1
|
Lavilla-Puerta M, Giuntoli B. Designed to breathe: synthetic biology applications in plant hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae623. [PMID: 39673416 DOI: 10.1093/plphys/kiae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/16/2024]
Abstract
Over the past years, plant hypoxia research has produced a considerable number of new resources to monitor low oxygen responses in model species, mainly Arabidopsis thaliana. Climate change urges the development of effective genetic strategies aimed at improving plant resilience during flooding events. This need pushes forward the search for optimized tools that can reveal the actual oxygen available to plant cells, in different organs or under various conditions, and elucidate the mechanisms underlying plant hypoxic responses, complementing the existing transcriptomics, proteomics, and metabolic analysis methods. Oxygen-responsive reporters, dyes, and nanoprobes are under continuous development, as well as novel synthetic strategies that make precision control of plant hypoxic responses realistic. In this review, we summarize the recent progress made in the definition of tools for oxygen response monitoring in plants, either adapted from bacterial and animal research or peculiar to plants. Moreover, we highlight how adoption of a synthetic biology perspective has enabled the design of novel genetic circuits for the control of oxygen-dependent responses in plants. Finally, we discuss the current limitations and challenges toward the implementation of synbio solutions in the plant low-oxygen biology field.
Collapse
Affiliation(s)
- Mikel Lavilla-Puerta
- Plant Molecular Biology Section, Department of Biology, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
2
|
Lin X, An T, Fu D, Duan S, Jin HL, Wang HB. Optimization of central carbon metabolism by Warburg effect of human cancer cell improves triterpenes biosynthesis in yeast. ADVANCED BIOTECHNOLOGY 2023; 1:4. [PMID: 39883335 PMCID: PMC11727583 DOI: 10.1007/s44307-023-00004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 01/31/2025]
Abstract
Optimizing central carbon metabolism (CCM) represents an attractive and challenging strategy to improve the biosynthesis of valuable chemicals due to the complex regulation of the CCM in yeast. In this study, we triggered the similar Warburg effect of cancer cells in yeast strains by introducing the human hypoxia-inducible factor-1 (HIF-1) complex, which regulated the expression of numerous enzymes involved in CCM and redirected the metabolic flux from glycolysis to tricarboxylic acid cycle. This redirection promoted the production of squalene to a 2.7-fold increase than the control strain BY4741. Furthermore, the HIF-1 complex boosted the production of represented endogenous triterpenoid ergosterol to 1145.95 mg/L, and exogenous triterpenoid lupeol to 236.35 mg/L in shake flask cultivation, 10.5-fold and 9.2-fold increase than engineered strains without HIF-1 complex integration, respectively. This study provides a novel strategy for optimizing CCM by HIF-1 mediated Warburg effect of cancer cells to improve biosynthesis of triterpenoids in yeast.
Collapse
Affiliation(s)
- Xiaona Lin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tianyue An
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Danni Fu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Chinese Medicine Research On Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Key Laboratory of Chinese Medicinal Resource From Lingnan, (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China.
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Key Laboratory of Chinese Medicinal Resource From Lingnan, (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Scott L, Wigglesworth MJ, Siewers V, Davis AM, David F. Genetically Encoded Whole Cell Biosensor for Drug Discovery of HIF-1 Interaction Inhibitors. ACS Synth Biol 2022; 11:3182-3189. [PMID: 36223492 PMCID: PMC9594322 DOI: 10.1021/acssynbio.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The heterodimeric transcription factor, hypoxia inducible factor-1 (HIF-1), is an important anticancer target as it supports the adaptation and response of tumors to hypoxia. Here, we optimized the repressed transactivator yeast two-hybrid system to further develop it as part of a versatile yeast-based drug discovery platform and validated it using HIF-1. We demonstrate both fluorescence-based and auxotrophy-based selections that could detect HIF-1α/HIF-1β dimerization inhibition. The engineered genetic selection is tunable and able to differentiate between strong and weak interactions, shows a large dynamic range, and is stable over different growth phases. Furthermore, we engineered mechanisms to control for cellular activity and off-target drug effects. We thoroughly characterized all parts of the biosensor system and argue this tool will be generally applicable to a wide array of protein-protein interaction targets. We anticipate this biosensor will be useful as part of a drug discovery platform, particularly when screening DNA-encoded new modality drugs.
Collapse
Affiliation(s)
- Louis
H. Scott
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, SE-41320 Gothenburg, Sweden,Department
of Biology and Biological Engineering, Division of Systems and Synthetic
Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Mark J. Wigglesworth
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Alderley Park SK10 2NA, U.K.
| | - Verena Siewers
- Department
of Biology and Biological Engineering, Division of Systems and Synthetic
Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Andrew M. Davis
- Discovery
Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge, CB2 0AA, U.K.
| | - Florian David
- Department
of Biology and Biological Engineering, Division of Systems and Synthetic
Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden,
| |
Collapse
|
4
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1. BIORESOURCE TECHNOLOGY 2020; 295:122248. [PMID: 31627065 DOI: 10.1016/j.biortech.2019.122248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Dissolved oxygen (DO) supply plays essential roles in microbial organic acid production. Candida glabrata, as a dominant strain for producing pyruvic acid, principally converts glucose to pyruvic acid through glycolysis. However, this process relies excessively on high extracellular DO content. In this study, in combination with specific motif analysis of gene promoters, hypoxia-inducible factor 1 (HIF1) was engineered to improve the transcription level of some enzymes related to pyruvic acid synthesis under low DO level and directly led to increased pyruvic acid production and glycolysis efficiency. Moreover, the intracellular stability of HIF1 was further optimized from different aspects to maximize pyruvic acid accumulation. Finally, the pyruvic acid titer in a 5-L batch bioreactor with 10% DO level reached 53.1 g/L. As pyruvic acid is involved in the biosynthesis of various products, these findings suggest that HIF1-enabled regulation method has significant potential for increasing the synthesis of other chemicals in microorganisms.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Zepeda AB, Figueroa CA, Abdalla DSP, Maranhão AQ, Ulloa PH, Pessoa A, Farías JG. HSF-1, HIF-1 and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation. Braz J Microbiol 2014; 45:485-90. [PMID: 25242931 PMCID: PMC4166272 DOI: 10.1590/s1517-83822014000200015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/09/2013] [Indexed: 11/23/2022] Open
Abstract
Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol −10 °C, 4X = 3% methanol −30 °C, and 5X = 1% methanol −10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris.
Collapse
Affiliation(s)
- Andrea B Zepeda
- Departamento de Ingeniería Química Facultad de Ingeniería, Ciencias y Administración Universidad de La Frontera Temuco Chile Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile. ; Departamento de Tecnologia Bioquímico-Farmacêutica Faculdade de Ciências Farmacêuticas Universidade de São Paulo São PauloSP Brazil Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carolina A Figueroa
- Departamento de Ingeniería Química Facultad de Ingeniería, Ciencias y Administración Universidad de La Frontera Temuco Chile Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile. ; Departamento de Tecnologia Bioquímico-Farmacêutica Faculdade de Ciências Farmacêuticas Universidade de São Paulo São PauloSP Brazil Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dulcineia S P Abdalla
- Departamento de Análises Clínicas e Toxicológicas Faculdade de Ciências Farmacêuticas Universidade de São Paulo São PauloSP Brazil Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andrea Q Maranhão
- Departamento de Biología Celular Instituto de Ciências Biológicas Universidade de Brasília BrasíliaDF Brazil Departamento de Biología Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Patricio H Ulloa
- Departamento de Ingeniería Química Facultad de Ingeniería, Ciencias y Administración Universidad de La Frontera Temuco Chile Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica Faculdade de Ciências Farmacêuticas Universidade de São Paulo São PauloSP Brazil Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jorge G Farías
- Departamento de Ingeniería Química Facultad de Ingeniería, Ciencias y Administración Universidad de La Frontera Temuco Chile Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
6
|
Lyberopoulou A, Mylonis I, Papachristos G, Sagris D, Kalousi A, Befani C, Liakos P, Simos G, Georgatsou E. MgcRacGAP, a cytoskeleton regulator, inhibits HIF-1 transcriptional activity by blocking its dimerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1378-87. [PMID: 23458834 DOI: 10.1016/j.bbamcr.2013.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 01/22/2023]
Abstract
Hypoxia inducible factor-1 (HIF-1), a dimeric transcription factor of the bHLH-PAS family, is comprised of HIF-1α, which is inducible by hypoxia and ARNT or HIF-1β, which is constitutively expressed. HIF-1 is involved in cellular homeostasis under hypoxia, in development and in several diseases affected by oxygen availability, particularly cancer. Since its expression is positively correlated with poor outcome prognosis for cancer patients, HIF-1 is a target for pharmaceutical therapy. We have previously shown that male germ cell Rac GTPase activating protein (MgcRacGAP), a regulator of Rho proteins which are principally involved in cytoskeletal organization, binds to HIF-1α and inhibits its transcriptional activity. In this work, we have explored the mechanism of the MgcRacGAP-mediated HIF-1 inactivation. We show that the Myo domain of MgcRacGAP, which is both necessary and sufficient for HIF-1 repression, binds to the PAS-B domain of HIF-1α. Furthermore MgcRacGAP competes with ARNT for binding to the HIF-1α PAS-B domain, as shown by in vitro binding pull down assays. In mammalian cells, ARNT overexpression can overcome the MgcRacGAP-mediated inhibition and MgcRacGAP binding to HIF-1α in vivo inhibits its dimerization with ARNT. We additionally present results indicating that MgcRacGAP binding to HIF-1α is specific, since it does not affect the transcriptional activity of HIF-2, a close evolutionary relative of HIF-1 also involved in hypoxia regulation and cancer. Our results reveal a new mechanism for HIF-1 transcriptional activity regulation, suggest a novel hypoxia-cytoskeleton link and provide new tools for selective HIF-1 inhibition.
Collapse
|
7
|
Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J Cell Sci 2010; 123:2976-86. [PMID: 20699359 DOI: 10.1242/jcs.068122] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1), a transcriptional activator that mediates cellular response to hypoxia and a promising target of anticancer therapy, is essential for adaptation to low oxygen conditions, embryogenesis and tumor progression. HIF-1 is a heterodimer of HIF-1alpha, expression of which is controlled by oxygen levels as well as by various oxygen-independent mechanisms, and HIF-1beta (or ARNT), which is constitutively expressed. In this work, we investigate the phosphorylation of the N-terminal heterodimerization (PAS) domain of HIF-1alpha and identify Ser247 as a major site of in vitro modification by casein kinase 1delta (CK1delta). Mutation of this site to alanine, surprisingly, enhanced the transcriptional activity of HIF-1alpha, a result phenocopied by inhibition or small interfering RNA (siRNA)-mediated silencing of CK1delta under hypoxic conditions. Conversely, overexpression of CK1delta or phosphomimetic mutation of Ser247 to aspartate inhibited HIF-1alpha activity without affecting its stability or nuclear accumulation. Immunoprecipitation and in vitro binding experiments suggest that CK1-dependent phosphorylation of HIF-1alpha at Ser247 impairs its association with ARNT, a notion also supported by modeling the structure of the complex between HIF-1alpha and ARNT PAS-B domains. We suggest that modification of HIF-1alpha by CK1 represents a novel mechanism that controls the activity of HIF-1 during hypoxia by regulating the interaction between its two subunits.
Collapse
Affiliation(s)
- Alkmini Kalousi
- Laboratory of Biochemistry, School of Medicine, University of Thessaly, Mezourlo 41110, Larissa, Greece
| | | | | | | | | | | |
Collapse
|
8
|
Chachami G, Paraskeva E, Mingot JM, Braliou GG, Görlich D, Simos G. Transport of hypoxia-inducible factor HIF-1alpha into the nucleus involves importins 4 and 7. Biochem Biophys Res Commun 2009; 390:235-40. [PMID: 19788888 DOI: 10.1016/j.bbrc.2009.09.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible transcription factor 1 (HIF-1) mediates the cellular response to hypoxia. HIF-1 activity is controlled via the synthesis, degradation or intracellular localization of its alpha subunit. HIF-1alpha contains a C-terminal bipartite basic NLS that interacts with importins alpha. We have recently shown that HIF-1alpha also contains an atypical hydrophobic CRM1- and phosphorylation-dependent NES and can therefore shuttle in and out of the nucleus. We now report that C-terminal NLS mutants of HIF-1alpha can still enter the nucleus when CRM1-dependent nuclear export is inhibited, indicating that HIF-1alpha contains an additional functional nuclear import signal. Using an in vitro nuclear import assay, we further show that importins 4 and 7 accomplish nuclear import of HIF-1alpha more efficiently than the classical importin alpha/beta NLS receptor. Binding assays confirmed the specific physical interaction between HIF-1alpha and importins 4 and 7. Moreover, the interaction of importin 7 with HIF-1alpha is mapped at its N-terminal part encompassing the bHLH-PAS(A) domain. By expressing functional HIF-1 in yeast, we show that Nmd5, the yeast orthologue of importin 7, is required for HIF-1alpha nuclear accumulation and activity. Taken together, our data show that shuttling of HIF-1alpha between cytoplasm and nucleus is a complex process involving several members of the nuclear transport receptor family.
Collapse
Affiliation(s)
- Georgia Chachami
- Laboratory of Biochemistry, School of Medicine, University of Thessaly, Mezourlo, 41110 Larissa, Greece
| | | | | | | | | | | |
Collapse
|
9
|
Ferreira TC, Hertzberg L, Gassmann M, Campos ÉG. The yeast genome may harbor hypoxia response elements (HRE). Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:255-263. [PMID: 17035097 DOI: 10.1016/j.cbpc.2006.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/22/2006] [Accepted: 08/28/2006] [Indexed: 01/28/2023]
Abstract
The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.
Collapse
Affiliation(s)
- Túlio César Ferreira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Libi Hertzberg
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Élida Geralda Campos
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
10
|
Mylonis I, Chachami G, Samiotaki M, Panayotou G, Paraskeva E, Kalousi A, Georgatsou E, Bonanou S, Simos G. Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 2006; 281:33095-106. [PMID: 16954218 DOI: 10.1074/jbc.m605058200] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) controls the expression of most genes induced by hypoxic conditions. Regulation of expression and activity of its inducible subunit, HIF-1alpha, involves several post-translational modifications. To study HIF-1alpha phosphorylation, we have used human full-length recombinant HIF-1alpha as a substrate in kinase assays. We show that at least two different nuclear protein kinases, one of them identified as p42/p44 MAPK, can modify HIF-1alpha. Analysis of in vitro phosphorylated HIF-1alpha by mass spectroscopy revealed residues Ser-641 and Ser-643 as possible MAPK phosphorylation sites. Site-directed mutagenesis of these residues reduced significantly the phosphorylation of HIF-1alpha. When these mutant forms of HIF-1alpha were expressed in HeLa cells, they exhibited much lower transcriptional activity than the wild-type form. However, expression of the same mutants in yeast revealed that their capacity to stimulate transcription was not significantly compromised. Localization of the green fluorescent protein-tagged HIF-1alpha mutants in HeLa cells showed their exclusion from the nucleus in contrast to wild-type HIF-1alpha. Treatment of the cells with leptomycin B, an inhibitor of the major exportin CRM1, reversed this exclusion and led to nuclear accumulation and partial recovery of the activity of the HIF-1alpha mutants. Moreover, inhibition of the MAPK pathway by PD98059 impaired the phosphorylation, nuclear accumulation, and activity of wild-type GFP-HIF-1alpha. Overall, these data suggest that phosphorylation of Ser-641/643 by MAPK promotes the nuclear accumulation and transcriptional activity of HIF-1alpha by blocking its CRM1-dependent nuclear export.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Department of Medicine, University of Thessaly, Larissa 41222, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|