1
|
Dean ST, Ishikawa C, Zhu X, Walulik S, Nixon T, Jordan JK, Henderson S, Wyder M, Salomonis N, Wunderlich M, Greis KD, Starczynowski DT, Volk AG. Repression of TRIM13 by chromatin assembly factor CHAF1B is critical for AML development. Blood Adv 2023; 7:4822-4837. [PMID: 37205848 PMCID: PMC10469560 DOI: 10.1182/bloodadvances.2022009438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer that stems from the rapid expansion of immature leukemic blasts in the bone marrow. Mutations in epigenetic factors represent the largest category of genetic drivers of AML. The chromatin assembly factor CHAF1B is a master epigenetic regulator of transcription associated with self-renewal and the undifferentiated state of AML blasts. Upregulation of CHAF1B, as observed in almost all AML samples, promotes leukemic progression by repressing the transcription of differentiation factors and tumor suppressors. However, the specific factors regulated by CHAF1B and their contributions to leukemogenesis are unstudied. We analyzed RNA sequencing data from mouse MLL-AF9 leukemic cells and bone marrow aspirates, representing a diverse collection of pediatric AML samples and identified the E3 ubiquitin ligase TRIM13 as a target of CHAF1B-mediated transcriptional repression associated with leukemogenesis. We found that CHAF1B binds the promoter of TRIM13, resulting in its transcriptional repression. In turn, TRIM13 suppresses self-renewal of leukemic cells by promoting pernicious entry into the cell cycle through its nuclear localization and catalytic ubiquitination of cell cycle-promoting protein, CCNA1. Overexpression of TRIM13 initially prompted a proliferative burst in AML cells, which was followed by exhaustion, whereas loss of total TRIM13 or deletion of its catalytic domain enhanced leukemogenesis in AML cell lines and patient-derived xenografts. These data suggest that CHAF1B promotes leukemic development, in part, by repressing TRIM13 expression and that this relationship is necessary for leukemic progression.
Collapse
Affiliation(s)
- Sarai T. Dean
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Xiaoqin Zhu
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Sean Walulik
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Timothy Nixon
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Jessica K. Jordan
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Samantha Henderson
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Michael Wyder
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Nathan Salomonis
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Mark Wunderlich
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kenneth D. Greis
- College of Medicine, University of Cincinnati, Cincinnati, OH
- Department of Cancer Biology, Proteomics Laboratory, University of Cincinnati, Cincinnati, OH
| | - Daniel T. Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Andrew G. Volk
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
2
|
Hu X, Yang D, Yao T, Gao R, Wumaier M, Shi S. Regulation of multi-factors (tail/loop/link/ions) for G-quadruplex enantioselectivity of Δ- and Λ- [Ru(bpy) 2(dppz-idzo)] 2. Dalton Trans 2018; 47:5422-5430. [PMID: 29594288 DOI: 10.1039/c8dt00501j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral recognition of DNA molecules is important because much evidence has indicated that transformations of chirality and diverse conformations of DNA are involved in a series of key biological events. Among these, enrichment of G-quadruplexes (GQs) in the genome, and the exploration of their multiple structures, has aroused great interest. Herein, we compared nearly 100 different sequences with 3'-tail sequences of variable length or different linkers or diverse loops and mutative ionic concentrations. All sequences were capable of forming stable GQs, with fluorescence signal enhancement upon binding with Δ- and Λ- [Ru(bpy)2(dppz-idzo)]2+ (Δ/Λ-1). Our results show that multiple factors, including the 3'-tail length, linkers, loop length and ionic concentration, regulate the enantioselectivity of GQs. Furthermore, molecular docking simulations revealed that chiral recognition of GQs depends on the binding site. To the best of our knowledge, this is the first systematic study regarding the regulation of multi-factors for GQ selectivity of chiral Ru-complexes. These results will serve as a useful reference for enantioselective recognition of genomic GQs and may facilitate the development of chiral anticancer agents for targeting GQs.
Collapse
Affiliation(s)
- Xiaochun Hu
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, 200092 Shanghai, PR China.
| | | | | | | | | | | |
Collapse
|
3
|
Cancer astrocytes have a more conserved molecular status in long recurrence free survival (RFS) IDH1 wild-type glioblastoma patients: new emerging cancer players. Oncotarget 2018; 9:24014-24027. [PMID: 29844869 PMCID: PMC5963624 DOI: 10.18632/oncotarget.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/02/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is a devastating disease that despite all the information gathered so far, its optimal management remains elusive due to the absence of validated targets from clinical studies. A better clarification of the molecular mechanisms is needed. In this study, having access to IDH1 wild-type glioblastoma of patients with exceptionally long recurrence free survival (RFS), we decided to compare their mutational and gene expression profile to groups of IDH1 wild-type glioblastoma of patients with shorter RFS, by using NGS technology. The exome analysis revealed that Long-RFS tumors have a lower mutational rate compared to the other groups. A total of 158 genes were found differentially expressed among the groups, 112 of which distinguished the two RFS extreme groups. Overall, the exome data suggests that shorter RFS tumors could be, chronologically, in a more advanced state in the muli-step tumor process of sequential accumulation of mutations. New players in this kind of cancer emerge from the analysis, confirmed at the RNA/DNA level, identifying, therefore, possible oncodrivers or tumor suppressor genes.
Collapse
|
4
|
Singh A, Kukreti S. A triple stranded G-quadruplex formation in the promoter region of human myosin β(Myh7) gene. J Biomol Struct Dyn 2017; 36:2773-2786. [PMID: 28927343 DOI: 10.1080/07391102.2017.1374211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory regions in human genome, enriched in guanine-rich DNA sequences have the propensity to fold into G-quadruplex structures. On exploring the genome for search of G-tracts, it was interesting to find that promoter of Human Myosin Gene (MYH7) contains a conserved 23-mer G-rich sequence (HM-23). Mutations in this gene are associated with familial cardiomyopathy. Enrichment of MYH7 gene in G-rich sequences could possibly play a critical role in its regulation. We used polyacrylamide gel electrophoresis (PAGE), UV-Thermal denaturation (UV-Tm) and Circular Dichroism (CD), to demonstrate the formation of a G-quadruplex by 23-mer G-rich sequence HM23 in promoter location of MYH7 gene. We observed that the wild G-rich sequence HM23 containing consecutive G5 stretch in two stacks adopt G-quadruplexes of diverse molecularity by involvement of four-strand, three-strand and two-strands with same parallel topology. Interestingly, the mutated sequence in the absence of continuous G5 stretch obstructs the formation of three-stranded G-quadruplex. We demonstrated that continuous G5 stretch is mandatory for the formation of a unique three-stranded G-quadruplex. Presence of various transcription factors (TF) in vicinity of the sequence HM23 leave fair possibility of recognition by TF binding sites, and so modulate gene expression. These findings may add on our understanding about the effect of base change in the formation of varied structural species in similar solution condition. This study may give insight about structural polymorphism arising due to recognition of non-Watson-Crick G-quadruplex structures by cellular proteins and designing structure specific molecules.
Collapse
Affiliation(s)
- Anju Singh
- a Nucleic Acids Research Laboratory, Department of Chemistry , University of Delhi , North Campus, Delhi 110007 , India
| | - Shrikant Kukreti
- a Nucleic Acids Research Laboratory, Department of Chemistry , University of Delhi , North Campus, Delhi 110007 , India
| |
Collapse
|
5
|
Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation. Mol Neurobiol 2017; 55:1871-1904. [PMID: 28233272 DOI: 10.1007/s12035-017-0427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 01/31/2023]
Abstract
Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.
Collapse
|
6
|
Cloning and characterization of squalene synthase gene from Fusarium fujikuroi (Saw.) Wr. J Ind Microbiol Biotechnol 2010; 37:1171-82. [DOI: 10.1007/s10295-010-0764-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
7
|
Birerdinc A, Nohelty E, Marakhonov A, Manyam G, Panov I, Coon S, Nikitin E, Skoblov M, Chandhoke V, Baranova A. Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region. Tumour Biol 2009; 31:33-45. [PMID: 20237900 PMCID: PMC2803748 DOI: 10.1007/s13277-009-0005-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/04/2009] [Indexed: 12/04/2022] Open
Abstract
Deletion of 13q14.3 and a candidate gene KCNRG (potassium channel regulating gene) is the most frequent chromosomal abnormality in B-cell chronic lymphocytic leukemia and is a common finding in multiple myeloma (MM). KCNRG protein may interfere with the normal assembly of the K+ channel proteins causing the suppression of Kv currents. We aimed to examine possible role of KCNRG haploinsufficiency in chronic lymphocytic leukemia (CLL) and MM cells. We performed detailed genomic analysis of the KCNRG locus; studied effects of the stable overexpression of KCNRG isoforms in RPMI-8226, HL-60, and LnCaP cells; and evaluated relative expression of its transcripts in various human lymphomas. Three MM cell lines and 35 CLL PBL samples were screened for KCNRG mutations. KCNRG exerts growth suppressive and pro-apoptotic effects in HL-60, LnCaP, and RPMI-8226 cells. Direct sequencing of KCNRG exons revealed point mutation delT in RPMI-8226 cell line. Levels of major isoform of KCNRG mRNA are lower in DLBL lymphomas compared to normal PBL samples, while levels of its minor mRNA are decreased across the broad range of the lymphoma types. The haploinsufficiency of KCNRG might be relevant to the progression of CLL and MM at least in a subset of patients.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Elizabeth Nohelty
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Andrey Marakhonov
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Ganiraju Manyam
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Ivan Panov
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Stephanie Coon
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Eugene Nikitin
- Hematology Research Center of Russia, Moscow, Russian Federation
| | - Mikhail Skoblov
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Vikas Chandhoke
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Ancha Baranova
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| |
Collapse
|
8
|
Bugaut A, Balasubramanian S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 2008; 47:689-97. [PMID: 18092816 PMCID: PMC2408741 DOI: 10.1021/bi701873c] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
G-Rich sequences found within biologically important regions of the genome have been shown to form intramolecular G-quadruplexes with varied loop lengths and sequences. Many of these quadruplexes will be distinguishable from each other on the basis of their thermodynamic stabilities and folded conformations. It has been proposed that loop lengths can strongly influence the topology and stability of intramolecular G-quadruplexes. Previous studies have been limited to the analysis of quadruplex sequences with particular loop sequences, making it difficult to make generalizations. Here, we describe an original study that aimed to elucidate the effect of loop length on the biophysical properties of G-quadruplexes in a sequence-independent context. We employed UV melting and circular dichroism spectroscopy to examine and compare the properties of 21 DNA quadruplex libraries, each comprising partially randomized loop sequences with lengths ranging from one to three nucleotides. Our work supports a number of general predictions that can be made solely on the basis of loop lengths. In particular, the results emphasize the strong influence of single-nucleotide loops on quadruplex properties. This study provides a predictive framework that may help identify or classify biologically relevant G-quadruplex-forming sequences.
Collapse
Affiliation(s)
- Anthony Bugaut
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | | |
Collapse
|