1
|
Tang Y, Luo K, Tan J, Zhou R, Chen Y, Chen C, Rong Z, Deng M, Yu X, Zhang C, Dai Q, Wu W, Xu J, Dong S, Luo F. Laminin alpha 4 promotes bone regeneration by facilitating cell adhesion and vascularization. Acta Biomater 2021; 126:183-198. [PMID: 33711525 DOI: 10.1016/j.actbio.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
Selective cell retention (SCR) has been widely used as a bone tissue engineering technique for the real-time fabrication of bone grafts. The greater the number of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) retained in the scaffold, the better the osteoinductive and angiogenic properties of the scaffold's microenvironment. Improved bioscaffold properties in turn lead to improved bone graft survival, bone regeneration, and angiogenesis. Laminin plays a key role in cell-matrix adhesion, cell proliferation, and differentiation. We designed a collagen-binding domain (CBD) containing the core functional amino acid sequences of laminin α4 (CBD-LN peptide) to supplement the functional surface of a collagen-based decalcified bone matrix (DBM) scaffold. This scaffold promoted MSCs and EPCs early cell adhesion through up-regulating the expression of integrin α5β1 and integrin αvβ3 respectively, thus accelerated the following cell spreading, proliferation, and differentiation. Interestingly, it promoted the retention of MSCs (CD90+/CD105+ cells) and EPCs (CD31+ cells) in the scaffold following the use of clinical SCR technology. Furthermore, the DBM/CBD-LN scaffold induced the formation of type H vessels through the activation of the HIF-1α signaling pathway. The DBM/CBD-LN scaffold displayed rapid bone formation and angiogenesis in vivo, suggesting that it might be used as a new biomaterial in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Selective cell retention technology (SCR) has been utilized in clinical settings to manufacture bioactive bone grafts. Specifically, demineralized bone matrix (DBM) is a widely-used SCR clinical biomaterial but it displays poor adhesion performance and angiogenic activity. In this work, we designed a collagen-binding domain (CBD) containing the core functional amino acid sequences of laminin α4 to supplement the functional surface of a collagen-based DBM scaffold. This bioscaffold promoted SCR-mediated MSCs and EPCs early cell adhesion, thus accelerated the following cell spreading, proliferation, and differentiation. Our results indicate this bioscaffold greatly induced osteogenesis and angiogenesis in vivo. In general, this bioscaffold has a good prospect for SCR application and may provide highly bioactive bone implant in clinical environment.
Collapse
Affiliation(s)
- Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Orthopaedics, 72nd Group Army Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Keyu Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rui Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Can Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhigang Rong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Moyuan Deng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueke Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengmin Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenjie Wu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Shiwu Dong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China.
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
2
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Fänder J, Kielstein H, Büttner M, Koelblinger P, Dummer R, Bauer M, Handke D, Wickenhauser C, Seliger B, Jasinski-Bergner S. Characterizing CD44 regulatory microRNAs as putative therapeutic agents in human melanoma. Oncotarget 2019; 10:6509-6525. [PMID: 31741714 PMCID: PMC6849650 DOI: 10.18632/oncotarget.27305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023] Open
Abstract
The multistructural and multifunctional transmembrane glycoprotein CD44 is overexpressed in many tumors of distinct origin including malignant melanoma and contributes to a poor prognosis by affecting cell proliferation, cell migration, and also the sensitivity for apoptosis induction. Previous studies reported so far 15 CD44 regulatory microRNAs (miRs) in different cell systems. Using a novel method for miR affinity purification miR-143-3p was identified as most potent binder to the 3' untranslated region (UTR) of CD44. Overexpression of miR-143-3p in melanoma cells inhibits CD44 translation, which is accompanied by a reduced proliferation, migration and enhanced daunorubicin induced apoptosis of melanoma cells in vitro. Analyses of discordant CD44 and miR-143-3p expression levels in human melanocytic nevi and dermal melanoma samples demonstrated medium to high CD44 levels with no association to tumor grading or staging. The CD44 expression correlated to PD-L1, but not to MART-1 expression in malignant melanoma. Interestingly, the CD44 expression was inversely correlated to the infiltration of pro-inflammatory immune effector cells. In conclusion, the tumor suppressive miR-143-3p was identified as the most potent CD44 inhibitory miR, which affects growth characteristics of melanoma cells suggesting the implementation of miR-143-3p as as a potential anti-CD44 therapy of malignant melanoma.
Collapse
Affiliation(s)
- Johannes Fänder
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Maximilian Büttner
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Peter Koelblinger
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Marcus Bauer
- Institute for Pathology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Diana Handke
- Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute for Pathology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simon Jasinski-Bergner
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.,Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Li Y, Guan B, Liu J, Zhang Z, He S, Zhan Y, Su B, Han H, Zhang X, Wang B, Li X, Zhou L, Zhao W. MicroRNA-200b is downregulated and suppresses metastasis by targeting LAMA4 in renal cell carcinoma. EBioMedicine 2019; 44:439-451. [PMID: 31130475 PMCID: PMC6604878 DOI: 10.1016/j.ebiom.2019.05.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/14/2023] Open
Abstract
Background Metastasis is the primary cause of tumor death in renal cell carcinoma (RCC). Improved diagnostic markers of metastasis are critically needed for RCC. MicoRNAs are demonstrated to be stable and significant biomarkers for several malignancies. In this study, we aimed to explore the metastasis related microRNAs and its mechanism in RCC. Methods The relationship between microRNAs expression and prognosis and metastasis of RCC patients were explored by data mining through expression profiles from The Cancer Genome Atlas (TCGA). A total of 80 RCC tissues and adjacent normal kidney tissues were obtained from Department of Urology, Peking University First Hospital. Expression of microRNA-200b (miR-200b) in RCC tissues and cell lines were determined by bioinformatic data mining and quantitative real-time PCR (qRT-PCR). The effects of miR-200b on cell proliferation, migration and invasion were determined by cell counting kit-8 and colony formation assay, wound healing assay and Boyden chamber assay. Mouse cell-derived xenograft and patient-derived xenograft model were also performed to evaluate the effects of miR-200b on tumor growth and metastasis in vivo. The molecular mechanism of miR-200b function was investigated using bioinformatic target predication and high-throughput cDNA sequencing (RNA-seq) and validated by luciferase reporter assay, qRT-PCR, Western blot and immunostaining in vitro and in vivo. Findings Our findings indicates that miR-200b is frequently downregulated and have potential utility as a biomarker of metastasis and prognosis in RCC. Interestingly, ectopic expression of miR-200b in the Caki-1 and OSRC-2 cell lines suppresses cell migration and invasion in vitro as well as tumor metastases in vivo. However, miR-200b has no effect on cell proliferation in vitro and tumor growth in vivo. In addition, bioinformatics target predication and RNA-seq results reveals that Laminin subunit alpha 4 (LAMA4) is one target of miR-200b and significantly inhibited by miR-200b in vitro and in vivo. Interpretation These results demonstrate a previously undescribed role of miR-200b as a suppressor of tumor metastasis in RCC by directly destabilizing LAMA4 mRNA.
Collapse
Affiliation(s)
- Yifan Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Pharmacy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhongyuan Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Boxing Su
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Haibo Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaochun Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Boqing Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China.
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
6
|
Dodson RB, Powers KN, Gien J, Rozance PJ, Seedorf G, Astling D, Jones K, Crombleholme TM, Abman SH, Alvira CM. Intrauterine growth restriction decreases NF-κB signaling in fetal pulmonary artery endothelial cells of fetal sheep. Am J Physiol Lung Cell Mol Physiol 2018; 315:L348-L359. [PMID: 29722560 DOI: 10.1152/ajplung.00052.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intrauterine growth restriction (IUGR) in premature newborns increases the risk for bronchopulmonary dysplasia, a chronic lung disease characterized by disrupted pulmonary angiogenesis and alveolarization. We previously showed that experimental IUGR impairs angiogenesis; however, mechanisms that impair pulmonary artery endothelial cell (PAEC) function are uncertain. The NF-κB pathway promotes vascular growth in the developing mouse lung, and we hypothesized that IUGR disrupts NF-κB-regulated proangiogenic targets in fetal PAEC. PAECs were isolated from the lungs of control fetal sheep and sheep with experimental IUGR from an established model of chronic placental insufficiency. Microarray analysis identified suppression of NF-κB signaling and significant alterations in extracellular matrix (ECM) pathways in IUGR PAEC, including decreases in collagen 4α1 and laminin α4, components of the basement membrane and putative NF-κB targets. In comparison with controls, immunostaining of active NF-κB complexes, NF-κB-DNA binding, baseline expression of NF-κB subunits p65 and p50, and LPS-mediated inducible activation of NF-κB signaling were decreased in IUGR PAEC. Although pharmacological NF-κB inhibition did not affect angiogenic function in IUGR PAEC, angiogenic function of control PAEC was reduced to a similar degree as that observed in IUGR PAEC. These data identify reductions in endothelial NF-κB signaling as central to the disrupted angiogenesis observed in IUGR, likely by impairing both intrinsic PAEC angiogenic function and NF-κB-mediated regulation of ECM components necessary for vascular development. These data further suggest that strategies that preserve endothelial NF-κB activation may be useful in lung diseases marked by disrupted angiogenesis such as IUGR.
Collapse
Affiliation(s)
- R Blair Dodson
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Surgery, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,United Therapeutics, Regenerative Medicine Laboratory, Research Triangle Park, Durham, North Carolina
| | - Kyle N Powers
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Surgery, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Jason Gien
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Gregory Seedorf
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - David Astling
- United Therapeutics, Regenerative Medicine Laboratory, Research Triangle Park, Durham, North Carolina
| | - Kenneth Jones
- United Therapeutics, Regenerative Medicine Laboratory, Research Triangle Park, Durham, North Carolina
| | - Timothy M Crombleholme
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Surgery, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Cristina M Alvira
- Department of Pediatrics, Stanford University School of Medicine , Palo Alto, California
| |
Collapse
|
7
|
Iorio V, Troughton LD, Hamill KJ. Laminins: Roles and Utility in Wound Repair. Adv Wound Care (New Rochelle) 2015; 4:250-263. [PMID: 25945287 DOI: 10.1089/wound.2014.0533] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/27/2014] [Indexed: 01/13/2023] Open
Abstract
Significance: Laminins are complex extracellular macromolecules that are major players in the control of a variety of core cell processes, including regulating rates of cell proliferation, differentiation, adhesion, and migration. Laminins, and related extracellular matrix components, have essential roles in tissue homeostasis; however, during wound healing, the same proteins are critical players in re-epithelialization and angiogenesis. Understanding how these proteins influence cell behavior in these different conditions holds great potential in identifying new strategies to enhance normal wound closure or to treat chronic/nonhealing wounds. Recent Advances: Laminin-derived bioactive peptides and, more recently, laminin-peptide conjugated scaffolds, have been designed to improve tissue regeneration after injuries. These peptides have been shown to be effective in decreasing inflammation and granulation tissue, and in promoting re-epithelialization, angiogenesis, and cell migration. Critical Issues: Although there is now a wealth of knowledge concerning laminin form and function, there are still areas of some controversy. These include the relative contribution of two laminin-based adhesive devices (focal contacts and hemidesmosomes) to the re-epithelialization process, the impact and implications of laminin proteolytic processing, and the importance of laminin polymer formation on cell behavior. In addition, the roles in wound healing of the laminin-related proteins, netrins, and LaNts are still to be fully defined. Future Directions: The future of laminin-based therapeutics potentially lies in the bioengineering of specific substrates to support laminin deposition for ex vivo expansion of autologous cells for graft formation and transplantation. Significant recent advances suggest that this goal is within sight.
Collapse
Affiliation(s)
- Valentina Iorio
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Lee D. Troughton
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Kevin J. Hamill
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Ishikawa T, Wondimu Z, Oikawa Y, Gentilcore G, Kiessling R, Egyhazi Brage S, Hansson J, Patarroyo M. Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biol 2014; 38:69-83. [PMID: 24951930 DOI: 10.1016/j.matbio.2014.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/23/2022]
Abstract
α4-laminins, such as laminins 411 and 421, are mesenchymal laminins expressed by blood and lymphatic vessels and some tumor cells. Laminin-411 promotes migration of leukocytes and endothelial cells, but the effect of this laminin and laminin-421 on tumor cells is poorly understood. In the present study, we demonstrate that laminin-411 and, to a greater extent, laminin-421 significantly promote migration of tumor cells originated from melanomas, gliomas and different carcinomas via α6β1 integrin. In solid-phase binding assays, both laminins similarly bound α6β1 integrin but only laminin-421, among several laminin isoforms, readily bound MCAM (CD146), a cell-surface adhesion molecule strongly associated with tumor progression. Accordingly, a function-blocking mAb to MCAM inhibited tumor cell migration on laminin-421 but not on laminins 411 or 521. In tumor tissues, melanoma cells co-expressed MCAM, laminin α4, β1, β2 and γ1 chains, and integrin α6 and β1 chains. The present data highlight the novel role of α4-laminins in tumor cell migration and identify laminin-421 as a primary ligand for MCAM and a putative mediator of tumor invasion and metastasis.
Collapse
Affiliation(s)
- Taichi Ishikawa
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zenebech Wondimu
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuko Oikawa
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giusy Gentilcore
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Patarroyo
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Monoclonal antibodies to human laminin α4 chain globular domain inhibit tumor cell adhesion and migration on laminins 411 and 421, and binding of α6β1 integrin and MCAM to α4-laminins. Matrix Biol 2014; 36:5-14. [DOI: 10.1016/j.matbio.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/23/2022]
|
10
|
Koutsioumpa M, Polytarchou C, Courty J, Zhang Y, Kieffer N, Mikelis C, Skandalis SS, Hellman U, Iliopoulos D, Papadimitriou E. Interplay between αvβ3 integrin and nucleolin regulates human endothelial and glioma cell migration. J Biol Chem 2013; 288:343-54. [PMID: 23161541 PMCID: PMC3537032 DOI: 10.1074/jbc.m112.387076] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 11/14/2012] [Indexed: 11/06/2022] Open
Abstract
The multifunctional protein nucleolin (NCL) is overexpressed on the surface of activated endothelial and tumor cells and mediates the stimulatory actions of several angiogenic growth factors, such as pleiotrophin (PTN). Because α(v)β(3) integrin is also required for PTN-induced cell migration, the aim of the present work was to study the interplay between NCL and α(v)β(3) by using biochemical, immunofluorescence, and proximity ligation assays in cells with genetically altered expression of the studied molecules. Interestingly, cell surface NCL localization was detected only in cells expressing α(v)β(3) and depended on the phosphorylation of β(3) at Tyr(773) through receptor protein-tyrosine phosphatase β/ζ (RPTPβ/ζ) and c-Src activation. Downstream of α(v)β(3,) PI3K activity mediated this phenomenon and cell surface NCL was found to interact with both α(v)β(3) and RPTPβ/ζ. Positive correlation of cell surface NCL and α(v)β(3) expression was also observed in human glioblastoma tissue arrays, and inhibition of cell migration by cell surface NCL antagonists was observed only in cells expressing α(v)β(3). Collectively, these data suggest that both expression and β(3) integrin phosphorylation at Tyr(773) determine the cell surface localization of NCL downstream of the RPTPβ/ζ/c-Src signaling cascade and can be used as a biomarker for the use of cell surface NCL antagonists as anticancer agents.
Collapse
Affiliation(s)
- Marina Koutsioumpa
- From the Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Greece
| | - Christos Polytarchou
- the Department of Cancer Immunology & AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02215
- the Department of Immunobiology and Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - José Courty
- the Laboratoire CRRET, Universite Paris Est Creteil Val de Marne, avenue du General de Gaulle, 94010 Creteil Cedex
| | - Yue Zhang
- the Sino-French Research Centre for Life Sciences and Genomics, CNRS/LIA124, Rui Jin Hospital, Jiao Tong University Medical School, 197 Rui Jin Er Road, Shanghai 200025, China, and
| | - Nelly Kieffer
- the Sino-French Research Centre for Life Sciences and Genomics, CNRS/LIA124, Rui Jin Hospital, Jiao Tong University Medical School, 197 Rui Jin Er Road, Shanghai 200025, China, and
| | - Constantinos Mikelis
- From the Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Greece
| | - Spyros S. Skandalis
- the Ludwig Institute for Cancer Research, Uppsala University, Uppsala SE-751-05, Sweden
| | - Ulf Hellman
- the Ludwig Institute for Cancer Research, Uppsala University, Uppsala SE-751-05, Sweden
| | - Dimitrios Iliopoulos
- the Department of Cancer Immunology & AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02215
- the Department of Immunobiology and Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Evangelia Papadimitriou
- From the Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Greece
| |
Collapse
|
11
|
Lugassy C, Torres-Muñoz JE, Kleinman HK, Ghanem G, Vernon S, Barnhill RL. Overexpression of malignancy-associated laminins and laminin receptors by angiotropic human melanoma cells in a chick chorioallantoic membrane model. J Cutan Pathol 2009; 36:1237-43. [DOI: 10.1111/j.1600-0560.2009.01273.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Huang X, Ji G, Wu Y, Wan B, Yu L. LAMA4, highly expressed in human hepatocellular carcinoma from Chinese patients, is a novel marker of tumor invasion and metastasis. J Cancer Res Clin Oncol 2007; 134:705-14. [DOI: 10.1007/s00432-007-0342-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 11/19/2007] [Indexed: 12/11/2022]
|