterium tuberculosis. Tuberc Respir Dis (Seoul) 2020; 84:1-12. [PMID: 33121230 PMCID: PMC7801807 DOI: 10.4046/trd.2020.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis has infected more than two billion individuals worldwide, of whom 5%–10% have clinically active disease and 90%–95% remain in the latent stage with a reservoir of viable bacteria in the macrophages for extended periods of time. The tubercle bacilli at this stage are usually called dormant, non-viable, and/or non-culturable microorganisms. The patients with latent bacilli will not have clinical pictures and are not infectious. The infections in about 2%–23% of the patients with latent status become reactivated for various reasons such as cancer, human immunodeficiency virus infection, diabetes, and/or aging. Many studies have examined the mechanisms involved in the latent state of Mycobacterium and showed that latency modified the expression of many genes. Therefore, several mechanisms will change in this bacterium. Hence, this study aimed to briefly examine the genes involved in the latent state as well as the changes that are caused by Mycobacterium tuberculosis. The study also evaluated the relationship between the functions of these genes.
Collapse
Affiliation(s)
- Faezeh Hamidieh
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamileh Nowroozi
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Poopak Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kaur G, Kapoor S, Kaundal S, Dutta D, Thakur KG. Structure-Guided Designing and Evaluation of Peptides Targeting Bacterial Transcription. Front Bioeng Biotechnol 2020; 8:797. [PMID: 33014990 PMCID: PMC7505949 DOI: 10.3389/fbioe.2020.00797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
The mycobacterial RNA polymerase (RNAP) is an essential and validated drug target for developing antibacterial drugs. The β-subunit of Mycobacterium tuberculosis (Mtb) RNAP (RpoB) interacts with an essential and global transcription factor, CarD, and confers antibiotic and oxidative stress resistance to Mtb. Compromising the RpoB/CarD interactions results in the killing of mycobacteria, hence disrupting the RpoB/CarD interaction has been proposed as a novel strategy for the development of anti-tubercular drugs. Here, we describe the first approach to rationally design and test the efficacy of the peptide-based inhibitors which specifically target the conserved PPI interface between the bacterial RNAP β/transcription factor complex. We performed in silico protein-peptide docking studies along with biochemical assays to characterize the novel peptide-based inhibitors. Our results suggest that the top ranked peptides are highly stable, soluble in aqueous buffer, and capable of inhibiting transcription with IC50 > 50 μM concentration. Using peptide-based molecules, our study provides the first piece of evidence to target the conserved RNAP β/transcription factor interface for designing new inhibitors. Our results may hence form the basis to further improve the potential of these novel peptides in modulating bacterial gene expression, thus inhibiting bacterial growth and combating bacterial infections.
Collapse
Affiliation(s)
- Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Srajan Kapoor
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- Molecular Microbiology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
4
|
Park JH, Lee JH, Roe JH. SigR, a hub of multilayered regulation of redox and antibiotic stress responses. Mol Microbiol 2019; 112:420-431. [PMID: 31269533 DOI: 10.1111/mmi.14341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 02/01/2023]
Abstract
Signal-specific activation of alternative sigma factors redirects RNA polymerase to induce transcription of distinct sets of genes conferring protection against the damage the signal and the related stresses incur. In Streptomyces coelicolor, σR (SigR), a member of ECF12 subfamily of Group IV sigma factors, responds to thiol-perturbing signals such as oxidants and electrophiles, as well as to translation-blocking antibiotics. Oxidants and electrophiles interact with and inactivate the zinc-containing anti-sigma factor, RsrA, via disulfide bond formation or alkylation of reactive cysteines, subsequently releasing σR for target gene induction. Translation-blocking antibiotics induce the synthesis of σR , via the WhiB-like transcription factor, WblC/WhiB7. Signal transduction via RsrA produces a dramatic transient response that involves positive feedback to produce more SigR as an unstable isoform σ R ' and negative feedbacks to degrade σ R ' , and reduce oxidized RsrA that subsequently sequester σR and σ R ' . Antibiotic stress brings about a prolonged response by increasing stable σR levels. The third negative feedback, which occurs via IF3, lowers the translation efficiency of the sigRp1 transcript that utilizes a non-canonical start codon. σR is a global regulator that directly activates > 100 transcription units in S. coelicolor, including genes for thiol homeostasis, protein quality control, sulfur metabolism, ribosome modulation and DNA repair. Close homologues in Actinobacteria, such as σH in Mycobacteria and Corynebacteria, show high conservation of the signal transduction pathways and target genes, thus reflecting the robustness of this type of regulation in response to redox and antibiotic stresses.
Collapse
Affiliation(s)
- Joo-Hong Park
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Ju-Hyung Lee
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jung-Hye Roe
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Schmidt HG, Sewitz S, Andrews SS, Lipkow K. An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding. PLoS One 2014; 9:e108575. [PMID: 25333780 PMCID: PMC4204827 DOI: 10.1371/journal.pone.0108575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/30/2014] [Indexed: 11/30/2022] Open
Abstract
We present a computational model of transcription factor motion that explains both the observed rapid target finding of transcription factors, and how this motion influences protein and genome structure. Using the Smoldyn software, we modelled transcription factor motion arising from a combination of unrestricted 3D diffusion in the nucleoplasm, sliding along the DNA filament, and transferring directly between filament sections by intersegmental transfer. This presents a fine-grain picture of the way in which transcription factors find their targets two orders of magnitude faster than 3D diffusion alone allows. Eukaryotic genomes contain sections of nucleosome free regions (NFRs) around the promoters; our model shows that the presence and size of these NFRs can be explained as their acting as antennas on which transcription factors slide to reach their targets. Additionally, our model shows that intersegmental transfer may have shaped the quaternary structure of transcription factors: sequence specific DNA binding proteins are unusually enriched in dimers and tetramers, perhaps because these allow intersegmental transfer, which accelerates target site finding. Finally, our model shows that a ‘hopping’ motion can emerge from 3D diffusion on small scales. This explains the apparently long sliding lengths that have been observed for some DNA binding proteins observed in vitro. Together, these results suggest that transcription factor diffusion dynamics help drive the evolution of protein and genome structure.
Collapse
Affiliation(s)
- Hugo G. Schmidt
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (HS); (KL)
| | - Sven Sewitz
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Steven S. Andrews
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Karen Lipkow
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
- * E-mail: (HS); (KL)
| |
Collapse
|
6
|
Bhat SA, Singh N, Trivedi A, Kansal P, Gupta P, Kumar A. The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic Biol Med 2012; 53:1625-41. [PMID: 22921590 DOI: 10.1016/j.freeradbiomed.2012.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 12/25/2022]
Abstract
Tuberculosis epidemics have defied constraint despite the availability of effective treatment for the past half-century. Mycobacterium tuberculosis, the causative agent of TB, is continually exposed to a number of redox stressors during its pathogenic cycle. The mechanisms used by Mtb to sense redox stress and to maintain redox homeostasis are central to the success of Mtb as a pathogen. Careful analysis of the Mtb genome has revealed that Mtb lacks classical redox sensors such as FNR, FixL, and OxyR. Recent studies, however, have established that Mtb is equipped with various sophisticated redox sensors that can detect diverse types of redox stress, including hypoxia, nitric oxide, carbon monoxide, and the intracellular redox environment. Some of these sensors, such as heme-based DosS and DosT, are unique to mycobacteria, whereas others, such as the WhiB proteins and anti-σ factor RsrA, are unique to actinobacteria. This article provides a comprehensive review of the literature on these redox-sensory modules in the context of TB pathogenesis.
Collapse
Affiliation(s)
- Shabir Ahmad Bhat
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | | | | | | | |
Collapse
|
7
|
Kumar S, Badireddy S, Pal K, Sharma S, Arora C, Garg SK, Alam MS, Agrawal P, Anand GS, Swaminathan K. Interaction of Mycobacterium tuberculosis RshA and SigH is mediated by salt bridges. PLoS One 2012; 7:e43676. [PMID: 22937074 PMCID: PMC3427169 DOI: 10.1371/journal.pone.0043676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/26/2012] [Indexed: 01/07/2023] Open
Abstract
The alternate sigma factor sigH of Mycobacterium tuberculosis is expressed under stress and acts as a major regulator of several genes, including some other sigma factors and redox systems. While it is auto-regulated by its own promoter at the transcriptional level, its regulation at the post-translational level is through its cognate protein, an anti-sigma factor, RshA. Hither before RshA was believed to be a zinc-associated anti-sigma factor (ZAS) and the binding of RshA to SigH is redox dependent. Here, we show that RshA coordinates a [2Fe-2S] cluster using cysteines as ligands and native RshA has more affinity to [2Fe-2S] cluster than to zinc. Furthermore, we used amide hydrogen deuterium exchange mass spectrometry (HDX-MS), followed by site-directed mutagenesis in SigH and RshA, to elucidate the interaction mechanism of RshA and SigH and the potential role of metal ion clustering in SigH regulation. Three regions in SigH, comprising of residues 1-25, 58-69, 90-111, 115-132 and 157-196 and residues 35-57 of RshA show decreased deuterium exchange and reflect decreased solvent accessibility upon complexation with SigH. Of the three RshA mutants, created based on the HDX results, the RsHA E37A mutant shows stronger interaction with SigH, relative to WT RshA, while the H49A mutant abolishes interactions and the C(53)XXC(56)AXXA mutant has no effect on complexation with SigH. The D22A, D160A and E162 SigH mutants show significantly decreased binding to RshA and the E168A mutant completely abolished interactions with RshA, indicating that the SigH-RshA interaction is mediated by salt bridges. In addition, SigH-RshA interaction does not require clustering of metal ions. Based on our results, we propose a molecular model of the SigH-RshA interaction.
Collapse
Affiliation(s)
- Shiva Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Suguna Badireddy
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kuntal Pal
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shikha Sharma
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, India
| | - Chandni Arora
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, India
| | - Saurabh K. Garg
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, India
| | | | - Pushpa Agrawal
- Institute of Microbial Technology, CSIR, Sector 39-A, Chandigarh, India
| | | | | |
Collapse
|
8
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|
9
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|