1
|
Abe R, Toyota K, Miyakawa H, Watanabe H, Oka T, Miyagawa S, Nishide H, Uchiyama I, Tollefsen KE, Iguchi T, Tatarazako N. Diofenolan induces male offspring production through binding to the juvenile hormone receptor in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:44-51. [PMID: 25506888 DOI: 10.1016/j.aquatox.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Juvenile hormone (JH) and JH agonists have been reported to induce male offspring production in various daphnid species including Daphnia magna. We recently established a short-term in vivo screening assay to detect chemicals having male offspring induction activity in adult D. magna. Diofenolan has been developed as a JH agonist for insect pest control, but its male offspring induction activity in daphnids has not been investigated yet. In this study, we found that the insect growth regulator (IGR) diofenolan exhibited a potent male offspring induction activity at low ng/L to μg/L concentrations, as demonstrated by the short-term in vivo screening assay and the recently developed TG211 ANNEX 7 test protocol. A two-hybrid assay performed using the D. magna JH receptor confirmed that diofenolan had a strong JH activity. Global whole body transcriptome analysis of D. magna exposed to 10 ng/L diofenolan showed an up-regulation of JH-responsive genes and modulation of several genes involved in the ecdysone receptor signaling pathway. These results clearly demonstrate that diofenolan has strong JH activity and male offspring induction activity, and that a combination of modified standardized regulatory testing protocols and rapid in vitro and in vivo screening assays are able to identify potential endocrine disruptors in D. magna. The observation that diofenolan modulates multiple endocrine signaling pathways in D. magna suggests that further investigation of potential interference with growth, development and reproduction is warranted.
Collapse
Affiliation(s)
- Ryoko Abe
- Environmental Quality Measurement Section, Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
| | - Kenji Toyota
- Department of Basic Biology, Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Hitoshi Miyakawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Haruna Watanabe
- Environmental Quality Measurement Section, Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
| | - Tomohiro Oka
- Japan Environmental Management Association for Industry, 2-2-1 Kajicho, Chiyoda-ku, Tokyo 101-0044, Japan
| | - Shinichi Miyagawa
- Department of Basic Biology, Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Ikuo Uchiyama
- Data Integration and Analysis Facility, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadallèen 21, N-0349 Oslo, Norway
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Norihisa Tatarazako
- Environmental Quality Measurement Section, Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan.
| |
Collapse
|
6
|
Vasudevan SR, Lewis AM, Chan JW, Machin CL, Sinha D, Galione A, Churchill GC. The calcium-mobilizing messenger nicotinic acid adenine dinucleotide phosphate participates in sperm activation by mediating the acrosome reaction. J Biol Chem 2010; 285:18262-9. [PMID: 20400502 PMCID: PMC2881750 DOI: 10.1074/jbc.m109.087858] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Before a sperm can fertilize an egg it must undergo a final activation step induced by the egg termed the acrosome reaction. During the acrosome reaction a lysosome-related organelle, the acrosome, fuses with the plasma membrane to release hydrolytic enzymes and expose an egg-binding protein. Because NAADP (nicotinic acid adenine dinucleotide phosphate) releases Ca2+ from acidic lysosome-related organelles in other cell types, we investigated a possible role for NAADP in mediating the acrosome reaction. We report that NAADP binds with high affinity to permeabilized sea urchin sperm. Moreover, we used Mn2+ quenching of luminal fura-2 and 45Ca2+ to directly demonstrate NAADP regulation of a cation channel on the acrosome. Additionally, we show that NAADP synthesis occurs through base exchange and is driven by an increase in Ca2+. We propose a new model for acrosome reaction signaling in which Ca2+ influx initiated by egg jelly stimulates NAADP synthesis and that this NAADP acts on its receptor/channel on the acrosome to release Ca2+ to drive acrosomal exocytosis.
Collapse
Affiliation(s)
- Sridhar R Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
7
|
Ramnanan CJ, Storey KB. The regulation of thapsigargin-sensitive sarcoendoplasmic reticulum Ca2+-ATPase activity in estivation. J Comp Physiol B 2007; 178:33-45. [PMID: 17690892 DOI: 10.1007/s00360-007-0197-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/17/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Estivation (aerobic dormancy) is characterized by sustained metabolic rate depression, which is crucial to survival in the face of unfavorable environmental conditions and enables the preservation of endogenous fuel reserves. Ion pumping is one of the most energetically taxing physiological processes in cells, and ion motive ATPases are likely loci to be differentially regulated in models of metabolic arrest. We proposed that the sarcoendoplasmic reticulum (SER) calcium-ATPase (SERCA) would be deactivated in the estivating desert snail Otala lactea, potentially contributing to the overall suppression of metabolism. SERCA kinetic parameters [decreased maximal velocities, increased substrate K (m) values, increased Arrhenius activation energy (E (a))] were indicative of a less active enzyme in the estivated state. Interestingly, the less active SERCA population in dormant snails featured greater kinetic (K (m) Mg.ATP versus temperature) and conformational (resistance to urea denaturation) stability than that in active snails. Western blotting confirmed that SERCA protein content did not change during estivation. In light of this observation, we proposed that estivation-dependent changes in SERCA activity was due to changes in SERCA phosphorylation state. In vitro studies promoting specific kinase or phosphatase action indicated that decreased SERCA activity in estivation was linked with endogenous kinase activity whereas reactivation of SERCA was facilitated by endogenous protein phosphatases (PP).
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | | |
Collapse
|
8
|
Jayantha Gunaratne H, Vacquier VD. Sequence, annotation and developmental expression of the sea urchin Ca2+-ATPase family. Gene 2007; 397:67-75. [PMID: 17482382 DOI: 10.1016/j.gene.2007.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 04/07/2007] [Accepted: 04/07/2007] [Indexed: 11/30/2022]
Abstract
Whole genome sequence data permit the study of protein families regulating cellular homeostasis during development. Here we present a study of the sea urchin Ca(2+)-ATPases made possible by the Sea Urchin Genome Sequencing Project. This is of potential interest because adult sea urchins, their gametes and embryos live in the relatively high Ca(2+) concentration of 10 mM. Three Ca(2+)-ATPases regulate Ca(2+) levels in animal cells: plasma membrane Ca(2+)-ATPase (PMCA), sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and secretory pathway Ca(2+)-ATPase (SPCA). The primary structures of Sp-PMCA and Sp-SERCA in the sea urchin, Strongylocentrotus purpuratus (Sp), have been published. Here, we present the primary structure of Sp-SPCA, which is 912 amino acids and has 66% identity and 80% similarity to human SPCA1. Southern blots and genome analysis show that Sp-SPCA is a single copy gene. Each Sp Ca(2+)-ATPase is highly conserved when compared to its human ortholog, indicating that human and sea urchin share structurally similar energy driven Ca(2+) homeostasis mechanisms that have been maintained throughout the course of deuterostome evolution. Annotation using the assembled sea urchin genome reveals that Sp-SPCA, Sp-PMCA and Sp-SERCA have 23, 17 and 24 exons. RT-Q-PCR shows that transcripts of Sp-SPCA are at low levels compared to Sp-PMCA and Sp-SERCA. Gradual increases in Sp-PMCA and Sp-SERCA mRNA begin at the 18 hour hatched blastula stage and peak 4-5-fold higher by 25 h at the mid to late blastulae stage.
Collapse
Affiliation(s)
- H Jayantha Gunaratne
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
10
|
Lawson C, Dorval V, Goupil S, Leclerc P. Identification and localisation of SERCA 2 isoforms in mammalian sperm. ACTA ACUST UNITED AC 2007; 13:307-16. [PMID: 17376796 DOI: 10.1093/molehr/gam012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Upon binding to the egg's zona pellucida, capacitated spermatozoa will undergo a calcium-dependent exocytotic event called acrosome reaction. During this process, Ca2+ depletion from internal stores is followed by an important rise in [Ca2+]i due to a massive Ca2+ influx. Previous reports have shown that the acrosome can act as a Ca2+ store and that depletion of thapsigargin-sensitive stores induces acrosome exocytosis in capacitated spermatozoa from different mammalian species. The effect of thapsigargin, a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCAs), suggests the presence and implication of SERCA in the active Ca2+ uptake during mammalian sperm capacitation. Although the presence of a thapsigargin-sensitive Ca2+-ATPase has been debated, the aim of this study was to clearly determine whether SERCAs are present in mammalian spermatozoa. Using three different anti-SERCA 2 antibodies, mono- and polyclonal, which recognised the same protein, we successfully identified and localised SERCA 2 in human, mouse and bovine sperm. Western blot analysis suggests that more than one SERCA 2 splice variant are present, one detected in the fraction containing the outer acrosomal membranes and another one present in the subcellular fraction containing the sperm midpiece. These results were confirmed by indirect immunofluorescence where SERCA 2 was observed in the acrosome and midpiece regions of human sperm. SERCA 2 immunohistochemical studies on human testis and PCR-amplification of mRNA encoding for each SERCA 2 splice variant in spermatogenic cells support the presence of this Ca2+-ATPase family in mature spermatozoa. In this paper, we clearly demonstrate, for the first time, the presence of SERCA 2 in mammalian sperm.
Collapse
Affiliation(s)
- C Lawson
- Département d'Obstétrique/Gynécologie, Centre de Recherche en Biologie de la Reproduction, Université Laval and Ontogénie et Reproduction, Centre de recherche du CHUQ-CHUL, 2705 boul. Laurier, Sainte-Foy, Québec, QC, Canada G1V 4G2
| | | | | | | |
Collapse
|
11
|
Bedu-Addo K, Barratt CLR, Kirkman-Brown JC, Publicover SJ. Patterns of [Ca2+]i mobilization and cell response in human spermatozoa exposed to progesterone. Dev Biol 2007; 302:324-32. [PMID: 17054937 DOI: 10.1016/j.ydbio.2006.09.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/12/2006] [Accepted: 09/21/2006] [Indexed: 11/17/2022]
Abstract
Human spermatozoa stimulated with progesterone (a product of the cumulus and thus encountered by sperm prior to fertilization in vivo) apparently mobilize Ca(2+) and respond very differently according to the way in which the steroid is presented. A progesterone concentration ramp (0-3 microM) induces [Ca(2+)](i) oscillations (repetitive store mobilization) which modify flagellar beating, whereas bolus application of micromolar progesterone causes a single large transient (causing acrosome reaction) which is apparently dependent upon Ca(2+) influx. We have investigated Ca(2+)-mobilization and functional responses in human sperm exposed to 3 muM progesterone. The [Ca(2+)](i) response to progesterone was abolished by 4 min incubation in 0 Ca(2+) medium (2 mM EGTA) but in nominally Ca(2+)-free medium (no added Ca(2+); 0 EGTA) a smaller, slow response occurred. Single cell imaging showed a similar effect of nominally Ca(2+)-free medium and approximately 5% of cells generated a small transient even in the presence of EGTA. When cells were exposed to EGTA-containing saline (5 min) and then returned to nominally Ca(2+)-free medium before stimulation, the [Ca(2+)](i) transient was greatly delayed (approximately 50 s) and rise time was doubled in comparison to cells not subjected to EGTA pre-treatment. We conclude that mobilization of stored Ca(2+) contributes a 'slow' component to the progesterone-induced [Ca(2+)](i) transient and that incubation in EGTA-buffered saline is able rapidly to deplete this store. Analysis of flagellar activity induced by 3 muM progesterone showed an effect (modified beating) associated with the [Ca(2+)](i) transient, in >80% of cells bathed in nominally Ca(2+)-free medium. This was reduced greatly in cells subjected to 5 min EGTA pre-treatment. The store-mediated transient showed a pharmacological sensitivity similar to that of progesterone-induced [Ca(2+)](i) oscillations (consistent with filling of the store by an SPCA) suggesting that the transient induced by micromolar progesterone is a 'single shot' activation of the same store that generates Ca(2+) oscillations.
Collapse
Affiliation(s)
- K Bedu-Addo
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
12
|
Roux MM, Townley IK, Raisch M, Reade A, Bradham C, Humphreys G, Gunaratne HJ, Killian CE, Moy G, Su YH, Ettensohn CA, Wilt F, Vacquier VD, Burke RD, Wessel G, Foltz KR. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev Biol 2006; 300:416-33. [PMID: 17054939 DOI: 10.1016/j.ydbio.2006.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/01/2006] [Accepted: 09/02/2006] [Indexed: 01/02/2023]
Abstract
The sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm-egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca(2+) signaling and homeostasis modules present in the egg and zygote. The sea urchin "calcium toolkit" as predicted by the genome is described. Emphasis is on the Ca(2+) signaling modules operating during egg activation, but the Ca(2+) signaling repertoire has ramifications for later developmental events and adult physiology as well. Presented here are the mechanisms that control the initial release of Ca(2+) at fertilization and additional signaling components predicted by the genome and found to be expressed and operating in eggs at fertilization. The initial release of Ca(2+) serves to coordinate egg activation, which is largely a phenomenon of post-translational modifications, especially dynamic protein phosphorylation. Functional proteomics can now be used to identify the phosphoproteome in general and specific kinase targets in particular. This approach is described along with findings to date. Key outstanding questions regarding the activation of the developmental program are framed in the context of what has been learned from the genome and how this knowledge can be applied to functional studies.
Collapse
Affiliation(s)
- Michelle M Roux
- Department MCD Biology and Marine Science Institute, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gunaratne HJ, Vacquier VD. Evidence for a secretory pathway Ca2+-ATPase in sea urchin spermatozoa. FEBS Lett 2006; 580:3900-4. [PMID: 16797550 DOI: 10.1016/j.febslet.2006.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/03/2006] [Accepted: 06/08/2006] [Indexed: 01/20/2023]
Abstract
Plasma membrane, sarco-endoplasmic reticulum and secretory pathway Ca2+-ATPases (designated PMCA, SERCA and SPCA) regulate intracellular Ca2+ in animal cells. The presence of PMCA, and the absence of SERCA, in sea urchin sperm is known. By using inhibitors of Ca2+-ATPases, we now show the presence of SPCA and Ca2+ store in sea urchin sperm, which refills by SPCA-type pumps. Immunofluorescence shows SPCA localizes to the mitochondrion. Ca2+ measurements reveal that approximately 75% of Ca2+ extrusion is by Ca2+ ATPases and 25% by Na+ dependent Ca2+ exchanger/s. Bisphenol, a Ca2+ ATPase inhibitor, completely blocks the acrosome reaction, indicating the importance of Ca2+-ATPases in fertilization.
Collapse
Affiliation(s)
- Herath Jayantha Gunaratne
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|