1
|
Zhu H, Huangfu L, Chen J, Ji J, Xing X. Exploring the potential of extrachromosomal DNA as a novel oncogenic driver. SCIENCE CHINA. LIFE SCIENCES 2025; 68:144-157. [PMID: 39349791 DOI: 10.1007/s11427-024-2710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 01/03/2025]
Abstract
Extrachromosomal DNA (ecDNA) is a form of circular DNA mostly found in tumor cells. Unlike the typical chromosomal DNA, ecDNA is circular, self-replicating, and carries complete or partial gene fragments. Although ecDNA occurrence remains a rare event in cancer, recent studies have shown that oncogene amplification on ecDNA is widespread throughout many types of cancer, implying that ecDNA plays a central role in accelerating tumor evolution. ecDNA has also been associated with increased tumor mutation burden, chromosomal instability, and even tumor microenvironment remodeling. ecDNA may be crucial in influencing tumor heterogeneity, drug sensitivity, oncogenic senescence, and tumor immunogenicity, leading to a worsening prognosis for tumor patients. In this way, several clinical trials have been conducted to investigate the importance of ecDNA in clinical treatment. In this review, we summarize the biogenesis, characteristics, and current research methods of ecDNA, discuss the vital role of ecDNA-caused tumor heterogeneity in cancers, and highlight the potential role of ecDNA in cancer therapy.
Collapse
Affiliation(s)
- Huanbo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Yan X, Mischel P, Chang H. Extrachromosomal DNA in cancer. Nat Rev Cancer 2024; 24:261-273. [PMID: 38409389 DOI: 10.1038/s41568-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches.
Collapse
Affiliation(s)
- Xiaowei Yan
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Wu S, Bafna V, Chang HY, Mischel PS. Extrachromosomal DNA: An Emerging Hallmark in Human Cancer. ANNUAL REVIEW OF PATHOLOGY 2022; 17:367-386. [PMID: 34752712 PMCID: PMC9125980 DOI: 10.1146/annurev-pathmechdis-051821-114223] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human genes are arranged on 23 pairs of chromosomes, but in cancer, tumor-promoting genes and regulatory elements can free themselves from chromosomes and relocate to circular, extrachromosomal pieces of DNA (ecDNA). ecDNA, because of its nonchromosomal inheritance, drives high-copy-number oncogene amplification and enables tumors to evolve their genomes rapidly. Furthermore, the circular ecDNA architecture fundamentally alters gene regulation and transcription, and the higher-order organization of ecDNA contributes to tumor pathogenesis. Consequently, patients whose cancers harbor ecDNA have significantly shorter survival. Although ecDNA was first observed more than 50 years ago, its critical importance has only recently come to light. In this review, we discuss the current state of understanding of how ecDNAs form and function as well as how they contribute to drug resistance and accelerated cancer evolution.
Collapse
Affiliation(s)
- Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Wu N, Wei J, Wang Y, Yan J, Qin Y, Tong D, Pang B, Sun D, Sun H, Yu Y, Sun W, Meng X, Zhang C, Bai J, Chen F, Geng J, Lee KY, Fu S, Jin Y. Ribosomal L22-like1 (RPL22L1) Promotes Ovarian Cancer Metastasis by Inducing Epithelial-to-Mesenchymal Transition. PLoS One 2015; 10:e0143659. [PMID: 26618703 PMCID: PMC4664398 DOI: 10.1371/journal.pone.0143659] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022] Open
Abstract
Double minute chromosomes (DMs) have important implications for cancer progression because oncogenes frequently amplified on them. We previously detected a functionally undefined gene amplified on DMs, Ribosomal L22-like1 (RPL22L1). The relationship between RPL22L1 and cancer progression is unknown. Here, RPL22L1 was characterized for its role in ovarian cancer (OC) metastasis and its underlying mechanism was examined. DNA copy number and mRNA expression of RPL22L1 in OC cells was analyzed using data obtained from The Cancer Genome Atlas and the Gene Expression Omnibus database. An immunohistochemical analysis of clinical OC specimens was performed and the relationships between expression level and clinicopathological factors were evaluated. Additionally, in vivo and in vitro assays were performed to understand the role of RPL22L1 in OC. RPL22L1 expression was higher in OC specimens than in normal tissues, and its expression level was highly positively correlated with invasion and lymph node metastasis (P < 0.05). RPL22L1 over-expression significantly enhanced intraperitoneal xenograft tumor development in nude mice and promoted invasion and migration in vitro. Additionally, RPL22L1 knockdown remarkably inhibited UACC-1598 cells invasion and migration. Further, RPL22L1 over-expression up-regulated the mesenchymal markers vimentin, fibronectin, and α-SMA, reduced expression of the epithelial markers E-cadherin, α-catenin, and β-catenin. RPL22L1 inhibition reduced expression of vimentin and N-cadherin. These results suggest that RPL22L1 induces epithelial-to-mesenchymal transition (EMT). Our data showed that the DMs amplified gene RPL22L1 is critical in maintaining the aggressive phenotype of OC and in triggering cell metastasis by inducing EMT. It could be employed as a novel prognostic marker and/or effective therapeutic target for OC.
Collapse
Affiliation(s)
- Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jia Wei
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yuhui Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jinyan Yan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Ying Qin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Dandan Tong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Bo Pang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Donglin Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Third Affiliated Clinical Hospital, Harbin Medical University, Harbin, China
| | - Ki-Young Lee
- Department of Cell Biology & Anatomy, University of Calgary, Alberta, Canada
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- * E-mail: (YJ); , (SF)
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- * E-mail: (YJ); , (SF)
| |
Collapse
|
6
|
Ji W, Bian Z, Yu Y, Yuan C, Liu Y, Yu L, Li C, Zhu J, Jia X, Guan R, Zhang C, Meng X, Jin Y, Bai J, Yu J, Lee KY, Sun W, Fu S. Expulsion of micronuclei containing amplified genes contributes to a decrease in double minute chromosomes from malignant tumor cells. Int J Cancer 2013; 134:1279-88. [PMID: 24027017 PMCID: PMC4233979 DOI: 10.1002/ijc.28467] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/22/2013] [Indexed: 12/26/2022]
Abstract
Double minute chromosomes (DMs) are a hallmark of gene amplification. The relationship between the formation of DMs and the amplification of DM-carried genes remains to be clarified. The human colorectal cancer cell line NCI-H716 and human malignant primitive neuroectodermal tumor cell line SK-PN-DW are known to contain many DMs. To examine the amplification of DM-carried genes in tumor cells, we performed Affymetrix SNP Array 6.0 analyses and verified the regions of amplification in NCI-H716 and SK-PN-DW tumor cells. We identified the amplification regions and the DM-carried genes that were amplified and overexpressed in tumor cells. Using RNA interference, we downregulated seven DM-carried genes, (NDUFB9, MTSS1, NSMCE2, TRIB1, FAM84B, MYC and FGFR2) individually and then investigated the formation of DMs, the amplification of the DM-carried genes, DNA damage and the physiological function of these genes. We found that suppressing the expression of DM-carried genes led to a decrease in the number of DMs and reduced the amplification of the DM-carried genes through the micronuclei expulsion of DMs from the tumor cells. We further detected an increase in the number of γH2AX foci in the knockdown cells, which provides a strong link between DNA damage and the loss of DMs. In addition, the loss of DMs and the reduced amplification and expression of the DM-carried genes resulted in a decrease in cell proliferation and invasion ability.
Collapse
Affiliation(s)
- Wei Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification. PLoS One 2008; 3:e3099. [PMID: 18769732 PMCID: PMC2518122 DOI: 10.1371/journal.pone.0003099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/08/2008] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Amplification of the oncogene MYCN in double minutes (DMs) is a common finding in neuroblastoma (NB). Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development. PRINCIPAL FINDINGS We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN) copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers. CONCLUSION Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection.
Collapse
|