1
|
Anish Ruban S, Raj FJ, Thangaraj P. Phytochemical intervention in BCRP-driven cancer drug resistance: A comprehensive review. Biochim Biophys Acta Rev Cancer 2025; 1880:189349. [PMID: 40339668 DOI: 10.1016/j.bbcan.2025.189349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Drug resistance (DR) remains a significant challenge in cancer treatment, accounting for over 90 % of cancer-related deaths. Multidrug resistance (MDR) complicates chemotherapy by enabling cancer cells to evade therapeutic agents. This review focuses on the role of ATP-binding cassette (ABC) transporters, particularly the breast cancer resistance protein (BCRP), in mediating drug resistance. BCRP functions as a drug efflux pump, actively transporting chemotherapeutic agents out of cancer cells, thereby reducing their efficacy. The regulation of BCRP is influenced by various signaling pathways, including PI3K/AKT, MAPK/ERK, NF-κB, and Wnt/β-catenin, all of which collectively enhance its expression and contribute to the MDR phenotype. Recent studies have highlighted the potential of phytochemical-based strategies to reverse drug resistance by inhibiting these transporters. Compounds such as tetrandrine and resveratrol have shown promise in sensitizing drug-resistant cancer cells. Understanding the complex interplay between BCRP regulation and these signaling pathways is essential for the development of effective therapeutic strategies to counteract cancer. Targeting multiple pathways or employing combination therapies may offer new avenues to overcome MDR and improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- S Anish Ruban
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Francis Jegan Raj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
2
|
Ben-Eltriki M, Shankar G, Tomlinson Guns ES, Deb S. Pharmacokinetics and pharmacodynamics of Rh2 and aPPD ginsenosides in prostate cancer: a drug interaction perspective. Cancer Chemother Pharmacol 2023; 92:419-437. [PMID: 37709921 DOI: 10.1007/s00280-023-04583-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Ginsenoside Rh2 and its aglycon (aPPD) are one of the major metabolites from Panax ginseng. Preclinical studies suggest that Rh2 and aPPD have antitumor effects in prostate cancer (PCa). Our aims in this review are (1) to describe the pharmacokinetic (PK) properties of Rh2 and aPPD ginsenosides; 2) to provide an overview of the preclinical findings on the use of Rh2 and aPPD in the treatment of PCa; and (3) to highlight the mechanisms of its PK and pharmacodynamic (PD) drug interactions. Increasing evidence points to the potential efficacy of Rh2 or aPPD for PCa treatment. Based on the laboratory studies, Rh2 or aPPD combinations revealed an additive or synergistic interaction or enhanced sensitivity of anticancer drugs toward PCa. This review reveals that enhanced anticancer activities were demonstrated in preclinical studies through interactions of Rh2 and/or aPPD with the proteins related to PK (e.g., cytochrome P450 enzymes, transporters) or PD of the other anticancer drugs or PCa signaling pathways. In conclusion, combining Rh2 or aPPD with anti-prostate cancer drugs leads to PK or PD interactions which could facilitate either therapeutically beneficial or toxic effects.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC, Canada.
- Community Pharmacist, Vancouver Area, BC, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Gehana Shankar
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Emma S Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
3
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
4
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Meng C, Zhong L, Lu T, Gu Q, Du X, Liu F, Xia C. Complex components of Shengmai formula interact with organic cation transporter 2 (OCT2) in MDCK cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116278. [PMID: 36813246 DOI: 10.1016/j.jep.2023.116278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shengmai formula (SMF) is a well-known Chinese herbal compound preparation, which is utilized extensively for the treatment of myocardial ischemia, arrhythmia and other life-threatening conditions. Our previous researches have shown that some of the active ingredients in SMF can interact with organic anion transport polypeptide 1B1 (OATP1B1), breast cancer resistance protein (BCRP) and organic anion transporter 1 (OAT1), etc. Organic cation transporter 2 (OCT2) is a highly expressed uptake transporter in the kidney, and its interaction with the major active components in SMF remains unclear. AIM OF THE STUDY We purposed to explore OCT2-mediated interactions and compatibility mechanisms of the main active compounds in SMF. MATERIALS AND METHODS Fifteen active ingredients of SMF, including ginsenoside Rb1, Rd, Re, Rg1, Rf, Ro and Rc, methylophiopogonanone A and B, ophiopogonin D and D', schizandrin A and B, schizandrol A and B, were selected to investigate OCT2-mediated interactions in Madin-Darby cacine kidney (MDCK) cells stably expressing OCT2. RESULTS Among the above 15 main active components, only ginsenosides Rd, Re and schizandrin B could significantly inhibit the uptake of 4-(4-(dimethylamino)styryl)-N-methyl pyridiniumiodide (ASP+), a classical substrate of OCT2. Ginsenoside Rb1 and methylophiopogonanone A can be transported by MDCK-OCT2 cells, and their uptake was significantly reduced when OCT2 inhibitor decynium-22 was added. Ginsenoside Rd could remarkably reduce the uptake of methylophiopogonanone A and ginsenoside Rb1 by OCT2, ginsenoside Re only decreased the uptake of ginsenoside Rb1, while schizandrin B had no effect on the uptake of both. CONCLUSIONS OCT2 mediates the interaction of the major active components in SMF. Ginsenosides Rd, Re and schizandrin B are the potential inhibitors of OCT2, while ginsenosides Rb1 and methylophiopogonanone A are the potential substrates of OCT2. There is an OCT2-mediated compatibility mechanism among these active ingredients of SMF.
Collapse
Affiliation(s)
- Chao Meng
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330006, PR China
| | - Lanping Zhong
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330006, PR China
| | - Ting Lu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330006, PR China
| | - Qi Gu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330006, PR China
| | - Xinyue Du
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330006, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330006, PR China; Jiangxi Key Laboratory of Clinical Pharmacokinetics, Nanchang, 330031, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang, 330006, PR China; Jiangxi Key Laboratory of Clinical Pharmacokinetics, Nanchang, 330031, PR China.
| |
Collapse
|
6
|
Monmai C, Kim JS, Baek SH. Effect of Ginseng Sapogenin Protopanaxadiol-Enriched Rice (DJ-PPD) on Immunomodulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:767. [PMID: 36840113 PMCID: PMC9959806 DOI: 10.3390/plants12040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Protopanaxadiol (PPD), a gut microbiome-induced ginseng metabolite, has positive immune effects. We previously reported the immune-boosting and anti-inflammatory effects of PPD-enricshed rice seed extracts in normal and inflammatory cell environments, respectively. In the present study, the immunomodulatory activity of PPD-enriched transgenic rice seed extract (DJ-PPD), which exhibited the highest immune-related activity among all available extracts, was compared with that of commercially synthesized 20s-PPD (S-PPD) and natural ginseng root extract (GE), in RAW264.7 cells. Compared with S-PPD and GE treatment, DJ-PPD treatment (i) significantly promoted NF-κB p65 and c-Jun N-terminal protein kinase (JNK) phosphorylation; (ii) upregulated IL-1β, IL-6, COX-2, TLR-4, and TNF-α expression; (iii) and increased prostaglandin E2 (PGE2) production. However, there were no significant differences in the effects of the three treatments containing PPD-type sapogenin or saponins on nitric oxide (NO) production and phagocytic activity. In the inflammatory cell environment, DJ-PPD treatment markedly decreased the production of LPS-induced inflammatory factors, including NO and PGE2, as well as proinflammatory cytokine expression, by decreasing phosphorylated (p-)NF-κB p65, p-p38 MAPK, and p-JNK levels. Thus, DJ-PPD that does not require complex intestinal microbial processes to exert higher anti-inflammatory effects compared with S-PPD and GE. However, DJ-PPD exerted similar or higher immune-boosting effects (depending on inflammatory biomarkers) than S-PPD and GE. These findings indicate the potential of PPD-enriched transgenic rice as an alternative immunomodulatory agent.
Collapse
|
7
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Abstract
As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.
Collapse
|
9
|
Monmai C, Kim JS, Baek SH. Transgenic Rice Seed Extracts Exert Immunomodulatory Effects by Modulating Immune-Related Biomarkers in RAW264.7 Macrophage Cells. Nutrients 2022; 14:nu14194143. [PMID: 36235795 PMCID: PMC9573073 DOI: 10.3390/nu14194143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Protopanaxadiol (PPD), a native active triterpenoid present in Panax ginseng, has been reported to exert immune-related effects. We previously created PPD-producing transgenic rice by introducing the P. ginseng protopanaxadiol synthase and dammarenediol-II synthase genes into Dongjin rice. In the present study, the seeds of the T4 generation of this transgenic rice were tested for their immunomodulatory effects in RAW264.7 macrophage cells. Treatment with transgenic rice seed extract in RAW264.7 cells (i) significantly enhanced nitric oxide (NO) production in a dose-dependent manner without any cytotoxicity (up to 100 µg/mL), (ii) upregulated the expression of immune-related genes and increased production of the inflammation mediator prostaglandin E2 (PGE2), and (iii) activated nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) by promoting the phosphorylation of NF-κB p65, p38 MAPK, and c-Jun N-terminal protein kinase (JNK). In lipopolysaccharide (LPS)-treated RAW264.7 cells used to mimic the inflammation condition, treatment with transgenic rice seed extract significantly reduced NO production, proinflammatory cytokine expression, and PGE2 production, all of which are LPS-induced inflammation biomarkers, by inhibiting the phosphorylation of NF-κB p65, p38 MAPK, and JNK. Collectively, these results indicate that PPD-producing transgenic rice has immunomodulatory effects.
Collapse
|
10
|
Simurabiye JB, Yen LTH, Doan ND, Hoanh TD, Nhan VD, Nshimiyimana JB, Thanh TH, Anh DTH. Optimization of Panax notoginseng root extract hydrolysis by Cordyceps militaris derived glycosidase and bioactivities of hydrolysis products. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2021.e01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Xu JF, Wan Y, Tang F, Chen L, Yang Y, Xia J, Wu JJ, Ao H, Peng C. Emerging Significance of Ginsenosides as Potentially Reversal Agents of Chemoresistance in Cancer Therapy. Front Pharmacol 2022; 12:720474. [PMID: 34975466 PMCID: PMC8719627 DOI: 10.3389/fphar.2021.720474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a prevalent phenomenon in cancer therapy, which alleviates the effect of chemotherapy and makes it difficult to break the bottleneck of the survival rate of tumor patients. Current approaches for reversing chemoresistance are poorly effective and may cause numerous new problems. Therefore, it is urgent to develop novel and efficient drugs derived from natural non-toxic compounds for the reversal of chemoresistance. Researches in vivo and in vitro suggest that ginsenosides are undoubtedly low-toxic and effective options for the reversal of chemoresistance. The underlying mechanism of reversal of chemoresistance is correlated with inhibition of drug transporters, induction of apoptosis, and modulation of the tumor microenvironment(TME), as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (NRF2)/AKT, lncRNA cancer susceptibility candidate 2(CASC2)/ protein tyrosine phosphatase gene (PTEN), AKT/ sirtuin1(SIRT1), epidermal growth factor receptor (EGFR)/ phosphatidylinositol 3-kinase (PI3K)/AKT, PI3K/AKT/ mammalian target of rapamycin(mTOR) and nuclear factor-κB (NF-κB). Since the effects and the mechanisms of ginsenosides on chemoresistance reversal have not yet been reviewed, this review summarized comprehensively experimental data in vivo and in vitro to elucidate the functional roles of ginsenosides in chemoresistance reversal and shed light on the future research of ginsenosides.
Collapse
Affiliation(s)
- Jin-Feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Bae CH, Kim J, Nam W, Kim H, Kim J, Nam B, Park S, Lee J, Sim J. Fermented Red Ginseng Alleviates Ovalbumin-Induced Inflammation in Mice by Suppressing Interleukin-4 and Immunoglobulin E Expression. J Med Food 2021; 24:569-576. [PMID: 34161163 DOI: 10.1089/jmf.2020.4854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ginseng (the root of Panax ginseng Meyer) has been reported to have many biologic therapeutic effects, including anti-inflammatory properties, and ginsenosides are considered as one of the factors responsible for these therapeutic effects. To improve their therapeutic action, probiotic bacteria are used to ferment and chemically transform ginsenosides in red ginseng (RG). In this study, we aimed to investigate the beneficial effects of RG fermented by probiotic bacteria (FRG) against ovalbumin (OVA)-induced allergic rhinitis in a mouse model. We induced the mouse model via OVA inhalation; experimental results revealed increased immunoglobulin E (IgE) and interleukin (IL)-4 levels, leading to Th2-type cytokine response. The mice with induced allergy were then orally administered RG and FRG over 2 weeks, as a result of which, IL-4 and IgE levels in bronchoalveolar lavage fluid, nasal fluid, and serum were found to be ameliorated more effectively by FRG than by RG, suggesting that FRG has better immune regulatory effects than RG. FRG also downregulated immune cell levels, such as those of eosinophils and basophils, and significantly decreased the thickness of OVA-induced respiratory epithelium compared to RG. Collectively, the results showed that FRG treatment alleviates inflammation, thereby extending a protective effect to mice with OVA-induced inflammatory allergic rhinitis.
Collapse
Affiliation(s)
- Chu Hyun Bae
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Jisoo Kim
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Woo Nam
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Hyeonji Kim
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Jooyun Kim
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Bora Nam
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Soodong Park
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | | | - Jaehun Sim
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| |
Collapse
|
13
|
Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng. J Ginseng Res 2021; 46:505-514. [PMID: 35818421 PMCID: PMC9270645 DOI: 10.1016/j.jgr.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/25/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background The roots of Panax ginseng contain two types of tetracyclic triterpenoid saponins, namely, protopanaxadiol (PPD)-type saponins and protopanaxatiol (PPT)-type saponins. In P. ginseng, the protopanaxadiol 6-hydroxylase (PPT synthase) enzyme catalyses protopanaxatriol (PPT) production from protopanaxadiol (PPD). In this study, we constructed homozygous mutant lines of ginseng by CRISPR/Cas9-mediated mutagenesis of the PPT synthase gene and obtained the mutant ginseng root lines having complete depletion of the PPT-type ginsenosides. Methods Two sgRNAs (single guide RNAs) were designed for target mutations in the exon sequences of the two PPT synthase genes (both PPTa and PPTg sequences) with the CRISPR/Cas9 system. Transgenic ginseng roots were generated through Agrobacterium-mediated transformation. The mutant lines were screened by ginsenoside analysis and DNA sequencing. Result Ginsenoside analysis revealed the complete depletion of PPT-type ginsenosides in three putative mutant lines (Cr4, Cr7, and Cr14). The reduction of PPT-type ginsenosides in mutant lines led to increased accumulation of PPD-type ginsenosides. The gene editing in the selected mutant lines was confirmed by targeted deep sequencing. Conclusion We have established the genome editing protocol by CRISPR/Cas9 system in P. ginseng and demonstrated the mutated roots producing only PPD-type ginsenosides by depleting PPT-type ginsenosides. Because the pharmacological activity of PPD-group ginsenosides is significantly different from that of PPT-group ginsenosides, the new type of ginseng mutant producing only PPD-group ginsenosides may have new pharmacological characteristics compared to wild-type ginseng. This is the first report to generate target-induced mutations for the modification of saponin biosynthesis in Panax species using CRISPR–Cas9 system.
Collapse
|
14
|
Wu L, Liu J, Hou J, Zhan T, Yuan L, Liu F, Xiong Y, Hu J, Xia C. Interactions of the major effective components in Shengmai formula with breast cancer resistance protein at the cellular and vesicular levels. Biomed Pharmacother 2021; 133:110939. [DOI: 10.1016/j.biopha.2020.110939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022] Open
|
15
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
16
|
Feltrin C, Oliveira Simões CM. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem Biol Interact 2019; 314:108825. [PMID: 31553897 DOI: 10.1016/j.cbi.2019.108825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
The World Health Organization (WHO) and other worldwide health agencies have recently taken initiatives to encourage the use of traditional medicine and/or complementary/alternative medicine in order to promote well-being and public health. In this way, one of the WHO's concerns is the safe use of these therapies. Phytotherapy is a strategy consisting of the use of medicinal plants (MP) and/or herbal medicinal products (HMP) for medicinal purposes. The use of phytotherapy concomitantly with drugs may cause interactions compromising the expected pharmacological action or generating toxic effects. These interactions are complex processes that may occur with multiple medications targeting different metabolic pathways, and involving different compounds present in MP and HMP. Thus, the aim of this review was to summarize the main MP- and HMP-drug interactions that involve specific transporters (P-glycoprotein and BCRP) and CYP450 enzymes (CYP3A4 and CYP2D6), which play relevant roles in the mechanisms of interactions. Firstly, multiple databases were used to search studies describing in vitro or in vivo MP and HMP-drug interactions and, after that, a systematic note-taking and appraisal of the literature was conducted. It was observed that several MP and HMP, metabolic pathways and transcription factors are involved in the transporters and enzymes expression or in the modulation of their activity having the potential to provide such interactions. Thus, the knowledge of MP- and HMP-drug interaction mechanisms could contribute to prevent harmful interactions and can ensure the safe use of these products to help the establishment of the therapeutic planning in order to certify the best treatment strategy to be used.
Collapse
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
17
|
Lv L, Lu J, Zhang H, Wang X, Su G, Piao H, Zhao Y. Acylation of 25-hydroxyprotopanaxatriol with aromatic acids increases cytotoxicity. Fitoterapia 2019; 137:104279. [DOI: 10.1016/j.fitote.2019.104279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/27/2023]
|
18
|
Zhang L, Liu XY, Xu W, Yang XW. Pharmacokinetics comparison of 15 ginsenosides and 3 aglycones in Ginseng Radix et Rhizoma and Baoyuan decoction using ultra-fast liquid chromatography coupled with triple quadrupole tandem mass spectrometry. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152775. [PMID: 31005812 DOI: 10.1016/j.phymed.2018.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ginsenosides were considered as the main bioactive constituents in Ginseng Radix et Rhizoma (GRR). However, because of high polarity, ginsenosides were hard to be absorbed in human or animal gastrointestinal tract after oral administration. Up to now, very few studies have been performed in the area of simultaneous pharmacokinetic analysis of multiple ginsenosides with similar structures. PURPOSE This research aimed to compare the different absorption characteristics of ginsenosides and aglycones between GRR and Baoyuan decoction (BYD), one of formulas containing GRR, with the same dosage. METHODS GRR and BYD extracts were prepared with same method. A single dose of GRR and BYD extracts were administrated to rats through gavage, respectively. A solid phase extraction method was used to purify the plasma samples. An ultra-fast liquid chromatography coupled with tandem mass spectrometry (UFLC-MS/MS) method was established and fully validated for quantitative analysis. In addition, an in vitro incubation of GRR extract with intestinal flora was conducted to confirm the influence of gut microbiota to the absorption of ginsenosides and aglycones. RESULTS The results of incubation experiments showed that most high polar ginsenosides could transform to less polar ginsenosides via intestinal flora. The validated UFLC-MS/MS method was sensitive and precise to simultaneously analyze the pharmacokinetics of multiple ginsenosides. After oral administration of GRR and BYD extracts, the pharmacokinetic results showed that a total of 11 ginsenosides and 2 aglycones could be quantitatively determined in both groups of plasma. Besides, five compounds were only quantified in BYD extract group. In addition, another 21 ginsenosides could be qualitatively measured. CONCLUSION The results indicated significant pharmacokinetic differences of ginsenosides and aglycones between two groups. For most less polar ginsenosides who had better bioactivity, the preparation was possessed of higher plasma concentrations. The comparative results indicated that some co-existing compounds in BYD might inhibit the exocytosis of ginsenosides. Moreover, what is worth mentioning, some ginsenosides and aglycones could only be detected and quantified a few hours later after administration to rats. Combining with the in vitro incubation experiments, the results demonstrated that transformation of ginsenosides in gastrointestinal tract via intestinal flora existed during absorption.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Yan Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
19
|
Kibathi LW, Bae S, Penzak SR, Kumar P. Potential Influence of Centrally Acting Herbal Drugs on Transporters at the Blood-Cerebrospinal Fluid Barrier and Blood-Brain Barrier. Eur J Drug Metab Pharmacokinet 2019; 43:619-635. [PMID: 29858835 DOI: 10.1007/s13318-018-0486-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Complementary and alternative medications (CAM) with known or suspected pharmacologic activity in the central nervous system (CNS) are common. These herbal preparations may cause clinically significant drug-drug interactions (DDIs) when coadministered with medications that act in the CNS. This can result in negative outcomes such as toxicity or loss of efficacy. Most drug interaction reports with CAM focus on cytochrome P450 (CYP) modulation. However, drug interactions between CAM and conventional medications may occur via mechanisms other than CYP inhibition or induction; in particular, modulation of drug transport proteins represents an important mechanism by which such interactions may occur. This article provides an updated review of transporter-mediated mechanisms by which herbal products may theoretically interact with centrally acting medications at the blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier. Further research is required before the true clinical impact of interactions involving modulation of centrally located membrane transporters can be fully understood.
Collapse
Affiliation(s)
- Lilian W Kibathi
- Clinical Pharmacokinetics Research Unit, Clinical Center Pharmacy Department, National Institutes of Health (NIH), Bethesda, MD, USA
| | - SoHyun Bae
- University of Iowa College of Pharmacy, Iowa City, IA, USA
| | - Scott R Penzak
- Department of Pharmacotherapy, University of North Texas System, College of Pharmacy, 3500 Camp Bowie Blvd-RES 302B, Fort Worth, TX, 76107, USA.
| | - Parag Kumar
- Clinical Pharmacokinetics Research Unit, Clinical Center Pharmacy Department, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
20
|
Zhao HD, Xie HJ, Li J, Ren CP, Chen YX. Research Progress on Reversing Multidrug Resistance in Tumors by Using Chinese Medicine. Chin J Integr Med 2018; 24:474-480. [PMID: 29860581 DOI: 10.1007/s11655-018-2910-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 10/14/2022]
Abstract
Multidrug resistance (MDR) is a major cause of cancer chemotherapy failure, and it is important to develop suitable reversal agents to overcome MDR. A majority of chemical reversal agents have acceptable reversal effects. However, the toxicity and adverse reactions associated with these agents restricts their clinical use. Chinese medicines (CMs) have lower toxicities and adverse reactions and are associated with multiple components, multiple targets and reduced toxicity. CMs have several advantages and could reverse MDR, decrease drug dosage, enhance patient compliance and increase efficacy. This review summarizes the current progress of CM reversal agents..
Collapse
Affiliation(s)
- Huan-Dong Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China.,School of Pharmacy, Central South University, Changsha, 410013, China
| | - Hong-Juan Xie
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200336, China
| | - Jian Li
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Cai-Ping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Yu-Xiang Chen
- School of Pharmacy, Central South University, Changsha, 410013, China.
| |
Collapse
|
21
|
Zha W. Transporter-mediated natural product-drug interactions for the treatment of cardiovascular diseases. J Food Drug Anal 2017; 26:S32-S44. [PMID: 29703385 PMCID: PMC9326887 DOI: 10.1016/j.jfda.2017.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
The growing use of natural products in cardiovascular (CV) patients has been greatly raising the concerns about potential natural product–CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product–CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product–drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins) have been identified to be substrates and inhibitors of the solute carrier (SLC) transporters and the ATP-binding cassette (ABC) transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients) are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product–CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product–CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product–CV drug interactions and help public and physicians understand these type of interactions.
Collapse
Affiliation(s)
- Weibin Zha
- MyoKardia, South San Francisco, CA, USA.
| |
Collapse
|
22
|
Li Z, Ji GE. Ginseng fermented by mycotoxin non-producing Aspergillus niger: ginsenoside analysis and anti-proliferative effects. Food Sci Biotechnol 2017; 26:987-991. [PMID: 30263628 DOI: 10.1007/s10068-017-0117-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/31/2017] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
Korean ginseng was fermented using Aspergillus niger (A. niger) FMB S494 and mycotoxins such as ochratoxin and fumonisin were not detected in the fermented ginseng. Protopanaxadiol-type ginsenosides such as glycosylated forms of Rb1, Rb2, Rc, and Rd decreased to 0 while compound K (cK) increased from 0 to 9 × 104 ppm in the extract of fermented ginseng. Protopanaxtriol-type ginsenosides such as Re and Rg1 decreased from 7.1 × 104 to 3.0 × 104 ppm and 6.8 × 104 to 4.6 × 104 ppm, respectively. Rg2 and Rh1 increased from 0 to 1.9 × 104 ppm and 0 to 2.7 × 104 ppm, respectively. We can demonstrate that A. niger was more inclined to transform protopanaxadiol-type ginsenosides. Moreover, fermented ginseng extract showed a dramatically enhanced anti-proliferative effect on human HT-29 cell line with a minimum effective concentration of about 1 µg/mL, which might be attributed to the high degree of biotransformation of ginsenosides, especially the high output of ginsenoside cK.
Collapse
Affiliation(s)
- Zhipeng Li
- 1Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| | - Geun Eog Ji
- 1Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea.,Research Institute, Bifido Co., Ltd., Hongchun, Gangwon 25117 Korea
| |
Collapse
|
23
|
Li Z, Ahn HJ, Kim NY, Lee YN, Ji GE. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities. Biol Pharm Bull 2017; 39:1461-7. [PMID: 27582326 DOI: 10.1248/bpb.b16-00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University
| | | | | | | | | |
Collapse
|
24
|
Peña-Solórzano D, Stark SA, König B, Sierra CA, Ochoa-Puentes C. ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev 2016; 37:987-1050. [PMID: 28005280 DOI: 10.1002/med.21428] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) in cancer cells is the development of resistance to a variety of structurally and functionally nonrelated anticancer drugs. This phenomenon has become a major obstacle to cancer chemotherapy seriously affecting the clinical outcome. MDR is associated with increased drug efflux from cells mediated by an energy-dependent mechanism involving the ATP-binding cassette (ABC) transporters, mainly P-glycoprotein (ABCB1), the MDR-associated protein-1 (ABCC1), and the breast cancer resistance protein (ABCG2). The first two transporters have been widely studied already and reviews summarized the results. The ABCG2 protein has been a subject of intense study since its discovery as its overexpression has been detected in resistant cell lines in numerous types of human cancers. To date, a long list of modulators of ABCG2 exists and continues to increase. However, little is known about the clinical consequences of ABCG2 modulation. This makes the design of novel, potent, and nontoxic inhibitors of this efflux protein a major challenge to reverse MDR and thereby increase the success of chemotherapy. The aim of the present review is to describe and highlight specific and nonspecific modulators of ABCG2 reported to date based on the selectivity of the compounds, as many of them are effective against one or more ABC transport proteins.
Collapse
Affiliation(s)
- Diana Peña-Solórzano
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | | | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cesar Augusto Sierra
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | - Cristian Ochoa-Puentes
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| |
Collapse
|
25
|
|
26
|
Wu X, Ma J, Ye Y, Lin G. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb–drug interactions. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:236-253. [DOI: 10.1016/j.jchromb.2015.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
27
|
Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5738694. [PMID: 27446225 PMCID: PMC4944051 DOI: 10.1155/2016/5738694] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 01/30/2023]
Abstract
Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer.
Collapse
|
28
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
29
|
Sheng J, Tian X, Xu G, Wu Z, Chen C, Wang L, Pan L, Huang C, Pan G. The hepatobiliary disposition of timosaponin b2 is highly dependent on influx/efflux transporters but not metabolism. Drug Metab Dispos 2015; 43:63-72. [PMID: 25336752 DOI: 10.1124/dmd.114.059923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The purpose of this study was to characterize the hepatobiliary disposition of timosaponin B2 (TB-2), a natural saponin. Although TB-2 has multiple pharmacologic activities, the mechanism of its hepatobiliary disposition has not been explored. Because the metabolism of TB-2 is limited and the accumulation of TB-2 in primary hepatocytes is highly temperature dependent (93% of its accumulation is due to active uptake), the contribution of hepatic transporters was investigated. Organic anion-transporting polypeptide (OATP) 1B1- and OATP1B3-transfected human embryonic kidney 293 cells were employed. TB-2 serves as a substrate for OATP1B1 and OATP1B3, with the former playing a predominant role in the hepatic uptake of TB-2. An inhibition study in sandwich-cultured rat hepatocytes suggested that TB-2 is a substrate for both breast cancer resistance protein (Bcrp) and multidrug resistance-associated protein 2 (Mrp2), consistent with its high biliary excretion index (43.1-44.9%). This hypothesis was further verified in BCRP and MRP2 membrane vesicles. The cooperation of uptake and efflux transporters in TB-2 hepatic disposition could partially explain the double-peak phenomenon observed in rat plasma and liver and biliary clearance, which accounted for 70% of the total TB-2 clearance. Moreover, TB-2 significantly increased the rosuvastatin concentration in rat plasma in a concentration-dependent manner and decreased its biliary excretion, which corresponded to reductions in rosuvastatin accumulation in hepatocytes and the biliary excretion index in sandwich-cultured rat hepatocytes, representing a perfect example of a potential saponin-statin drug-drug interaction. These studies demonstrate that transporters (Oatp, Bcrp/Mrp2), but not metabolism, contribute significantly to rat TB-2 hepatobiliary disposition.
Collapse
Affiliation(s)
- Jingjing Sheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Guanglin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Chen Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Le Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Lili Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| |
Collapse
|
30
|
Huq MA, Kim YJ, Min JW, Bae KS, Yang DC. Use of Lactobacillus rossiae DC05 for bioconversion of the major ginsenosides Rb1 and Re into the pharmacologically active ginsenosides C-K and Rg2. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0212-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
31
|
Jendželovská Z, Jendželovský R, Hiľovská L, Kovaľ J, Mikeš J, Fedoročko P. Single pre-treatment with hypericin, a St. John’s wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells. Toxicol In Vitro 2014; 28:1259-73. [DOI: 10.1016/j.tiv.2014.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/11/2014] [Accepted: 06/23/2014] [Indexed: 11/25/2022]
|
32
|
Szafraniec MJ, Szczygieł M, Urbanska K, Fiedor L. Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2). Drug Metab Rev 2014; 46:459-74. [DOI: 10.3109/03602532.2014.942037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLoS One 2014; 9:e98887. [PMID: 24887182 PMCID: PMC4041784 DOI: 10.1371/journal.pone.0098887] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Stereoselectivity has been proved to be tightly related to drug action including pharmacodynamics and pharmacokinetics. (20S,24R)-epoxy-dammarane-3,12,25-triol (24R-epimer) and (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-epimer), a pair of 20(S)-protopanaxadiol (PPD) ocotillol type epimers, were the main metabolites of PPD. Previous studies have shown that 24R-epimer and 24S-epimer had stereoselectivity in pharmacological action and pharmacokinetics. In the present study, the aim was to further study the pharmacokinetic characteristics of both epimers, investigate their absorption mechanism and analyze the selectivity effects of ocotillol type side chain and C24 stereo-configuration on P-glycoprotein (P-gp) in vivo and in vitro. Results showed that the absolute bioavailability of 24R-epimer was about 14-fold higher than that of 24S-epimer, and a linear kinetic characteristic was acquired in doses of 5-20 mg/kg for both epimers after oral administration. Furthermore, the apparent permeability coefficients of 24R-epimer were 5-7 folds higher than that of 24S-epimer having lower efflux ratios in Caco-2 cell models. Moreover, both 24R-epimer and 24S-epimer had similar inhibitory effects on P-gp by increasing cellular retention of rhodamine 123 in Caco-2 cells and decreasing efflux of digoxin across Caco-2 cell monolayers. In situ in vivo experiments showed that the inhibition of 24R-epimer on P-gp was stronger than that of 24S-epimer by single-pass intestinal perfusion of rhodamine 123 in rats. Western blot analyses demonstrated that both epimers had no action on P-gp expression in Caco-2 cells. In conclusion, with respect to the stereoselectivity, C24 S-configuration of the ocotillol type epimers processed a poor transmembrane permeability and could be distinguished by P-gp. Sharing a dammarane skeleton, both 24R-epimer and 24S-epimer were potent inhibitors of P-gp. This study provides a new case of stereoselective pharmacokinetics of chiral compounds which contributes to know the chiral characteristics of P-gp and structure-action relationship of PPD type and ocotillol type ginsenosides as a P-gp inhibitor.
Collapse
|
34
|
Pelkonen O, Xu Q, Fan TP. Why is Research on Herbal Medicinal Products Important and How Can We Improve Its Quality? J Tradit Complement Med 2014; 4:1-7. [PMID: 24872927 PMCID: PMC4032837 DOI: 10.4103/2225-4110.124323] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Research on herbal medicinal products is increasingly published in “Western” scientific journals dedicated primarily to conventional medicines. Publications are concerned mainly not only on the issues of safety and interactions, but also on efficacy. In reviews, a recurring complaint has been a lack of quality studies. In this opinion article, we present the case of Chinese herbal medicines as an example, as they have been extensively used in the global market and increasingly studied worldwide. We analyze the potential reasons for problems and propose some ways forward. As in the case of any drug, clinical trials for safety, efficacy, and/or effectiveness are the ultimate demonstration of therapeutic usefulness of herbal products. These will only make scientific sense when the tested herbal products are authentic, standardized, and quality controlled, if good practice guidelines of evidence-based medicine are followed, and if relevant controls and outcome measures are scientifically defined. Herbal products are complex mixtures, and for such complexity, an obvious approach for mechanistic studies is network pharmacology based on omic tools and approaches, which has already begun to revolutionize the study of conventional drugs, emphasizing networks, interactions, and polypharmacological features behind the action of many drugs.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Qihe Xu
- Department of Renal Medicine, King's College London, London, UK
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Montanari F, Ecker GF. BCRP Inhibition: from Data Collection to Ligand-Based Modeling. Mol Inform 2014; 33:322-31. [DOI: 10.1002/minf.201400012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/28/2014] [Indexed: 01/16/2023]
|
36
|
Zhang X, Li F, Guo S, Chen X, Wang X, Li J, Gan Y. Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials 2014; 35:3650-65. [DOI: 10.1016/j.biomaterials.2014.01.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
37
|
Kim SS, Seong S, Kim SY. Synergistic effect of ginsenoside Rg3 with verapamil on the modulation of multidrug resistance in human acute myeloid leukemia cells. Oncol Lett 2014; 7:1265-1269. [PMID: 24944704 PMCID: PMC3961386 DOI: 10.3892/ol.2014.1826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/02/2013] [Indexed: 12/04/2022] Open
Abstract
The pharmacological modulatory effects of 20(S)-ginsenoside Rg3 (20S-Rg3) on multidrug resistant cancer cells are reported in the present study. The effects of 20(S)-Rg3 on the modulation of doxorubicin (DOX) and vincristine (VCR) resistance were examined in the HL60 multidrug resistant subline of human acute myeloid leukemia cells. Results demonstrated that 20S-Rg3 is as effective as verapamil (Vp) for modulating the high degree primary DOX resistance and low degree VCR cross-resistance expressed by the H160 cell line. Furthermore, the present study demonstrates for the first time, using isobologram analysis, that the combination of 20S-Rg3 and Vp enhances the reversal of DOX and VCR resistance in a supra-additive or at least an additive manner. These results indicate that 20S-Rg3 may be used as a Vp synergizer or as a promising alternative to Vp in the chemosensitization of multidrug resistant acute myeloid leukemia, with far fewer side effects.
Collapse
Affiliation(s)
- Sung Su Kim
- Department of Oriental Medicine, Kyung Hee University College of Oriental Medicine, Seoul 130-701, Republic of Korea
| | - Sin Seong
- Department of Oriental Medicine, Kyung Hee University College of Oriental Medicine, Seoul 130-701, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
38
|
Han M, Chen J, Wang Y, Chen S, Wang X. Determination of 20(S)-protopanaxadiol in rat plasma by LC-MS/MS and its application to the pharmacokinetic study: A comparative study of its solution and two oral formulations. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s106193481308008x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Multidrug Resistance in Cancer: A Tale of ABC Drug Transporters. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Li L, Chen X, Zhou J, Zhong D. In vitro studies on the oxidative metabolism of 20(s)-ginsenoside Rh2 in human, monkey, dog, rat, and mouse liver microsomes, and human liver s9. Drug Metab Dispos 2012; 40:2041-53. [PMID: 22829543 DOI: 10.1124/dmd.112.046995] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
20(S)-Ginsenoside Rh2 (Rh2)-containing products are widely used in Asia, Europe, and North America. However, extremely limited metabolism information greatly impedes the complete understanding of its clinical safety and effectiveness. The present study aims to systematically investigate the oxidative metabolism of Rh2 using a complementary set of in vitro models. Twenty-five oxidative metabolites were found using liquid chromatography-electrospray ionization ion-trap mass spectrometry. Six metabolites and a metabolic intermediate were synthesized. The metabolites were structurally identified as 26-hydroxy Rh2 (M1-1), (20S,24S)-epoxydammarane-12,25-diol-3-β-d-glucopyranoside (M1-3), (20S,24R)-epoxydammarane-12,25-diol-3-β-d-glucopyranoside (M1-5), 26,27-dihydroxy Rh2 (M3-6), (20S,24S)-epoxydammarane-12,25,26-triol-3-β-d-glucopyranoside (M3-10), (20S,24R)-epoxydammarane-12,25,26-triol-3-β-d-glucopyranoside (M3-11), and 26-aldehyde Rh2 on the basis of detailed mass spectrometry and nuclear magnetic resonance data analysis. Double-bond epoxidation followed by rearrangement and vinyl-methyl group hydroxylation represent the initial metabolic pathways generating monooxygenated metabolites M1-1 to M1-5. Further sequential metabolites (M2-M5) from the dehydrogenation and/or oxygenation of M1 were also detected. CYP3A4 was the predominant enzyme involved in the oxidative metabolism of Rh2, whereas alcohol dehydrogenase and aldehyde dehydrogenase mainly catalyzed the metabolic conversion of alcohol to the corresponding carboxylic acid. No significant differences were observed in the phase I metabolite profiles of Rh2 among the five species tested. Reactive epoxide metabolite formation in both humans and animals was evident. However, GSH conjugate M6 was detected only in cynomolgus monkey liver microsomal incubations. In conclusion, Rh2 is a good substrate for CYP3A4 and could undergo extensive oxidative metabolism under the catalysis of CYP3A4.
Collapse
Affiliation(s)
- Liang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
41
|
A novel oral dosage formulation of the ginsenoside aglycone protopanaxadiol exhibits therapeutic activity against a hormone-insensitive model of prostate cancer. Anticancer Drugs 2012; 23:543-52. [PMID: 22481061 DOI: 10.1097/cad.0b013e32835006f5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study focuses on determining the pharmacokinetics, biodistribution, and efficacy of the ginsenoside aglycone protopanaxadiol (aPPD) administered as a single agent in a novel oral dosage formulation. To obtain these data and to characterize the stability of aPPD, appropriate analytical assay development was carried out. The solubility and stability of aPPD were determined, and the compound was formulated for oral gavage. aPPD levels in blood and tissues following oral administration to nu/nu nude mice were determined using liquid chromatography-mass spectrometry/mass spectrometry. The efficacy of aPPD was determined upon oral administration to nu/nu nude mice bearing PC-3 human prostate cancer xenograft tumors. Immunohistochemical analysis of tumor tissues was performed to establish apoptotic indices and Ki-67 expression as markers of proliferation. The maximum solubility of aPPD in ethanol was 68.4 mg/ml. aPPD administered at a dose of 70 mg/kg yielded a T(max) of approximately 40 min and a C(max) value of 3.9 ± 1.4 μg/ml, and no toxicity was observed. aPPD accumulated largely in the stomach and small intestine and was also present in the brain. This dose engendered a significant delay in PC-3 tumor growth, an increase in apoptotic index, and a decrease in Ki-67 levels. We have shown that aPPD is a stable compound that can be formulated for oral gavage. Pharmacokinetic studies demonstrate the ability of this compound to be absorbed after oral administration. Future studies will assess the activity and pharmacokinetics of aPPD when administered in combination with standard chemotherapy.
Collapse
|
42
|
Zhou B, Xiao X, Xu L, Zhu L, Tan L, Tang H, Zhang Y, Xie Q, Yao S. A dynamic study on reversal of multidrug resistance by ginsenoside Rh2 in adriamycin-resistant human breast cancer MCF-7 cells. Talanta 2012; 88:345-51. [DOI: 10.1016/j.talanta.2011.10.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
|
43
|
Microbial transformation of ginsenoside-Rg1 by Absidia coerulea and the reversal activity of the metabolites towards multi-drug resistant tumor cells. Fitoterapia 2011; 82:1313-7. [DOI: 10.1016/j.fitote.2011.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 11/20/2022]
|
44
|
Wu CP, Ohnuma S, Ambudkar SV. Discovering natural product modulators to overcome multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 2011; 12:609-20. [PMID: 21118092 PMCID: PMC3337630 DOI: 10.2174/138920111795163887] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/12/2010] [Indexed: 12/19/2022]
Abstract
Multidrug resistance caused by the overexpression of ABC drug transporters is a major obstacle in clinical cancer chemotherapy. For several years, it appeared that direct inhibition of ABC transporters would be the cheapest and most efficient way to combat this problem. Unfortunately, progress in finding a potent, selective inhibitor to modulate ABC transporters and restore drug sensitivity in multidrug-resistant cancer cells has been slow and challenging. Candidate drugs should ideally be selective, potent and relatively non-toxic. Many researchers in recent years have turned their attention to utilizing natural products as the building blocks for the development of the next generation of inhibitors, especially after the disappointing results obtained from inhibitors of the first three generations at the clinical trial stage. The first step is to discover natural substances (distinct from the first three generation inhibitors) that are potent, selective and relatively non-toxic in order to be used clinically. Here, we present a brief overview of the prospect of using natural products to modulate the function of ABC drug transporters clinically and their impact on human physiology and pharmacology.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Shinobu Ohnuma
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Wee J, Park K, Chung AS. Biological Activities of Ginseng and Its Application to Human Health. OXIDATIVE STRESS AND DISEASE 2011. [DOI: 10.1201/b10787-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Mosaffa F, Kalalinia F, Parhiz BH, Behravan J. Tumor necrosis factor alpha induces stronger cytotoxicity in ABCG2-overexpressing resistant breast cancer cells compared with their drug-sensitive parental line. DNA Cell Biol 2011; 30:413-8. [PMID: 21323575 DOI: 10.1089/dna.2010.1143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) has been reported to modulate the multidrug resistance (MDR) phenotype in vitro and in vivo. Multidrug-resistant cells overexpressing the ABCB1 transporter are more susceptible to inhibition of proliferation and induction of apoptosis by TNF-α than their drug-sensitive counterparts. This study was aimed to investigate TNF-α modulatory and antiproliferative effects on drug-resistant cells overexpressing ABCG2. The effects of TNF-α on viability and proliferation rate of MCF-7 breast cancer cells and their ABCG2-overexpressing sublines MCF-7/mitoxantrone (MX) cells were studied using dye exclusion assay, dimethylthiazolyl-2,5-diphenyl tetrazolium bromide technique, and flow cytometric analysis of cell cycle. TNF-α influence on MX accumulation was investigated by flow cytometry. ABCG2-overexpressing cells were more susceptible to antiproliferative and cytotoxic effects of TNF-α than their parental cells. TNF-α increased accumulation of MX in both parental and resistant cells. Higher sensitivity of MDR cells to TNF-α cytotoxicity would help in characterization of its complex modulatory effects on cancer cells and benefit us in designing new approaches to overcome MDR.
Collapse
Affiliation(s)
- Fatemeh Mosaffa
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | |
Collapse
|
47
|
Meyer zu Schwabedissen HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb Exp Pharmacol 2011:325-371. [PMID: 21103975 DOI: 10.1007/978-3-642-14541-4_9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) is a member of the G-subfamiliy of the ATP-binding cassette (ABC)-transporter superfamily. This half-transporter is assumed to function as an important mechanism limiting cellular accumulation of various compounds. In context of its tissue distribution with localization in the sinusoidal membrane of hepatocytes, and in the apical membrane of enterocytes ABCG2 is assumed to function as an important mechanism facilitating hepatobiliary excretion and limiting oral bioavailability, respectively. Indeed functional assessment performing mouse studies with genetic deletion or chemical inhibition of the transporter, or performing pharmacogenetic studies in humans support this assumption. Furthermore the efflux function of ABCG2 has been linked to sanctuary blood tissue barriers as described for placenta and the central nervous system. However, in lactating mammary glands ABCG2 increases the transfer of substrates into milk thereby increasing the exposure to potential noxes of a breastfed newborn. With regard to its broad substrate spectrum including various anticancer drugs and environmental carcinogens the function of ABCG2 has been associated with multidrug resistance and tumor development/progression. In terms of cancer biology current research is focusing on the expression and function of ABCG2 in immature stem cells. Recent findings support the notion that the physiological function of ABCG2 is involved in the elimination of uric acid resulting in higher risk for developing gout in male patients harboring genetic variants. Taken together ABCG2 is implicated in various pathophysiological and pharmacological processes.
Collapse
Affiliation(s)
- Henriette E Meyer zu Schwabedissen
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
48
|
He SM, Yang AK, Li XT, Du YM, Zhou SF. Effects of herbal products on the metabolism and transport of anticancer agents. Expert Opin Drug Metab Toxicol 2010; 6:1195-213. [PMID: 20701553 DOI: 10.1517/17425255.2010.510132] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD Cancer patients on chemotherapy treatment often seek herbal therapies and this may alter the clearance of anticancer drugs. AREAS COVERED IN THIS REVIEW Many anticancer drugs are metabolized by CYPs and are substrates of P-glycoprotein, breast cancer resistance protein and multi-drug resistance proteins. CYPs and drug transporters are subject to inhibition and/or induction by the herbal medicines used by cancer patients and the metabolism and pharmacokinetics of anticancer agents may be altered by herbal products. There are increased reports on the interaction of herbal medicines with anticancer agents. A clinical study in cancer patients reported that treatment of St John's wort at 900 mg/day orally for 18 days decreased the plasma levels of the active metabolite of irinotecan, SN-38, by 42%. In healthy subjects, treatment with St John's wort for 2 weeks significantly decreased the systemic exposure of imatinib by 32%. Induction and/or inhibition of CYPs and transporters is considered an important mechanism for these interactions. WHAT THE READER WILL GAIN Potential interactions of herbal medicines with anticancer agents have become a safety concern in cancer chemotherapy. TAKE HOME MESSAGE Further studies are warranted to investigate the efficacy and safety profiles of herbal medicines commonly used by cancer patients.
Collapse
Affiliation(s)
- Shu-Ming He
- Xiaolan People's Hospital Affiliated to Nanfang Medical University, Department of Obstetrics and Gynecology, Zhongshan, Guangdong, China
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Han M, Chen J, Chen S, Wang X. Development of a UPLC-ESI-MS/MS assay for 20(S)-protopanaxadiol and pharmacokinetic application of its two formulations in rats. ANAL SCI 2010; 26:749-53. [PMID: 20631434 DOI: 10.2116/analsci.26.749] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed to investigate 20(S)-protopanaxadiol (PPD) pharmacokinetics in rats. Rat plasma samples were treated using a solid-phase extraction with satisfactory recovery (> 81%). The method showed an excellent sensitivity that the limit of detection (LOD) and the lower limit of quantitation (LLOQ) of PPD were 0.5 and 2 ng/mL, respectively. The method was applied to the evaluation of pharmacokinetics from two types of PPD formulations. The PPD emulsion showed more rapid and efficient drug absorption, and higher and more persistent plateau concentration of PPD in plasma than PPD oil solution. PPD emulsion was demonstrated to be a promising dosage form. In spite of lower plateau plasma drug concentration, PPD oil solution was characterized by the easiness in preparation and the persistent, durative plateau plasma concentration of PPD, there is room to further improve its bioavailability.
Collapse
Affiliation(s)
- Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, P. R. China
| | | | | | | |
Collapse
|