1
|
Cosper PF, Hrycyniak LCF, Paracha M, Lee DL, Wan J, Jones K, Bice SA, Nickel K, Mallick S, Taylor AM, Kimple RJ, Lambert PF, Weaver BA. HPV16 E6 induces chromosomal instability due to polar chromosomes caused by E6AP-dependent degradation of the mitotic kinesin CENP-E. Proc Natl Acad Sci U S A 2023; 120:e2216700120. [PMID: 36989302 PMCID: PMC10083562 DOI: 10.1073/pnas.2216700120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Laura C. F. Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Maha Paracha
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Denis L. Lee
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Kathryn Jones
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Sophie A. Bice
- University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Kwangok Nickel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY10032
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
2
|
Hussain M, Lu Y, Tariq M, Jiang H, Shu Y, Luo S, Zhu Q, Zhang J, Liu J. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. iScience 2022; 25:104591. [PMID: 35789855 PMCID: PMC9249674 DOI: 10.1016/j.isci.2022.104591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Skp1 overexpression promotes tumor growth, whereas reduced Skp1 activity is also linked with genomic instability and neoplastic transformation. This highlights the need to gain better understanding of Skp1 biology in cancer settings. To this context, potent and cellularly active small-molecule Skp1 inhibitors may be of great value. Using a hypothesis-driven, structure-guided approach, we herein identify Z0933M as a potent Skp1 inhibitor with KD ∼0.054 μM. Z0933M occupies a hydrophobic hotspot (P1) – encompassing an aromatic cage of two phenylalanines (F101 and F139) – alongside C-terminal extension of Skp1 and, thus, hampers its ability to interact with F-box proteins, a prerequisite step to constitute intact and active SCF E3 ligase(s) complexes. In cellulo, Z0933M disrupted SCF E3 ligase(s) functioning, recapitulated previously reported effects of Skp1-reduced activity, and elicited cell death by a p53-dependent mechanism. We propose Z0933M as valuable tool for future efforts toward probing Skp1 cancer biology, with implications for cancer therapy. Z0933M manifests strong binding with Skp1 and inhibits Skp1-F-box PPIs Z0933M interacts with a P1 hotspot alongside C-terminal extension of Skp1 Z0933M alters SCF E3 ligase functioning, leading to substrate accumulation/modulation Z0933M causes cell-cycle arrest, and elicits cell death by p53-dependent mechanism
Collapse
Affiliation(s)
- Muzammal Hussain
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongzhi Lu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Muqddas Tariq
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Hao Jiang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Yahai Shu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Corresponding author
| |
Collapse
|
3
|
Iegiani G, Di Cunto F, Pallavicini G. Inhibiting microcephaly genes as alternative to microtubule targeting agents to treat brain tumors. Cell Death Dis 2021; 12:956. [PMID: 34663805 PMCID: PMC8523548 DOI: 10.1038/s41419-021-04259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy.
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy.
| |
Collapse
|
4
|
Iegiani G, Gai M, Di Cunto F, Pallavicini G. CENPE Inhibition Leads to Mitotic Catastrophe and DNA Damage in Medulloblastoma Cells. Cancers (Basel) 2021; 13:cancers13051028. [PMID: 33804489 PMCID: PMC7957796 DOI: 10.3390/cancers13051028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective, since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. CENPE is a gene critical for normal proliferation and survival of neural progenitors. Since there is evidence that MB cells are very similar to neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In MB cell lines, CENPE depletion induced defects in division and resulted in cell death. To consolidate CENPE as a target for MB treatment, we tested GSK923295, a specific inhibitor already in clinical trials for other cancer types. GSK923295 induced effects similar to CENPE depletion at low nM levels, supporting the idea that CENPE’s inhibition could be a viable strategy for MB treatment. Abstract Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. Primary microcephaly (MCPH) is a rare disorder caused by mutations in 25 different genes. Centromere-associated protein E (CENPE) heterozygous mutations cause the MCPH13 syndrome. As for other MCPH genes, CENPE is required for normal proliferation and survival of neural progenitors. Since there is evidence that MB shares many molecular features with neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In ONS-76 and DAOY cells, CENPE knockdown induced mitotic defects and apoptosis. Moreover, CENPE depletion induced endogenous DNA damage accumulation, activating TP53 or TP73 as well as cell death signaling pathways. To consolidate CENPE as a target for MB treatment, we tested GSK923295, an allosteric inhibitor already in clinical trial for other cancer types. GSK923295, induced effects similar to CENPE depletion with higher penetrance, at low nM levels, suggesting that CENPE’s inhibition could be a therapeutic strategy for MB treatment.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| |
Collapse
|
5
|
The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis 2020; 9:98. [PMID: 33130829 PMCID: PMC7603503 DOI: 10.1038/s41389-020-00276-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.
Collapse
|
6
|
Kinterova V, Kanka J, Petruskova V, Toralova T. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos†. Biol Reprod 2020; 100:896-906. [PMID: 30535233 DOI: 10.1093/biolre/ioy254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
The mechanism of maternal protein degradation during preimplantation development has not been clarified yet. It is thought that a lot of maternal proteins are degraded by the ubiquitin-proteasome system. In this study, we focused on the role of the SCF (Skp1-Cullin-F-box) complexes during early bovine embryogenesis. We inhibited them using MLN4924, an inhibitor of SCF complex ligases controlled by neddylation. Oocytes maturated in MLN4924 could be fertilized, but we found no cumulus cell expansion and a high number of polyspermy after in vitro fertilization. We also found a statistically significant deterioration of development after MLN4924 treatment. After treatment with MLN4924 from the four-cell to late eight-cell stage, we found a statistically significant delay in their development; some of the treated embryos were, however, able to reach the blastocyst stage later. We found reduced levels of mRNA of EGA markers PAPOLA and U2AF1A, which can be related to this developmental delay. The cultivation with MLN4924 caused a significant increase in protein levels in MLN4924-treated oocytes and embryos; no such change was found in cumulus cells. To detect the proteins affected by MLN4924 treatment, we performed a Western blot analysis of selected proteins (SMAD4, ribosomal protein S6, centromeric protein E, P27, NFKB inhibitor alpha, RNA-binding motif protein 19). No statistically significant increase in protein levels was detected in either treated embryos or oocytes. In summary, our study shows that SCF ligases are necessary for the correct maturation of oocytes, cumulus cell expansion, fertilization, and early preimplantation development of cattle.
Collapse
Affiliation(s)
- Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| | - Veronika Petruskova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| |
Collapse
|
7
|
Simi AK, Anlaş AA, Stallings-Mann M, Zhang S, Hsia T, Cichon M, Radisky DC, Nelson CM. A Soft Microenvironment Protects from Failure of Midbody Abscission and Multinucleation Downstream of the EMT-Promoting Transcription Factor Snail. Cancer Res 2018; 78:2277-2289. [PMID: 29483094 DOI: 10.1158/0008-5472.can-17-2899] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Multinucleation is found in more than one third of tumors and is linked to increased tolerance for mutation, resistance to chemotherapy, and invasive potential. The integrity of the genome depends on proper execution of the cell cycle, which can be altered through mechanotransduction pathways as the tumor microenvironment stiffens during tumorigenesis. Here, we show that signaling downstream of matrix metalloproteinase-3 (MMP3) or TGFβ, known inducers of epithelial-mesenchymal transition (EMT), also promotes multinucleation in stiff microenvironments through Snail-dependent expression of the filament-forming protein septin-6, resulting in midbody persistence, abscission failure, and multinucleation. Consistently, we observed elevated expression of Snail and septin-6 as well as multinucleation in a human patient sample of metaplastic carcinoma of the breast, a rare classification characterized by deposition of collagen fibers and active EMT. In contrast, a soft microenvironment protected mammary epithelial cells from becoming multinucleated by preventing Snail-induced upregulation of septin-6. Our data suggest that tissue stiffening during tumorigenesis synergizes with oncogenic signaling to promote genomic abnormalities that drive cancer progression.Significance: These findings reveal tissue stiffening during tumorigenesis synergizes with oncogenic signaling to promote genomic abnormalities that drive cancer progression. Cancer Res; 78(9); 2277-89. ©2018 AACR.
Collapse
Affiliation(s)
- Allison K Simi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Alişya A Anlaş
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | | | - Sherry Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Tiffaney Hsia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Magdalena Cichon
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey. .,Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
8
|
Ohashi A, Ohori M, Iwai K. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission. Oncotarget 2018; 7:79964-79980. [PMID: 27835888 PMCID: PMC5346764 DOI: 10.18632/oncotarget.13206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659-2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission.
Collapse
Affiliation(s)
- Akihiro Ohashi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kenichi Iwai
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
9
|
BUB1 and SURVIVIN proteins are not degraded after a prolonged mitosis and accumulate in the nuclei of HCT116 cells. Cell Death Discov 2016; 2:16079. [PMID: 27818790 PMCID: PMC5081682 DOI: 10.1038/cddiscovery.2016.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Spindle poisons activate the spindle assembly checkpoint and prevent mitotic exit until cells die or override the arrest. Several studies have focused on spindle poison-mediated cell death, but less is known about consequences in cells that survive a mitotic arrest. During mitosis, proteins such as CYCLIN B, SECURIN, BUB1 and SURVIVIN are degraded in order to allow mitotic exit, and these proteins are maintained at low levels in the next interphase. In contrast, exit from a prolonged mitosis depends only on degradation of CYCLIN B; it is not known whether the levels of other proteins decrease or remain high. Here, we analyzed the levels and localization of the BUB1 and SURVIVIN proteins in cells that escaped from a paclitaxel-mediated prolonged mitosis. We compared cells with a short arrest (HCT116 cells) with cells that spent more time in mitosis (HT29 cells) after paclitaxel treatment. BUB1 and SURVIVIN were not degraded and remained localized to the nuclei of HCT116 cells after a mitotic arrest. Moreover, BUB1 nuclear foci were observed; BUB1 did not colocalize with centromere proteins. In HT29 cells, the levels of BUB1 and SURVIVIN decreased during the arrest, and these proteins were not present in cells that reached the next interphase. Using time-lapse imaging, we observed morphological heterogeneity in HCT116 cells that escaped from the arrest; this heterogeneity was due to the cytokinesis-like mechanism by which the cells exited mitosis. Thus, our results show that high levels of BUB1 and SURVIVIN can be maintained after a mitotic arrest, which may promote resistance to cell death.
Collapse
|
10
|
XAB2 functions in mitotic cell cycle progression via transcriptional regulation of CENPE. Cell Death Dis 2016; 7:e2409. [PMID: 27735937 PMCID: PMC5133980 DOI: 10.1038/cddis.2016.313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022]
Abstract
Xeroderma pigmentosum group A (XPA)-binding protein 2 (XAB2) is a multi-functional protein that plays critical role in processes including transcription, transcription-coupled DNA repair, pre-mRNA splicing, homologous recombination and mRNA export. Microarray analysis on gene expression in XAB2 knockdown cells reveals that many genes with significant change in expression function in mitotic cell cycle regulation. Fluorescence-activated cell scanner analysis confirmed XAB2 depletion led to cell arrest in G2/M phase, mostly at prophase or prometaphase. Live cell imaging further disclosed that XAB2 knockdown induced severe mitotic defects including chromosome misalignment and defects in segregation, leading to mitotic arrest, mitotic catastrophe and subsequent cell death. Among top genes down-regulated by XAB2 depletion is mitotic motor protein centrosome-associated protein E (CENPE). Knockdown CENPE showed similar phenotypes to loss of XAB2, but CENPE knockdown followed by XAB2 depletion did not further enhance cell cycle arrest. Luciferase assay on CENPE promoter showed that overexpression of XAB2 increased luciferase activity, whereas XAB2 depletion resulted in striking reduction of luciferase activity. Further mapping revealed a region in CENPE promoter that is required for the transcriptional regulation by XAB2. Moreover, ChIP assay showed that XAB2 interacted with CENPE promoter. Together, these results support a novel function of XAB2 in mitotic cell cycle regulation, which is partially mediated by transcription regulation on CENPE.
Collapse
|
11
|
Hussain M, Lu Y, Liu YQ, Su K, Zhang J, Liu J, Zhou GB. Skp1: Implications in cancer and SCF-oriented anti-cancer drug discovery. Pharmacol Res 2016; 111:34-42. [PMID: 27238229 DOI: 10.1016/j.phrs.2016.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/28/2016] [Accepted: 05/25/2016] [Indexed: 12/29/2022]
Abstract
In the last decade, the ubiquitin proteasome system (UPS), in general, and E3 ubiquitin ligases, in particular, have emerged as valid drug targets for the development of novel anti-cancer therapeutics. Cullin RING Ligases (CRLs), which can be classified into eight groups (CRL1-8) and comprise approximately 200 members, represent the largest family of E3 ubiquitin ligases which facilitate the ubiquitination-derived proteasomal degradation of a myriad of functionally and structurally diverse substrates. S phase kinase-associated protein 1 (Skp1)-Cullin1-F-Box protein (SCF) complexes are the best characterized among CRLs, which play crucial roles in numerous cellular processes and physiological dysfunctions, such as in cancer biology. Currently, there is growing interest in developing SCF-targeting anti-cancer therapies for clinical application. Indeed, the research in this field has seen some progress in the form of cullin neddylation- and Skp2-inhibitors. However, it still remains an underdeveloped area and needs to design new strategies for developing improved form of therapy. In this review, we venture a novel strategy that rational pharmacological targeting of Skp1, a central regulator of SCF complexes, may provide a novel avenue for SCF-oriented anti-cancer therapy, expected: (i) to simultaneously address the critical roles that multiple SCF oncogenic complexes play in cancer biology, (ii) to selectively target cancer cells with minimal normal cell toxicity, and (iii) to offer multiple chemical series, via therapeutic interventions at the Skp1 binding interfaces in SCF complex, thereby maximizing chances of success for drug discovery. In addition, we also discuss the challenges that might be posed regarding rational pharmacological interventions against Skp1.
Collapse
Affiliation(s)
- Muzammal Hussain
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongzhi Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, PR China
| | - Yong-Qiang Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Kai Su
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, PR China; School of Life Sciences, University of Science and Technology of China, Hefei, 230000, PR China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, PR China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, PR China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, PR China.
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
12
|
Liu B, Luo H, Wu G, Liu J, Pan J, Liu Z. Low expression of spindle checkpoint protein, Cenp-E, causes numerical chromosomal abnormalities in HepG-2 human hepatoma cells. Oncol Lett 2015; 10:2699-2704. [PMID: 26722229 PMCID: PMC4665365 DOI: 10.3892/ol.2015.3721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 05/15/2015] [Indexed: 11/27/2022] Open
Abstract
The aim of the present study was to investigate the expression, localization and role of centromere-associated protein E (Cenp-E) in hepatoma cells. The Cenp-E mRNA expression levels in the HepG-2 human hepatocellular carcinoma and LO2 normal hepatic cell lines following treatment with nocodazole were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Furthermore, the localization and expression of Cenp-E protein in the two cell types was visualized using indirect immunofluorescence. RT-qPCR was also performed to detect the Cenp-E mRNA expression levels in LO2 cells before and after RNA interference. Additional evaluation of the function of interfered cells was performed using indirect immunofluorescence. The results of RT-qPCR demonstrated that the protein expression levels of Cenp-E in the two cell lines prior to treatment with nocodazole were not significantly different (P>0.05). However, the upregulation of Cenp-E expression levels in the LO2 cells was significantly higher compared with that in the HepG-2 cells during cell division (P<0.05). Indirect immunofluorescence analysis indicated that the Cenp-E protein was predominantly located in the nucleus, and that Cenp-E protein expression in nuclei with abnormal mitosis was markedly lower compared with that in nuclei exhibiting normal mitosis. Indirect immunofluorescence also determined that the ratio of dyskaryosis was significantly higher in cells that had undergone Cenp-E interference compared with normal cells. Thus, the present study indicated that the low expression of Cenp-E mRNA may be an important reason for numerical chromosomal abnormalities in human hepatoma cells.
Collapse
Affiliation(s)
- Bin Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hongmei Luo
- Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guang Wu
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jing Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jie Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhuoran Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Zheng Y, Guo J, Li X, Xie Y, Hou M, Fu X, Dai S, Diao R, Miao Y, Ren J. An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes. Front Microbiol 2014; 5:573. [PMID: 25400627 PMCID: PMC4212687 DOI: 10.3389/fmicb.2014.00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases. However, the organelles are highly dynamic structures, making it difficult to identify the entire components. Here, we review the current knowledge of the identified protein components governing the organization and functioning of organelles, especially in human and yeast cells, and discuss the multi-localized protein components mediating the communication between organelles during cell division.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Junjie Guo
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xu Li
- Orthopaedic Department of Anhui Medical University Affiliated Provincial Hospital Hefei, China
| | - Yubin Xie
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Mingming Hou
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xuyang Fu
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Shengkun Dai
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Rucheng Diao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Yanyan Miao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Jian Ren
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| |
Collapse
|
14
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Orozco-Lucero E, Dufort I, Robert C, Sirard MA. Rapidly cleaving bovine two-cell embryos have better developmental potential and a distinctive mRNA pattern. Mol Reprod Dev 2013; 81:31-41. [PMID: 24285591 DOI: 10.1002/mrd.22278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/31/2013] [Indexed: 12/28/2022]
Abstract
Mammalian embryos that rapidly reach the two-cell stage in culture have a higher probability of becoming viable blastocysts. Our goal was to separate two-cell bovine embryos based on their zygotic cleavage timing, and to assess their global mRNA levels. Following in vitro fertilization, all embryos that cleaved by 29.5 hpi (early) were cultured separately from those that divided at 46 hpi (late). The blastocyst rates were 46.1 ± 3.7% and 6.1 ± 3.4% for early- and late-cleavers, respectively (P < 0.01). Seven replicates of selected two-cell embryos were collected at each time point for microarray characterization (n = 4) and quantitative reverse-transcriptase PCR (n = 3); the rest were left in culture for blastocyst evaluation. A total of 774 and 594 probes were preferentially present in early- and late-cleaving embryos, respectively (fold change ± 1.5, P < 0.05), with important contrasts related to cell cycle, gene expression, RNA processing, and protein degradation functions. A total of 12 transcripts were assessed by quantitative PCR, of which ATM, ATR, CTNNB1, MSH6, MRE11A, PCNA, APC, CENPE, and GRB2 were in agreement with the hybridization results. Since most of these molecules are directly or indirectly associated with cell-cycle regulation, DNA damage response, and transcription control, our results strongly suggest key roles for those biological functions in mammalian preimplantation development.
Collapse
Affiliation(s)
- Ernesto Orozco-Lucero
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Centre de Recherche en Biologie de la Reproduction (CRBR), Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
16
|
Chen BB, Glasser JR, Coon TA, Mallampalli RK. Skp-cullin-F box E3 ligase component FBXL2 ubiquitinates Aurora B to inhibit tumorigenesis. Cell Death Dis 2013; 4:e759. [PMID: 23928698 PMCID: PMC3763433 DOI: 10.1038/cddis.2013.271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/10/2013] [Accepted: 06/19/2013] [Indexed: 12/17/2022]
Abstract
Aurora B kinase is an integral regulator of cytokinesis, as it stabilizes the intercellular canal within the midbody to ensure proper chromosomal segregation during cell division. Here we identified that the ubiquitin E3 ligase complex SCFFBXL2 mediates Aurora B ubiquitination and degradation within the midbody, which is sufficient to induce mitotic arrest and apoptosis. Three molecular acceptor sites (K102, K103 and K207) within Aurora B protein were identified as important sites for its ubiquitination. A triple Lys mutant of Aurora B (K102/103/207R) exhibited optimal resistance to SCFFBXL2-directed polyubiquitination, and overexpression of this variant resulted in a significant delay in anaphase onset, resulting in apoptosis. A unique small molecule F-box/LRR-repeat protein 2 (FBXL2) activator, BC-1258, stabilized and increased levels of FBXL2 protein that promoted Aurora B degradation, resulting in tetraploidy, mitotic arrest and apoptosis of tumorigenic cells, and profoundly inhibiting tumor formation in athymic nude mice. These findings uncover a new proteolytic mechanism targeting a key regulator of cell replication that may serve as a basis for chemotherapeutic intervention in neoplasia.
Collapse
Affiliation(s)
- B B Chen
- Department of Medicine, Pulmonary, Allergy and Critical Care Medicine, UPMC Montefiore, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
17
|
Mallampalli RK, Glasser JR, Coon TA, Chen BB. Calmodulin protects Aurora B on the midbody to regulate the fidelity of cytokinesis. Cell Cycle 2013; 12:663-73. [PMID: 23370391 DOI: 10.4161/cc.23586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aurora B kinase is an integral regulator of cytokinesis as it stabilizes the intercellular canal within the midbody to ensure proper chromosomal segregation during cell division. Here we identified an E3 ligase subunit, F box protein FBXL2, that by recognizing a calmodulin binding signature within Aurora B, ubiquitinates and removes the kinase from the midbody. Calmodulin, by competing with the F box protein for access to the calmodulin binding signature, protected Aurora B from FBXL2. Calmodulin co-localized with Aurora B on the midbody, preserved Aurora B levels in cells, and stabilized intercellular canals during delayed abscission. Genetic or pharmaceutical depletion of endogenous calmodulin significantly reduced Aurora B protein levels at the midbody resulting in tetraploidy and multi-spindle formation. The calmodulin inhibitor, calmidazolium, reduced Aurora B protein levels resulting in tetraploidy, mitotic arrest, and apoptosis of tumorigenic cells and profoundly inhibiting tumor formation in athymic nude mice. These observations indicate molecular interplay between Aurora B and calmodulin in telophase and suggest that calmodulin acts as a checkpoint sensor for chromosomal segregation errors during mitosis.
Collapse
Affiliation(s)
- Rama K Mallampalli
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
18
|
Zhang X, Bedigian AV, Wang W, Eggert US. G protein-coupled receptors participate in cytokinesis. Cytoskeleton (Hoboken) 2012; 69:810-8. [PMID: 22888021 DOI: 10.1002/cm.21055] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/16/2012] [Indexed: 12/13/2022]
Abstract
Cytokinesis, the last step during cell division, is a highly coordinated process that involves the relay of signals from both the outside and inside of the cell. We have a basic understanding of how cells regulate internal events, but how cells respond to extracellular cues is less explored. In a systematic RNAi screen of G protein-coupled receptors (GPCRs) and their effectors, we found that some GPCRs are involved in cytokinesis. RNAi knockdown of these GPCRs caused increased binucleated cell formation, and live cell imaging showed that most formed midbodies but failed at the abscission stage. OR2A4 (olfactory receptor, family 2, subfamily A, member 4) localized to cytokinetic structures in cells and its knockdown caused cytokinesis failure at an earlier stage, likely due to effects on the actin cytoskeleton. Identifying the downstream components that transmit GPCR signals during cytokinesis will be the next step and we show that GIPC1 (GIPC PDZ domain containing family, member 1), an adaptor protein for GPCRs, may play a part. RNAi knockdown of GIPC1 significantly increased binucleated cell formation. Understanding the molecular details of GPCRs and their interaction proteins in cytokinesis regulation will give us important clues about GPCRs signaling as well as how cells communicate with their environment during division.
Collapse
Affiliation(s)
- Xin Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
19
|
Wainman A, Giansanti MG, Goldberg ML, Gatti M. The Drosophila RZZ complex - roles in membrane trafficking and cytokinesis. J Cell Sci 2012; 125:4014-25. [PMID: 22685323 DOI: 10.1242/jcs.099820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Zw10 protein, in the context of the conserved Rod-Zwilch-Zw10 (RZZ) complex, is a kinetochore component required for proper activity of the spindle assembly checkpoint in both Drosophila and mammals. In mammalian and yeast cells, the Zw10 homologues, together with the conserved RINT1/Tip20p and NAG/Sec39p proteins, form a second complex involved in vesicle transport between Golgi and ER. However, it is currently unknown whether Zw10 and the NAG family member Rod are also involved in Drosophila membrane trafficking. Here we show that Zw10 is enriched at both the Golgi stacks and the ER of Drosophila spermatocytes. Rod is concentrated at the Golgi but not at the ER, whereas Zwilch does not accumulate in any membrane compartment. Mutations in zw10 and RNAi against the Drosophila homologue of RINT1 (rint1) cause strong defects in Golgi morphology and reduce the number of Golgi stacks. Mutations in rod also affect Golgi morphology, whereas zwilch mutants do not exhibit gross Golgi defects. Loss of either Zw10 or Rint1 results in frequent failures of spermatocyte cytokinesis, whereas Rod or Zwilch are not required for this process. Spermatocytes lacking zw10 or rint1 function assemble regular central spindles and acto-myosin rings, but furrow ingression halts prematurely due to defective plasma membrane addition. Collectively, our results suggest that Zw10 and Rint1 cooperate in the ER-Golgi trafficking and in plasma membrane formation during spermatocyte cytokinesis. Our findings further suggest that Rod plays a Golgi-related function that is not required for spermatocyte cytokinesis.
Collapse
Affiliation(s)
- Alan Wainman
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Roma, Italy
| | | | | | | |
Collapse
|
20
|
Herrero S, Takeshita N, Fischer R. The Aspergillus nidulans CENP-E kinesin motor KipA interacts with the fungal homologue of the centromere-associated protein CENP-H at the kinetochore. Mol Microbiol 2011; 80:981-94. [PMID: 21392133 DOI: 10.1111/j.1365-2958.2011.07624.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | | | | |
Collapse
|
21
|
Wang C, Yu J, Yuan K, Lan J, Jin C, Huang H. Plk1-mediated mitotic phosphorylation of PinX1 regulates its stability. Eur J Cell Biol 2010; 89:748-56. [PMID: 20573420 DOI: 10.1016/j.ejcb.2010.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/05/2023] Open
Abstract
PinX1 was originally identified as a Pin2/TRF1-interacting protein that suppresses telomerase activity via its telomerase inhibitor domain (TID) and regulates the nucleolar localization of TRF1 in telomerase-positive cells. In addition to its telomeric localization, PinX1 can be found in the nucleoli of human cells. Our recent studies have shown that PinX1 localizes to the chromosome periphery and kinetochores in mitosis. Depletion of PinX1 results in lagging chromosomes in mitosis and micronuclei in interphase. However, less is known about the post-translational modification of PinX1 in mitosis. Here, we show that Polo-like kinase 1 (Plk1) is a novel interacting protein of PinX1. Plk1 interacts with and phosphorylates PinX1 in vivo and in vitro. Overexpression of Plk1 promotes protein turnover of PinX1, a process that depends on ubiquitin-associated proteasomal degradation. Depletion of Plk1 using siRNA increases the stability of PinX1 at protein level in mitosis. Moreover, Plk1-mediated phosphorylation of PinX1 at five phosphorylation sites is essential for its Plk1-induced degradation. These findings suggest that Plk1 may negatively regulate the stability of PinX1 by mitotic phosphorylation.
Collapse
Affiliation(s)
- Chong Wang
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
22
|
Yu J, Lan J, Wang C, Wu Q, Zhu Y, Lai X, Sun J, Jin C, Huang H. PML3 interacts with TRF1 and is essential for ALT-associated PML bodies assembly in U2OS cells. Cancer Lett 2009; 291:177-86. [PMID: 19900757 DOI: 10.1016/j.canlet.2009.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 10/11/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
Telomerase-negative cancer cells maintain their telomeres by a mechanism known as alternative lengthening of telomeres (ALT) and achieve unlimited replicative potential. A hallmark of ALT cells is the recruitment of telomeres to promyelocytic leukemia (PML) bodies and formation of ALT-associated PML bodies (APBs). Although the exact molecular mechanism of APBs assembly remains unclear, APBs assembly requires telomere and PML body-associated proteins, including TRF1 and PML. Here, we report that PML3, one of PML isoforms, is involved in APBs formation. As a new binding protein of TRF1 (telomeric repeat binding factor 1), PML3 directly interacts with TRF1 and recruits TRF1 to PML bodies in U2OS cells. More notably, depletion of PML3 by small interfering RNA does not affect PML bodies formation, but inhibits the recruitment of both TRF1 and TRF2 to APBs. Further study shows that the recruitment of TRF1 to APBs depends on its interaction with a specific PML3 isoform. Thus, the interaction of PML3 with TRF1 is isoform specific and likely to be essential for APBs assembly in U2OS cells.
Collapse
Affiliation(s)
- Jian Yu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hughes JR, Meireles AM, Fisher KH, Garcia A, Antrobus PR, Wainman A, Zitzmann N, Deane C, Ohkura H, Wakefield JG. A microtubule interactome: complexes with roles in cell cycle and mitosis. PLoS Biol 2008; 6:e98. [PMID: 18433294 PMCID: PMC2323305 DOI: 10.1371/journal.pbio.0060098] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 03/07/2008] [Indexed: 01/19/2023] Open
Abstract
The microtubule (MT) cytoskeleton is required for many aspects of cell function, including the transport of intracellular materials, the maintenance of cell polarity, and the regulation of mitosis. These functions are coordinated by MT-associated proteins (MAPs), which work in concert with each other, binding MTs and altering their properties. We have used a MT cosedimentation assay, combined with 1D and 2D PAGE and mass spectrometry, to identify over 250 MAPs from early Drosophila embryos. We have taken two complementary approaches to analyse the cellular function of novel MAPs isolated using this approach. First, we have carried out an RNA interference (RNAi) screen, identifying 21 previously uncharacterised genes involved in MT organisation. Second, we have undertaken a bioinformatics analysis based on binary protein interaction data to produce putative interaction networks of MAPs. By combining both approaches, we have identified and validated MAP complexes with potentially important roles in cell cycle regulation and mitosis. This study therefore demonstrates that biologically relevant data can be harvested using such a multidisciplinary approach, and identifies new MAPs, many of which appear to be important in cell division.
Collapse
Affiliation(s)
- Julian R Hughes
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ana M Meireles
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Programa Doutoral em Biologia Experimental e Biomedicina, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Katherine H Fisher
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Life Sciences Interface/Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Angel Garcia
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Philip R Antrobus
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Alan Wainman
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Nicole Zitzmann
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Charlotte Deane
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - James G Wakefield
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Life Sciences Interface/Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Yu J, Lan J, Zhu Y, Li X, Lai X, Xue Y, Jin C, Huang H. The E3 ubiquitin ligase HECTD3 regulates ubiquitination and degradation of Tara. Biochem Biophys Res Commun 2008; 367:805-12. [PMID: 18194665 DOI: 10.1016/j.bbrc.2008.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/26/2022]
Abstract
Tara was identified as an interacting partner of guanine nucleotide exchange factor Trio and TRF1. Tara is proposed to be involved in many important fundamental cellular processes, ranging from actin remodeling, directed cell movement, to cell cycle regulation. Yet, its exact roles required further elucidation. Here, we identify a novel Tara-binding protein HECTD3, a putative member of HECT E3 ubiquitin ligases. HECTD3 directly binds Tara in vitro and forms a complex with Tara in vivo. Overexpression of HECTD3 enhances the ubiquitination of Tara in vivo and promotes the turnover of Tara, whereas depletion of HECTD3 by small interfering RNA decreases Tara degradation. Furthermore, depletion of HECTD3 leads to multipolar spindle formation. All these findings suggest that HECTD3 may facilitate cell cycle progression via regulating ubiquitination and degradation of Tara.
Collapse
Affiliation(s)
- Jian Yu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang N, Liu J, Ding X, Aikhionbare F, Jin C, Yao X. FBXL5 interacts with p150Glued and regulates its ubiquitination. Biochem Biophys Res Commun 2007; 359:34-9. [PMID: 17532294 DOI: 10.1016/j.bbrc.2007.05.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/07/2007] [Indexed: 11/15/2022]
Abstract
The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. p150(Glued) is the dynactin subunit responsible for binding to dynein and microtubules. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which governs phosphorylation-dependent ubiquitination and subsequent proteolysis. Our recent study showed that the proteolysis of mitotic kinesin CENP-E is mediated by SCF via a direct Skp1 link [D. Liu, N. Zhang, J. Du, X. Cai, M. Zhu, C. Jin, Z. Dou, C. Feng, Y. Yang, L. Liu, K. Takeyasu, W. Xie, X. Yao, Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis, Biochem. Biophys. Res. Commun. 345 (2006) 394-402]. Here we show that F-box protein FBXL5 interacts with p150(Glued) and orchestrates its turnover via ubiquitination. FBXL5 binds to p150(Glued)in vitro and in vivo. FBXL5 and p150(Glued) co-localize primarily in the cytoplasm with peri-nuclear enrichment in HeLa cells. Overexpression of FBXL5 promotes poly-ubiquitination of p150(Glued) and protein turnover of p150(Glued). Our findings provide a potential mechanism by which p150(Glued) protein function is regulated by SCFs.
Collapse
Affiliation(s)
- Ning Zhang
- Division of Cellular Dynamics, Hefei National Laboratory for Physical Sciences and Chinese University of Science & Technology, Hefei 230027, China
| | | | | | | | | | | |
Collapse
|
26
|
Jackson JR, Patrick DR, Dar MM, Huang PS. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007; 7:107-17. [PMID: 17251917 DOI: 10.1038/nrc2049] [Citation(s) in RCA: 383] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advent of molecularly targeted drug discovery has facilitated the identification of a new generation of anti-mitotic therapies that target proteins with specific functions in mitosis. The exquisite selectivity for mitosis and the distinct ways in which these new agents interfere with mitosis provides the potential to not only overcome certain limitations of current tubulin-targeted anti-mitotic drugs, but to expand the scope of clinical efficacy that those drugs have established. The development of these new anti-mitotic drugs as targeted therapies faces significant challenges; nevertheless, these potential therapies also serve as unique tools to dissect the molecular mechanisms of the mitotic-checkpoint response.
Collapse
Affiliation(s)
- Jeffrey R Jackson
- GlaxoSmithKline, Oncology Center of Excellence in Drug Discovery, Department of Biology, Collegeville, Pennsylvania, USA.
| | | | | | | |
Collapse
|
27
|
|