1
|
Wu XY, Lee YK, Lau YM, Au KW, Tse YL, Ng KM, Wong CK, Tse HF. The Pathogenic Mechanisms of and Novel Therapies for Lamin A/C-Related Dilated Cardiomyopathy Based on Patient-Specific Pluripotent Stem Cell Platforms and Animal Models. Pharmaceuticals (Basel) 2024; 17:1030. [PMID: 39204134 PMCID: PMC11357512 DOI: 10.3390/ph17081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM is a consequence of the disassembly of lamins A and C. This suggests that LMNA variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases. To date, the pathogenic mechanisms and phenotypes of LMNA-related DCM have been studied using different platforms, such as patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and transgenic mice. In this review, point variants in the LMNA gene that cause autosomal dominantly inherited forms of LMNA-related DCM are summarised. In addition, potential therapeutic targets based on preclinical studies of LMNA variants using transgenic mice and human iPSC-CMs are discussed. They include mitochondria deficiency, variants in nuclear deformation, chromatin remodelling, altered platelet-derived growth factor and ERK1/2-related pathways, and abnormal calcium handling.
Collapse
Affiliation(s)
- Xin-Yi Wu
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Ki Lee
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Ka-Wing Au
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Kwong-Man Ng
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
| | - Chun-Ka Wong
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
2
|
Gregory EF, Kalra S, Brock T, Bonne G, Luxton GWG, Hopkins C, Starr DA. Caenorhabditis elegans models for striated muscle disorders caused by missense variants of human LMNA. PLoS Genet 2023; 19:e1010895. [PMID: 37624850 PMCID: PMC10484454 DOI: 10.1371/journal.pgen.1010895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/07/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene LMNA are characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which LMNA variants are pathogenic and to understand their physiological effects lag behind variant discovery. We created Caenorhabditis elegans models for striated muscle laminopathies by introducing pathogenic human LMNA variants and variants of unknown significance at conserved residues within the lmn-1 gene. Severe missense variants reduced fertility and/or motility in C. elegans. Nuclear morphology defects were evident in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity. Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease, but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a separation of function allele, lmn-1(R204W), that exhibited normal viability and swimming behavior but had a severe nuclear migration defect. Thus, we established C. elegans avatars for striated muscle laminopathies and identified LMNA variants that offer insight into lamin mechanisms during normal development.
Collapse
Affiliation(s)
- Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Trisha Brock
- InVivo Biosystems, Eugene, Oregon, United States of America
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
3
|
Edwards W, Greco TM, Miner GE, Barker NK, Herring L, Cohen S, Cristea IM, Conlon FL. Quantitative proteomic profiling identifies global protein network dynamics in murine embryonic heart development. Dev Cell 2023; 58:1087-1105.e4. [PMID: 37148880 PMCID: PMC10330608 DOI: 10.1016/j.devcel.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Defining the mechanisms that govern heart development is essential for identifying the etiology of congenital heart disease. Here, quantitative proteomics was used to measure temporal changes in the proteome at critical stages of murine embryonic heart development. Global temporal profiles of the over 7,300 proteins uncovered signature cardiac protein interaction networks that linked protein dynamics with molecular pathways. Using this integrated dataset, we identified and demonstrated a functional role for the mevalonate pathway in regulating the cell cycle of embryonic cardiomyocytes. Overall, our proteomic datasets are a resource for studying events that regulate embryonic heart development and contribute to congenital heart disease.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregory E Miner
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K Barker
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Frank L Conlon
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA.
| |
Collapse
|
4
|
Resdal Dyssekilde J, Frederiksen TC, Christiansen MK, Hasle Sørensen R, Pedersen LN, Loof Møller P, Christensen LS, Larsen JM, Thomsen KK, Lindhardt TB, Böttcher M, Molsted S, Havndrup O, Fischer T, Møller DS, Henriksen FL, Johansen JB, Nielsen JC, Bundgaard H, Nygaard M, Jensen HK. Diagnostic Yield of Genetic Testing in Young Patients With Atrioventricular Block of Unknown Cause. J Am Heart Assoc 2022; 11:e025643. [PMID: 35470684 PMCID: PMC9238593 DOI: 10.1161/jaha.121.025643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background The cause of atrioventricular block (AVB) remains unknown in approximately half of young patients with the diagnosis. Although variants in several genes associated with cardiac conduction diseases have been identified, the contribution of genetic variants in younger patients with AVB is unknown. Methods and Results Using the Danish Pacemaker and Implantable Cardioverter Defibrillator (ICD) Registry, we identified all patients younger than 50 years receiving a pacemaker because of AVB in Denmark in the period from January 1, 1996 to December 31, 2015. From medical records, we identified patients with unknown cause of AVB at time of pacemaker implantation. These patients were invited to a genetic screening using a panel of 102 genes associated with inherited cardiac diseases. We identified 471 living patients with AVB of unknown cause, of whom 226 (48%) accepted participation. Median age at the time of pacemaker implantation was 39 years (interquartile range, 32–45 years), and 123 (54%) were men. We found pathogenic or likely pathogenic variants in genes associated with or possibly associated with AVB in 12 patients (5%). Most variants were found in the LMNA gene (n=5). LMNA variant carriers all had a family history of either AVB and/or sudden cardiac death. Conclusions In young patients with AVB of unknown cause, we found a possible genetic cause in 1 out of 20 participating patients. Variants in the LMNA gene were most common and associated with a family history of AVB and/or sudden cardiac death, suggesting that genetic testing should be a part of the diagnostic workup in these patients to stratify risk and screen family members.
Collapse
Affiliation(s)
| | - Tanja Charlotte Frederiksen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| | | | | | | | | | | | | | | | - Tommi Bo Lindhardt
- Department of Cardiology Copenhagen University HospitalHerlev and Gentofte Hospital Hellerup Denmark
| | - Morten Böttcher
- Department of Cardiology Regional Hospital Herning Herning Denmark
| | - Stig Molsted
- Department of Clinical Research North Zealand Hospital Hillerød Denmark
| | - Ole Havndrup
- Department of Cardiology Zealand University Hospital Roskilde Denmark
| | | | | | | | | | - Jens Cosedis Nielsen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| | - Henning Bundgaard
- Department of Cardiology The Heart Center Rigshospitalet Copenhagen Denmark.,Department of Clinical Medicine University of Copenhagen Denmark
| | - Mette Nygaard
- Department of Biomedicine Health Aarhus University Aarhus Denmark.,Department of Health Science and Technology Aalborg Denmark
| | - Henrik Kjærulf Jensen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| |
Collapse
|
5
|
Autologous mesenchymal stem cells in the treatment of spinal aneurysmal bone cyst. Pathol Res Pract 2021; 229:153722. [PMID: 34952421 DOI: 10.1016/j.prp.2021.153722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE We retrospectively analyzed a cohort of patients treated at our Centre with bone marrow concentrated (BMC) injection for aneurysmal bone cyst (ABC) of the spine, in order to propose this treatment as a valid alternative for the management of ABCs. METHODS Fourteen patients (6 male, 8 female) were treated between June 2014 to December 2019 with BMC injection for ABC of the spine. The mean age was 15.5 years. The mean follow up was 37.4 months (range 12-60 months). The dimension of the cyst and the degree of ossification were measured by Computed Tomography (CT) scans before the treatment and during follow-up visits. RESULTS Six patients received a single dose of BMC, five patients received two doses and in three patients three doses of BMC were administered. The mean ossification of the cyst (expressed in Hounsfield units) increased statistically from 43.48 ± 2.36 HU to 161.71 ± 23.48 HU during follow-up time and the ossification was associated to an improvement of the clinical outcomes. The mean ossification over time was significantly higher in patients treated with a single injection compared to patients treated with multiple injections. No significant difference in ossification was found between cervical and non-cervical localization of the cyst. Moreover, the initial size of the cyst was not statistically associated with the degree of ossification during follow-up CONCLUSIONS: Results of this paper reinforce our previous evidence on the use of BMC as a valid alternative for spinal ABC management when SAE treatment is contraindicated or ineffective.
Collapse
|
6
|
Lin XF, Luo JW, Liu G, Zhu YB, Jin Z, Lin X. Genetic mutation of familial dilated cardiomyopathy based on next‑generation semiconductor sequencing. Mol Med Rep 2018; 18:4271-4280. [PMID: 30221713 PMCID: PMC6172371 DOI: 10.3892/mmr.2018.9455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a complex myocardial disease of multifactorial etiologies, including enlarged cardiac chambers and contractile dysfunction. It has been suggested that the inheritance of DCM‑associated mutations predominates its onset. Therefore, the present study investigated the pathogenesis of DCM via pedigree analysis and genetic diagnosis by massive whole‑exome screening, and targeted exon capture. To study the familial gene‑phenotype association, the exon and splice sites of 325 hereditary disease‑associated genes in the proband with familial dilated cardiomyopathy (FDC), including 61 cardiac disease‑associated genes, such as the lamins A/C (LMNA), were analyzed by ultra‑high multiplex polymerase chain reaction and the Ion AmpliSeq™ Inherited Disease Panel. The present study also conducted Sanger DNA Sequencing for family members with global minor allele frequencies <1% to verify potential pathogenic mutation sites. A total of three rare missense mutations were detected, including heterozygous c.244G>A in LMNA, c.546C>G in potassium voltage‑gated channel subfamily KQT (KCNQ4) and c.1276G>A in EYA transcriptional coactivator and phosphatase 1 (EYA1), indicating a glutamic acid to lysine substitution at amino acid 82 (p.E82K) in LMNA, a p.F182L in KCNQ4 (a mutation associated with pathogenic deafness) and p.G426S in EYA1 (associated with Branchiootorenal syndrome 1 and Branchiootic syndrome 1 pathogenesis). In the present study, a carrier with slight hearing impairment was detected in the family analyzed; however, no patients with deafness or branchiootorenal syndrome were observed. LMNA p.E82K revealed SIFT and PolyPhen‑2 scores of 0 and 1, respectively. In the second generation, 3 patients with DCM underwent permanent pacemaker implantation due to sick sinus syndrome, atrioventricular block and unstable cardiac electrophysiology. The present study suggested that LMNA p.E82K may contribute to the pathogenesis of FDC and concomitant atrioventricular block. At present, only three families with DCM resulting from similar mutations have been reported. The present study demonstrated the strong pathogenic effects of LMNA p.E82K on DCM.
Collapse
Affiliation(s)
- Xin-Fu Lin
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jie-Wei Luo
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Gui Liu
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yao-Bin Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhao Jin
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xing Lin
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
7
|
Targeted Next-Generation Sequencing Reveals Hot Spots and Doubly Heterozygous Mutations in Chinese Patients with Familial Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26199943 PMCID: PMC4495182 DOI: 10.1155/2015/561819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As a common cardiac disease mainly caused by gene mutations in sarcomeric cytoskeletal, calcium-handling, nuclear envelope, desmosomal, and transcription factor genes, inherited cardiomyopathy is becoming one of the major etiological factors of sudden cardiac death (SCD) and heart failure (HF). This disease is characterized by remarkable genetic heterogeneity, which makes it difficult to screen for pathogenic mutations using Sanger sequencing. In the present study, three probands, one with familial hypertrophic cardiomyopathy (FHCM) and two with familial dilated cardiomyopathy (FDCM), were recruited together with their respective family members. Using next-generation sequencing technology (NGS), 24 genes frequently known to be related to inherited cardiomyopathy were screened. Two hot spots (TNNI3-p.Arg145Gly, and LMNA-p.Arg190Trp) and double (LMNA-p.Arg190Trp plus MYH7-p.Arg1045His) heterozygous mutations were found to be highly correlated with familial cardiomyopathy. FDCM patients with doubly heterozygous mutations show a notably severe phenotype as we could confirm in our study; this indicates that the double mutations had a dose effect. In addition, it is proposed that genetic testing using NGS technology can be used as a cost-effective screening tool and help guide the treatment of patients with familial cardiomyopathy particularly regarding the risk of family members who are clinically asymptomatic.
Collapse
|
8
|
Dialynas G, Flannery KM, Zirbel LN, Nagy PL, Mathews KD, Moore SA, Wallrath LL. LMNA variants cause cytoplasmic distribution of nuclear pore proteins in Drosophila and human muscle. Hum Mol Genet 2011; 21:1544-56. [PMID: 22186027 PMCID: PMC3298278 DOI: 10.1093/hmg/ddr592] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the human LMNA gene, encoding A-type lamins, give rise to laminopathies, which include several types of muscular dystrophy. Here, heterozygous sequence variants in LMNA, which result in single amino-acid substitutions, were identified in patients exhibiting muscle weakness. To assess whether the substitutions altered lamin function, we performed in vivo analyses using a Drosophila model. Stocks were generated that expressed mutant forms of the Drosophila A-type lamin modeled after each variant. Larvae were used for motility assays and histochemical staining of the body-wall muscle. In parallel, immunohistochemical analyses were performed on human muscle biopsy samples from the patients. In control flies, muscle-specific expression of the wild-type A-type lamin had no apparent affect. In contrast, expression of the mutant A-type lamins caused dominant larval muscle defects and semi-lethality at the pupal stage. Histochemical staining of larval body wall muscle revealed that the mutant A-type lamin, B-type lamins, the Sad1p, UNC-84 domain protein Klaroid and nuclear pore complex proteins were mislocalized to the cytoplasm. In addition, cytoplasmic actin filaments were disorganized, suggesting links between the nuclear lamina and the cytoskeleton were disrupted. Muscle biopsies from the patients showed dystrophic histopathology and architectural abnormalities similar to the Drosophila larvae, including cytoplasmic distribution of nuclear envelope proteins. These data provide evidence that the Drosophila model can be used to assess the function of novel LMNA mutations and support the idea that loss of cellular compartmentalization of nuclear proteins contributes to muscle disease pathogenesis.
Collapse
Affiliation(s)
- George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
LMNA E82K mutation activates FAS and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice. PLoS One 2010; 5:e15167. [PMID: 21151901 PMCID: PMC2997782 DOI: 10.1371/journal.pone.0015167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022] Open
Abstract
The lamin A/C (LMNA), nuclear intermediate filament proteins, is a basic component of the nuclear lamina. Mutations in LMNA are associated with a broad range of laminopathies, congenital diseases affecting tissue regeneration and homeostasis. Heart tissue specific transgenic mice of human LMNA E82K, a mutation causing dilated cardiomyopathy, were generated. Lmna(E82K) transgenic mouse lines exhibited thin-walled, dilated left and right ventricles, a progressive decrease of contractile function assessed by echocardiography. Abnormalities of the conduction system, myocytes disarray, collagen accumulation and increased levels of B-type natriuretic peptide (BNP), procollagen type III α1 (Col3α1) and skeletal muscle actin α1 (Actα1) were detected in the hearts of Lmna(E82K) transgenic mice. The LMNA E82K mutation caused mislocation of LMNA in the nucleus and swollen mitochondria with loss of critae, together with the loss of nuclear envelope integrity. Most interestingly, we found that the level of apoptosis was 8.5-fold higher in the Lmna(E82K) transgenic mice than that of non-transgenic (NTG) mice. In the presence of the LMNA E82K, both of FAS and mitochondrial pathways of apoptosis were activated consistent with the increase of FAS expression, the release of cytochrome c from mitochondria to cytosol and activation of caspase-8, -9 and -3. Our results suggested that the apoptosis, at least for the LMNA E82K or the mutations in the rod region of Lamin A/C, might be an important mechanism causing continuous loss of myocytes and lead to myocardial dysfunction. It could be a potential therapeutic means to suppress and/or prevent inappropriate cardiac cell death in patients carrying LMNA mutation.
Collapse
|
10
|
Abstract
Dilated cardiomyopathy (DCM) is a myocardial disorder defined by ventricular chamber enlargement and systolic dysfunction. DCM can result in progressive heart failure, arrhythmias, thromboembolism, and premature death, and contributes significantly to health care costs. In many cases, DCM results from acquired factors that affect cardiomyocyte function or survival. Inherited genetic variants are also now recognized to have an important role in the etiology of DCM. Despite substantial progress over the past decade, our understanding of familial DCM remains incomplete. Current concepts of the molecular pathogenesis, clinical presentation, natural history, and management of familial DCM are outlined in this review.
Collapse
Affiliation(s)
- Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia.
| | | | | |
Collapse
|
11
|
Abstract
The muscular dystrophies are a group of neuromuscular disorders associated with muscle weakness and wasting, which in many forms can lead to loss of ambulation and premature death. A number of muscular dystrophies are associated with loss of proteins required for the maintenance of muscle membrane integrity, in particular with proteins that comprise the dystrophin-associated glycoprotein (DAG) complex. Proper glycosylation of O-linked mannose chains on alpha-dystroglycan, a DAG member, is required for the binding of the extracellular matrix to dystroglycan and for proper DAG function. A number of congenital disorders of glycosylation have now been described where alpha-dystroglycan glycosylation is altered and where muscular dystrophy is a predominant phenotype. Glycosylation is also increasingly being appreciated as a genetic modifier of disease phenotypes in many forms of muscular dystrophy and as a target for the development of new therapies. Here we will review the mouse models available for the study of this group of diseases and outline the methodologies required to describe disease phenotypes.
Collapse
|