1
|
Raya AI, Vidal A, López I, Rodríguez M, Aguilera-Tejero E, Pineda C. Phosphorus Restriction Prevents Rapamycin-Induced Kidney Damage in Rats. Am J Nephrol 2024; 56:48-57. [PMID: 39383849 DOI: 10.1159/000541411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/08/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION There are conflicting reports about the effect or rapamycin on the kidneys. Rapamycin is known to promote phosphaturia that may be associated to renal injury. METHODS Detailed histopathological studies were performed on the kidneys of rats with normal (control) and reduced (Nx) renal mass that were treated with rapamycin (1.3 mg/kg for 22 days) or placebo. The effect of rapamycin was also evaluated in control and Nx rats fed different amounts of phosphorus: 0.6% P (NP), 1.2% P (HP), and 0.2% P (LP). Quantitative scores of kidney lesions were obtained for interstitial nephritis (IN), tubular damage (TD), and nephrocalcinosis (NC). RESULTS When compared with placebo, rapamycin administration to Nx rats resulted in significant increases in IN (4.17 ± 0.74 vs. 1.51 ± 0.53%) and TD (14.45 ± 1.51 vs. 8.61 ± 1.83%). Rapamycin also increased NC both in control (0.86 ± 0.23 vs. 0.14 ± 0.06%) and Nx (0.86 ± 0.32 vs. 0.15 ± 0.14%) rats. In control rats receiving rapamycin, feeding HP aggravated IN (3.25 ± 0.48%), TD (22.47 ± 4.56%), and NC (3.66 ± 0.75%), while feeding LP prevented development of any renal lesions. In Nx rats treated with rapamycin, HP intake also increased IN (8.95 ± 1.94%), TD (26.86 ± 3.95%), and NC (2.77 ± 0.60%), whereas feeding LP reduced all lesions to lower levels than in rats fed NP. Rapamycin treatment increased fractional excretion of P (FEP), and an excellent correlation between scores for renal lesions and FEP was found. CONCLUSION Rapamycin has deleterious effects on kidney pathology causing lesions that are located mainly at tubular and tubulointerstitial level. Rapamycin-induced kidney damage is more evident in rats that already have decreased renal function and seems to be related to the phosphaturic effect of the drug. Dietary P restriction prevents kidney damage in rats treated with rapamycin.
Collapse
Affiliation(s)
- Ana I Raya
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Angela Vidal
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ignacio López
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Mariano Rodríguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Escolástico Aguilera-Tejero
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Carmen Pineda
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| |
Collapse
|
2
|
Shen Y, Song L, Chen T, Jiang H, Yang G, Zhang Y, Zhang X, Lim KK, Meng X, Zhao J, Chen X. Identification of hub genes in digestive system of mandarin fish (Siniperca chuatsi) fed with artificial diet by weighted gene co-expression network analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101112. [PMID: 37516099 DOI: 10.1016/j.cbd.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a carnivorous freshwater fish and an economically important species. The digestive system (liver, stomach, intestine, pyloric caecum, esophagus, and gallbladder) is an important site for studying fish domestication. In our previous study, we found that mandarin fish undergoes adaptive changes in histological morphology and gene expression levels of the digestive system when subjected to artificial diet domestication. However, we are not clear which hub genes are highly associated with domestication. In this study, we performed WGCNA on the transcriptomes of 17 tissues and 9 developmental stages and combined differentially expressed genes analysis in the digestive system to identify the hub genes that may play important functions in the adaptation of mandarin fish to bait conversion. A total of 31,657 genes in 26 samples were classified into 23 color modules via WGCNA. The modules midnightblue, darkred, lightyellow, and darkgreen highly associated with the liver, stomach, esophagus, and gallbladder were extracted, respectively. Tan module was highly related to both intestine and pyloric caecum. The hub genes in liver were cp, vtgc, c1in, c9, lect2, and klkb1. The hub genes in stomach were ghrl, atp4a, gjb3, muc5ac, duox2, and chia2. The hub genes in esophagus were mybpc1, myl2, and tpm3. The hub genes in gallbladder were dyst, npy2r, slc13a1, and slc39a4. The hub genes in the intestine and pyloric caecum were slc15a1, cdhr5, btn3a1, anpep, slc34a2, cdhr2, and ace2. Through pathway analysis, modules highly related to the digestive system were mainly enriched in digestion and absorption, metabolism, and immune-related pathways. After domestication, the hub genes vtgc and lect2 were significantly upregulated in the liver. Chia2 was significantly downregulated in the stomach. Slc15a1, anpep, and slc34a2 were significantly upregulated in the intestine. This study identified the hub genes that may play an important role in the adaptation of the digestive system to artificial diet, which provided novel evidence and ideas for further research on the domestication of mandarin fish from molecular level.
Collapse
Affiliation(s)
- Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Lingyuan Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Kah Kheng Lim
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Criado-Mesas L, Abdelli N, Noce A, Farré M, Pérez JF, Solà-Oriol D, Martin-Venegas R, Forouzandeh A, González-Solé F, Folch JM. Transversal gene expression panel to evaluate intestinal health in broiler chickens in different challenging conditions. Sci Rep 2021; 11:6315. [PMID: 33737699 PMCID: PMC7973573 DOI: 10.1038/s41598-021-85872-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
There is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.
Collapse
Affiliation(s)
- L Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain.
| | - N Abdelli
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - A Noce
- Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - M Farré
- Department of Mathematics, Area of Statistics and Operations Research, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - J F Pérez
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - D Solà-Oriol
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R Martin-Venegas
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
- Research Institute of Nutrition and Food Safety (INSA-UB), Universitat de Barcelona, 08291, Santa Coloma de Gramanet, Spain
| | - A Forouzandeh
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - F González-Solé
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
4
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
5
|
Zhang J, Wang Y, Zhang C, Xiong M, Rajput SA, Liu Y, Qi D. The differences of gonadal hormones and uterine transcriptome during shell calcification of hens laying hard or weak-shelled eggs. BMC Genomics 2019; 20:707. [PMID: 31510913 PMCID: PMC6737649 DOI: 10.1186/s12864-019-6017-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background Eggshell breaking strength is critical to reduce egg breaking rate and avoid economic loss. The process of eggshell calcification initiates with the egg entering the uterus and lasts about 18 h. It follows a temporal sequence corresponding to the initiation, growth and termination periods of shell calcification. During each period of shell calcification, our study investigated the differences of gonadal hormones and uterine transcriptome in laying hens producing a high or low breaking strength shell. Results 60 Hy-line Brown laying hens were selected and divided into two groups according to eggshell breaking strength. Eggshell breaking strength of 44.57 ± 0.91 N and 26.68 ± 0.38 N were considered to be the high strength group (HS) and low strength group (LS), respectively. The results showed that mammillary thickness and mammillary knob width of eggshells were significantly lower in the HS. Serum progesterone (P4) and 1,25-dihydroxy vitamin D3 [1,25-(OH)2D3] were significantly higher in the HS compared to the LS during the initiation period of calcification. Serum estradiol (E2) and calcium did not change significantly. All factors mentioned above had no significant differences in the growth and termination periods of calcification. The relative expression of CaBP-D28k and PMCA 1b were not significantly different between HS and LS. The relative expression of NCX1 was significantly higher in HS compared to LS. Moreover, 1777 differentially expressed genes (DEGs) were obtained in the initiation period of calcification. However, few DEGs were identified in the growth or termination periods of calcification. 30 DEGs were selected as candidate genes involved in eggshell calcification during the initiation period of calcification by the analysis of GO terms and KEGG pathways. Conclusions Our study concluded that mammillary thickness and mammillary knob width of the HS were significantly lower than LS. P4 and 1,25-(OH)2D3 were significantly higher in the initiation period of HS. They may impact initial calcification when the mammillary layer is formed. The initiation period of calcification determined eggshell strength rather than the growth or termination periods. We inferred P4 or 1,25-(OH)2D3 may effect the ultrastructure of the mammillary layer by regulating the expression of uterine genes. Electronic supplementary material The online version of this article (10.1186/s12864-019-6017-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiacai Zhang
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanan Wang
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cong Zhang
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mingxin Xiong
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shahid Ali Rajput
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yun Liu
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Desheng Qi
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
Guo JR, Dong XF, Liu S, Tong JM. High-throughput sequencing reveals the effect of Bacillus subtilis CGMCC 1.921 on the cecal microbiota and gene expression in ileum mucosa of laying hens. Poult Sci 2018; 97:2543-2556. [PMID: 29897524 DOI: 10.3382/ps/pey112] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effects of Bacillus subtilis CGMCC 1.921 supplementation on the production performance, cecal microbiota and mucosal transcriptome of laying hens by 16s rRNA gene sequencing and RNA-seq. A total of 144 27-week-old Hy-Line Brown laying hens were allocated into two treatments, namely, a basal diet without additions (T0) and the basal diet supplemented with 1.0 × 108 cfu/g (T1) B. subtilis CGMCC 1.921, with six replicates of 12 birds in each for 24 weeks. The results showed that T1 significantly decreased feed:egg ratio compared with T0 (P < 0.05). Dietary supplementation with B. subtilis CGMCC 1.921 increased the Shannon index (P < 0.05) which indicated enhanced diversity of cecal microflora. An increasing trend in Observed species index (P = 0.072) was observed in hens fed with diets supplemented with B. subtilis CGMCC 1.921 that showed a higher species richness. And T1 modulated cecal microbiota by increasing the relative proportion of Alistipes, Subdoligranulum, Ruminococcaceae UCG-014, Anaerotruncus, Ruminiclostridium 5, Ruminococcaceae UCG-010, Erysipelatoclostridium, Ruminococcaceae UCG-009, Family XIII AD3011 group, Bacillus, Faecalicoccus, Firmicutes bacterium CAG822, Oxalobacter, and Dielma at genus level (P < 0.05). In addition, there was a tendency of increase in the relative abundance of Lactobacillus (P = 0.055), Anaerobiospirillum (P = 0.059) and Family XIII UCG-001 (P = 0.054), Peptococcus (P = 0.078), and Ruminococcaceae UCG-004 (P = 0.078). Moreover, heatmap analysis indicated that the abundance of Campylobacter and Clostridium sensu stricto 1 was lower than T0. A total of 942 genes were identified by differential expression analysis, among which 400 genes were upregulated and 542 genes were downregulated. Bioinformatics analysis suggested that the upregulated genes were involved in Peroxisome Proliferator Activated Receptor (PPAR) signaling pathway, starch and sucrose metabolism, glycine/serine/threonine metabolism, and galactose metabolism, which may promote nutrient absorption. This study provided novel insights into the probiotic mechanisms of B. subtilis on laying hens.
Collapse
Affiliation(s)
- J R Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - X F Dong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - S Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - J M Tong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
7
|
Miao Z, Zhang G, Zhang J, Li J, Yang Y. Effect of early dietary energy restriction and phosphorus level on subsequent growth performance, intestinal phosphate transport, and AMPK activity in young broilers. PLoS One 2017; 12:e0186828. [PMID: 29240752 PMCID: PMC5730151 DOI: 10.1371/journal.pone.0186828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
Abstract
We aimed to determine the effect of low dietary energy on intestinal phosphate transport and the possible underlying mechanism to explain the long-term effects of early dietary energy restriction and non-phytate phosphorus (NPP). A 2 × 3 factorial experiment, consisting of 2 energy levels and 3 NPP levels, was conducted. Broiler growth performance, intestinal morphology in 0–21 days and 22–35 days, type IIb sodium-phosphate co-transporter (NaPi-IIb) mRNA expression, adenylate purine concentrations in the duodenum, and phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α) activity in 0–21 days were determined. The following results were obtained. (1) Low dietary energy (LE) induced a high feed conversion ratio (FCR) and significantly decreased body weight gain in young broilers, but LE induced significantly higher compensatory growth in low NPP (LP) groups than in the high or medium NPP groups (HP and MP). (2) LE decreased the villus height (VH) in the intestine, and LE-HP resulted in the lowest crypt depth (CD) and the highest VH:CD ratio in the initial phase. However, in the later period, the LE-LP group showed an increased VH:CD ratio and decreased CD in the intestine. (3) LE increased ATP synthesis and decreased AMP:ATP ratio in the duodenal mucosa of chickens in 0–21 days, and LP diet increased ATP synthesis and adenylate energy charges but decreased AMP production and AMP:ATP ratio. (4) LE led to weaker AMPK phosphorylation, higher mTOR phosphorylation, and higher NaPi-IIb mRNA expression. Thus, LE and LP in the early growth phase had significant compensatory and interactive effect on later growth and intestinal development in broilers. The effect might be relevant to energy status that LE leads to weaker AMPK phosphorylation, causing a lower inhibitory action toward mTOR phosphorylation. This series of events stimulates NaPi-IIb mRNA expression. Our findings provide a theoretical basis and a new perspective on intestinal phosphate transport regulation, with potential applications in broiler production.
Collapse
Affiliation(s)
- Zhiqiang Miao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Guixian Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Junzhen Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Jianhui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
- * E-mail: (YY); (JHL)
| | - Yu Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
- * E-mail: (YY); (JHL)
| |
Collapse
|
8
|
Miao Z, Feng Y, Zhang J, Tian W, Li J, Yang Y. Regulation of phosphate transport and AMPK signal pathway by lower dietary phosphorus of broilers. Oncotarget 2017; 8:107825-107832. [PMID: 29296204 PMCID: PMC5746106 DOI: 10.18632/oncotarget.22609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lower available P (aP) was used as a base value in nutritional strategies for mitigating P pollution by animal excreta. We hypothesized that the mechanism regulating phosphate transport under low dietary P might be related with the AMPK signal pathway. A total of 144 one-day-old Arbor Acres Plus broilers were randomly allocated to control (HP) or trial (LP) diets, containing 0.45 and 0.23% aP, respectively. Growth performance, blood, intestinal, and renal samples were tested in 21-day-old broilers. Results shown that LP decreased body weight gain and feed intake. Higher serum Ca and fructose, but lower serum P and insulin were detected in LP-fed broilers. NaPi-IIb mRNA expression in intestine and NaPi-IIa mRNA expression in kidney were higher in the LP group. AMP: ATP, p-AMPK: total AMPK, and p-ACC: total ACC ratios in the duodenal mucosa were decreased in the LP group, whereas the p-mTOR: total mTOR ratio increased. These findings suggested that the increase in phosphate transport owing to LP diet might be regulated either directly by higher mTOR activity or indirectly by the suppressive AMPK signal, with corresponding changes in blood insulin and fructose content. A novel viewpoint on the regulatory mechanism underlying phosphate transport under low dietary P conditions was revealed, which might provide theoretical guidelines for reducing P pollution by means of nutritional regulation.
Collapse
Affiliation(s)
- Zhiqiang Miao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yan Feng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Junzhen Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wenxia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianhui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yu Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
9
|
Fang RJ, Xiang ZF, Hu LC, Su WQ, Tang XP, Wang XR. Effects of mechanistic target of rapamycin signaling pathway on the estrogen-mediated NaPi-IIb protein expression in pig small intestinal epithelial cells1. J Anim Sci 2016. [DOI: 10.2527/jas.2015-9866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Mammary transcriptome analysis of lactating dairy cows following administration of bovine growth hormone. Animal 2016; 10:2008-2017. [PMID: 27222096 DOI: 10.1017/s1751731116000987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The galactopoietic effect of growth hormone (GH) in lactating ruminants is well established; however the mechanisms that mediate these effects are not well understood. The first objective of this study was to determine the effect of GH on the synthesis of the major casein and whey proteins. The second objective was to identify the genes and pathways that may be involved in mediating the effect of GH on milk synthesis. A single subcutaneous injection of a commercially available slow release formulation of GH (Lactatropin®), or physiological saline solution (control) was administered to non-pregnant dairy cows (n=4/group) in mid-late lactation. Milk samples were collected for composition analysis and mammary lobulo-alveolar tissue was collected postmortem 6 days post injection. Gene expression profiles were evaluated using either a 22 000 bovine complementary DNA microarray or quantitative PCR (qPCR), and microarrays were validated by qPCR. The yield of all the major casein and whey proteins was increased 32% to 41% in GH-treated cows, with the exception of α-lactalbumin yield which was elevated by 70% relative to controls. Treatment with GH treatment tended to increase the concentration of α-lactalbumin but had no effect on the concentration of any of the major milk proteins. Messenger RNA (mRNA) abundance of the major whey and casein genes, with the exception of α-s2-casein, was increased in response to GH compared with controls, which is consistent with the positive effect of GH on milk production. Treatment with GH treatment influenced the mRNA abundance of genes involved in cell growth and proliferation, transcriptional and translational regulation, actin cytoskeleton signalling, lipid metabolism and cell death. This study has provided new insights into the cell signalling that may be involved in mediating the effect of GH on milk production in the mammary gland of lactating dairy cows.
Collapse
|
11
|
Fezai M, Elvira B, Warsi J, Ben-Attia M, Hosseinzadeh Z, Lang F. Up-Regulation of Intestinal Phosphate Transporter NaPi-IIb (SLC34A2) by the Kinases SPAK and OSR1. Kidney Blood Press Res 2015; 40:555-64. [PMID: 26506223 DOI: 10.1159/000368531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), kinases controlled by WNK (with-no-K[Lys] kinase), are powerful regulators of cellular ion transport and blood pressure. Observations in gene-targeted mice disclosed an impact of SPAK/OSR1 on phosphate metabolism. The present study thus tested whether SPAK and/or OSR1 contributes to the regulation of the intestinal Na(+)-coupled phosphate co-transporter NaPi-IIb (SLC34A2). METHODS cRNA encoding NaPi-IIb was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 or catalytically inactive (D164A)OSR1. The phosphate (1 mM)-induced inward current (I(Pi)) was taken as measure of phosphate transport. RESULTS I(Pi) was observed in NaPi-IIb expressing oocytes but not in water injected oocytes, and was significantly increased by co-expression of SPAK, (T233E)SPAK, OSR1, (T185E)OSR1 or SPAK+OSR1, but not by co-expression of (T233A)SPAK, (D212A)SPAK, (T185A)OSR1, or (D164A)OSR1. SPAK and OSR1 both increased the maximal transport rate of the carrier. CONCLUSIONS SPAK and OSR1 are powerful stimulators of the intestinal Na+-coupled phosphate co-transporter NaPi-IIb.
Collapse
Affiliation(s)
- Myriam Fezai
- Department of Physiology I, University of Tx00FC;bingen, Tx00FC;bingen, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Jiang J, Feng L, Liu Y, Jiang WD, Hu K, Li SH, Zhou XQ. Mechanistic target of rapamycin in common carp: cDNA cloning, characterization, and tissue expression. Gene 2013; 512:566-72. [DOI: 10.1016/j.gene.2012.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/04/2012] [Accepted: 08/02/2012] [Indexed: 01/13/2023]
|
13
|
Haller M, Amatschek S, Wilflingseder J, Kainz A, Bielesz B, Pavik I, Serra A, Mohebbi N, Biber J, Wagner CA, Oberbauer R. Sirolimus induced phosphaturia is not caused by inhibition of renal apical sodium phosphate cotransporters. PLoS One 2012; 7:e39229. [PMID: 22859939 PMCID: PMC3408497 DOI: 10.1371/journal.pone.0039229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022] Open
Abstract
The vast majority of glomerular filtrated phosphate is reabsorbed in the proximal tubule. Posttransplant phosphaturia is common and aggravated by sirolimus immunosuppression. The cause of sirolimus induced phosphaturia however remains elusive. Male Wistar rats received sirolimus or vehicle for 2 or 7 days (1.5mg/kg). The urine phosphate/creatinine ratio was higher and serum phosphate was lower in sirolimus treated rats, fractional excretion of phosphate was elevated and renal tubular phosphate reabsorption was reduced suggesting a renal cause for hypophosphatemia. PTH was lower in sirolimus treated rats. FGF 23 levels were unchanged at day 2 but lower in sirolimus treated rats after 7 days. Brush border membrane vesicle phosphate uptake was not altered in sirolimus treated groups or by direct incubation with sirolimus. mRNA, protein abundance, and subcellular transporter distribution of NaPi-IIa, Pit-2 and NHE3 were not different between groups but NaPi-IIc mRNA expression was lower at day 7. Transcriptome analyses revealed candidate genes that could be involved in the phosphaturic response. Sirolimus caused a selective renal phosphate leakage, which was not mediated by NaPi-IIa or NaPi-IIc regulation or localization. We hypothesize that another mechanism such as a basolateral phosphate transporter may be responsible for the sirolimus induced phosphaturia.
Collapse
Affiliation(s)
- Maria Haller
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Department of Nephrology and Transplantation, KH Elisabethinen Linz, Linz, Austria
| | - Stefan Amatschek
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | | | - Alexander Kainz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Bernd Bielesz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Ivana Pavik
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Andreas Serra
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jürg Biber
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Carsten A. Wagner
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Department of Nephrology and Transplantation, KH Elisabethinen Linz, Linz, Austria
- Austrian Dialysis and Transplant Registry, Linz, Austria
- * E-mail:
| |
Collapse
|
14
|
Dërmaku-Sopjani M, Sopjani M, Saxena A, Shojaiefard M, Bogatikov E, Alesutan I, Eichenmüller M, Lang F. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem 2011; 28:251-8. [PMID: 21865732 DOI: 10.1159/000331737] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2011] [Indexed: 12/25/2022] Open
Abstract
Klotho, a transmembrane protein, protease and hormone has been shown to exert a profound effect on phosphate metabolism. Klotho overexpression lowers and Klotho deficiency increases the plasma phosphate concentration, effects in part attributed to an inhibitory effect of Klotho on the formation of 1,25-dihydroxycholecalciferol (1,25(OH) (2)D(3)), the active form of Vitamin D. Beyond that Klotho has been shown to decrease renal tubular phosphate transport more directly. The influence of Klotho on the plasma phosphate concentration contributes to the profound effect of Klotho on ageing and life span. The present study explored whether Klotho influences the major renal tubular (NaPi-IIa) and the major intestinal (NaPi-IIb) phosphate transporters. For functional analysis NaPi-IIa or NaPi-IIb were expressed in Xenopus oocytes both, without or with additional coexpression of Klotho and electrogenic phosphate transport was estimated from the phosphate-induced current (Ip). According to RT-PCR Klotho is expressed in the murine kidney and intestine. Coexpression of Klotho decreased Ip in both NaPi-IIa- and NaPi-IIb-expressing oocytes. Klotho decreased the maximal Ip without appreciably affecting the concentration required for halfmaximal Ip. Treatment of NaPi-IIa- or NaPi-IIb-expressing oocytes with Klotho protein similarly decreased Ip. In conclusion, Klotho down regulates both, renal (NaPi-IIa) and intestinal (NaPi-IIb) phosphate transporters.
Collapse
|
15
|
Kempe DS, Dërmaku-Sopjani M, Fröhlich H, Sopjani M, Umbach A, Puchchakayala G, Capasso A, Weiss F, Stübs M, Föller M, Lang F. Rapamycin-induced phosphaturia. Nephrol Dial Transplant 2010; 25:2938-44. [PMID: 20368307 DOI: 10.1093/ndt/gfq172] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) is known to stimulate a variety of transport mechanisms including the intestinal phosphate transporter NaPi-IIb. The present study was performed to elucidate whether mTOR similarly regulates the major renal tubular phosphate transporter NaPi-IIa. METHODS To this end, NaPi-IIa was expressed in Xenopus oocytes with or without mTOR and phosphate transport estimated from phosphate-induced (1 mM) current (I(pi)). RESULTS As a result, I(pi) was observed in NaPi-IIa-expressing but not in H(2)O-injected Xenopus oocytes. Co-expression of mTOR significantly enhanced I(pi) in NaPi-IIa-expressing Xenopus oocytes, an effect abrogated by treatment with rapamycin (50 nM for the last 24 h of incubation). In a second series of experiments, the effect of rapamycin was analysed in mice. The in vivo administration of rapamycin (3 microg/g body weight/day) for 3 days resulted in phosphaturia in mice despite a tendency of plasma phosphate concentration to decrease. CONCLUSIONS mTOR contributes to the regulation of renal phosphate transport, and rapamycin thus influences phosphate balance.
Collapse
Affiliation(s)
- Daniela S Kempe
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 2009; 18:439-48. [PMID: 19584721 DOI: 10.1097/mnh.0b013e32832f125e] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The role of serum and glucocorticoid-inducible kinase 1 (SGK1) in renal physiology and pathophysiology is reviewed with particular emphasis on recent advances. RECENT FINDINGS The mammalian target of rapamycin complex 2 has been shown to phosphorylate SGK1 at Ser422 (the so-called hydrophobic motif). Ser397 and Ser401 are two additional SGK1-phosphorylation sites required for maximal SGK1 activity. A 5' variant alternate transcript of human Sgk1 has been identified that is widely expressed and shows improved stability, enhanced membrane association, and greater stimulation of epithelial Na+ transport. SGK1 is essential for optimal processing of the epithelial sodium channel and also regulates the expression of the Na+-Cl- cotransporter. With regard to pathophysiology, SGK1 participates in the stimulation of renal tubular glucose transport in diabetes, the renal profibrotic effect of both angiotensin II and aldosterone, and in fetal programing of arterial hypertension. SUMMARY The outlined recent findings advanced our understanding of the molecular regulation of SGK1 as well as the role of the kinase in renal physiology and the pathophysiology of renal disease and hypertension. Future studies using pharmacological inhibitors of SGK1 will reveal the utility of the kinase as a new therapeutic target.
Collapse
|
17
|
Klaus F, Laufer J, Czarkowski K, Strutz-Seebohm N, Seebohm G, Lang F. PIKfyve-dependent regulation of the Cl- channel ClC-2. Biochem Biophys Res Commun 2009; 381:407-11. [PMID: 19232516 DOI: 10.1016/j.bbrc.2009.02.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/12/2009] [Indexed: 01/18/2023]
Abstract
The widely expressed chloride channel ClC-2 is stimulated by the serum and glucocorticoid inducible kinase SGK1. The SGK1-dependent regulation of several carriers involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments explored whether SGK1-dependent regulation of ClC-2 similarly involves PIKfyve. The conductance of Xenopus oocytes is increased more than eightfold by ClC-2 expression. In ClC-2-expressing oocytes, but not in water-injected oocytes, the current was further enhanced by coexpression of either, PIKfyve or constitutively active (S422D)SGK1. Coexpression of the inactive SGK1 mutant (K127N)SGK1 did not significantly alter the current in ClC-2-expressing oocytes and abrogated the stimulation of the current by PIKfyve-coexpression. The stimulating effect of PIKfyve was abolished by replacement of the serine with alanine in the SGK1 consensus sequence ((S318A)PIKfyve). Coexpression of (S318A)PIKfyve significantly blunted the stimulating effect of (S422D)SGK1 on ClC-2-activity. In conclusion, PIKfyve is a potent stimulator of ClC-2-activity and contributes to SGK1-dependent regulation of ClC-2.
Collapse
Affiliation(s)
- Fabian Klaus
- Department of Physiology I, Physiologisches Institut I, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Roos S, Kanai Y, Prasad PD, Powell TL, Jansson T. Regulation of placental amino acid transporter activity by mammalian target of rapamycin. Am J Physiol Cell Physiol 2009; 296:C142-50. [DOI: 10.1152/ajpcell.00330.2008] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The activity of placental amino acid transporters is decreased in intrauterine growth restriction (IUGR), but the underlying regulatory mechanisms have not been established. Inhibition of the mammalian target of rapamycin (mTOR) signaling pathway has been shown to decrease the activity of the system L amino acid transporter in human placental villous fragments, and placental mTOR activity is decreased in IUGR. In the present study, we used cultured primary trophoblast cells to study mTOR regulation of placental amino acid transporters in more detail and to test the hypothesis that mTOR alters amino acid transport activity by changes in transporter expression. Inhibition of mTOR by rapamycin significantly reduced the activity of system A (−17%), system L (−28%), and taurine (−40%) amino acid transporters. mRNA expression of isoforms of the three amino acid transporter systems in response to mTOR inhibition was measured using quantitative real-time PCR. mRNA expression of l-type amino acid transporter 1 (LAT1; a system L isoform) and taurine transporter was reduced by 13% and 50%, respectively; however, mTOR inhibition did not alter the mRNA expression of system A isoforms (sodium-coupled neutral amino acid transporter-1, -2, and -4), LAT2, or 4F2hc. Rapamycin treatment did not significantly affect the protein expression of any of the transporter isoforms. We conclude that mTOR signaling regulates the activity of key placental amino acid transporters and that this effect is not due to a decrease in total protein expression. These data suggest that mTOR regulates placental amino acid transporters by posttranslational modifications or by affecting transporter translocation to the plasma membrane.
Collapse
|
19
|
Kiyamova R, Gryshkova V, Ovcharenko G, Lituyev D, Malyuchik S, Usenko V, Khozhayenko Y, Gurtovyy V, Yin B, Ritter G, Old L, Filonenko V, Gout I. Development of monoclonal antibodies specific for the human sodium-dependent phosphate co-transporter NaPi2b. Hybridoma (Larchmt) 2008; 27:277-84. [PMID: 18724815 DOI: 10.1089/hyb.2008.0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homeostasis of inorganic phosphate in the human body is maintained by regulated absorption, metabolism, and excretion. Sodium-dependent phosphate transporters (NaPi) mediate the transport of inorganic phosphate (P(i)) in cells in response to dietary phosphate consumption, hormones, and growth factors. NaPi2b is a member of the sodium-dependent phosphate transporter family, with a distinct pattern of expression and regulation. Signaling pathways activated by mitogens, glucocorticoids, and metabolic factors have been implicated in regulating P(i) transport via NaPi2b. Inactivation of NaPi2b function by mutations has been linked to human pathologies, such as pulmonary alveolar microlithiasis. In this study, we describe the generation and characterization of monoclonal antibodies against human NaPi2b. The monoclonal antibodies were shown to recognize specifically transiently overexpressed and endogenous NaPi2b in commonly used immunoassays, including Western blotting, immunoprecipitation, and immunohistochemistry. These properties make them particularly valuable reagents for elucidating NaPi2b function in health and disease.
Collapse
Affiliation(s)
- Ramziya Kiyamova
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang X, Yang C, Farberman A, Rideout TC, de Lange CFM, France J, Fan MZ. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth1,2. J Anim Sci 2008; 86:E36-50. [DOI: 10.2527/jas.2007-0567] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am J Clin Nutr 2008; 87:1028-38. [PMID: 18400728 PMCID: PMC2430509 DOI: 10.1093/ajcn/87.4.1028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. OBJECTIVE We tested the hypothesis that luminal fructose regulates NaPi-2b. DESIGN We perfused into the intestine fructose, glucose, and nonmetabolizable or poorly transported glucose analogs as well as phlorizin. RESULTS NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were approximately 30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)-activator AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) enhanced and the fatty acid synthase-AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylenebutyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. CONCLUSIONS Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies approximately 10% of caloric intake by Americans clearly affects absorption of Pi and may promote Pi homeostasis in patients with impaired renal function.
Collapse
Affiliation(s)
- Séverine Kirchner
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
22
|
Strutz-Seebohm N, Shojaiefard M, Christie D, Tavare J, Seebohm G, Lang F. PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 2007; 20:729-34. [PMID: 17982255 DOI: 10.1159/000110433] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2007] [Indexed: 12/24/2022] Open
Abstract
The Na(+),Cl(-),creatine transporter CreaT (SLC6A8) mediates concentrative cellular uptake of creatine into a wide variety of cells. Previous observations disclosed that SLC6A8 transport activity is enhanced by mammalian target of rapamycin (mTOR) at least partially through the serum and glucocorticoid inducible kinase isoforms SGK1 and SGK3. As SLC6A8 does not contain a putative SGK consensus motif, the mechanism linking SGK1 with SLC6A8 activity remained elusive. A candidate kinase is the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3), which has previously been shown to regulate the glucose transporter GLUT4. The present experiments explored the possibility that SLC6A8 is regulated by PIKfyve. In Xenopus oocytes expressing SLC6A8 but not in water injected oocytes creatine induced a current which was significantly enhanced by coexpression of PIKfyve. The effect of PIKfyve on SLC6A8 was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K127N)SGK1. The stimulating effect of PIKfyve was abrogated by replacement of the serine in the SGK consensus sequence by alanine ((S318A)PIKfyve). Moreover, coexpression of ( S318A)PIKfyve blunted the effect of SGK1 on SLC6A8 activity. The observations suggest that SGK1 regulates the creatine transporter SLC6A8 at least partially through phosphorylation and activation of PIKfyve and subsequent formation of PI(3,5)P(2).
Collapse
|
23
|
Shojaiefard M, Strutz-Seebohm N, Tavaré JM, Seebohm G, Lang F. Regulation of the Na(+), glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1. Biochem Biophys Res Commun 2007; 359:843-7. [PMID: 17570343 DOI: 10.1016/j.bbrc.2007.05.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 01/15/2023]
Abstract
The Na(+), glucose cotransporter SGLT1 (SLC5A1) accomplishes Na(+)-dependent concentrative cellular glucose uptake. SGLT1 activity is enhanced by the serum and glucocorticoid inducible kinase SGK1. As shown recently, the stimulating effect of protein kinase B on the glucose carrier GLUT4 involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments thus explored whether PIKfyve is similarly involved in the SGK1-dependent regulation of SLC5A1. In Xenopus oocytes expressing SLC5A1 but not in water injected oocytes glucose induced a current which was significantly enhanced by coexpression of PIKfyve. The effect of PIKfyve on SLC5A1 was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 and mimicked by coexpression of constitutively active (S422D)SGK1. The stimulating effect of PIKfyve was abrogated by replacement of the serine in the SGK consensus sequence by alanine ((S138A)PIKfyve). Moreover, coexpression of (S138A)PIKfyve significantly blunted the effect of SGK1 on SLC5A1 activity. The observations disclose that PIKfyve participates in the SGK1-dependent regulation of SLC5A1.
Collapse
|
24
|
Arteaga MF, Alvarez de la Rosa D, Alvarez JA, Canessa CM. Multiple translational isoforms give functional specificity to serum- and glucocorticoid-induced kinase 1. Mol Biol Cell 2007; 18:2072-80. [PMID: 17377066 PMCID: PMC1877090 DOI: 10.1091/mbc.e06-10-0968] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Serum- and glucocorticoid-induced kinase 1 is a ubiquitous kinase that regulates diverse processes such as ion transport and cell survival. We report that a single SGK1 mRNA produces isoforms with different N-termini owing to alternative translation initiation. The long isoforms, 49 and 47 kDa, are the most abundant, localize to the ER membrane, exhibit rapid turnover, their expression is decreased by ER stress, activate the epithelial sodium channel (ENaC) and translocate FoxO3a transcriptional factors from the nucleus to the cytoplasm. The short isoforms, 45 and 42 kDa, localize to the cytoplasm and nucleus, exhibit long half-life and phosphorylate glycogen synthase kinase-3beta. The data indicate that activation of Sgk1 in different cellular compartments is key to providing functional specificity to Sgk1 signaling pathways. We conclude that the distinct properties and functional specialization of Sgk1 given by the N-terminus confer versatility of function while maintaining the same core kinase domain.
Collapse
Affiliation(s)
| | | | - Jose A. Alvarez
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510
| | - Cecilia M. Canessa
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510
| |
Collapse
|