1
|
Rithvik A, Wadhavane S, Rasool M. Decoding poly (RC)-binding protein 1 (PCBP1), the underrated guard at the foothill of ferroptosis. Pathol Res Pract 2025; 266:155771. [PMID: 39700662 DOI: 10.1016/j.prp.2024.155771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
PCBP1 is a multifunctional adaptor protein, whose function as an iron chaperone and epigenetic regulator of several chemical messengers involved in ferroptosis has garnered much attention. Herein, this review, several attempts have been made to simplify our understanding of the complex roles of PCBP1. The review begins by elucidating the relevance of PCBP1 in key events governing ferroptosis. We expeditiously shed light on some of the important mechanisms that have critical implications for the ferroptosis landscape. For instance, senescence, EMT, hypoxia, and regulation of the cell cycle and immune checkpoints, among others, have been demonstrated to influence ferroptosis sensitivity to varying degrees. Thus, this review entails a conscious attempt to carefully examine the relevance of PCBP1 in such potential mechanisms. Furthermore, we investigated the therapeutic relevance of PCBP1 in tumor biology and autoimmunity, while underscoring the contrasting perspective of ferroptosis targeting across the disease spectrum. Finally, we debate the different strategies that can be exploited to target PCBP1 in promoting or inhibiting ferroptosis.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sakshi Wadhavane
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Carvalho L, Chen H, Maienschein-Cline M, Glover EJ, Pandey SC, Lasek AW. Conserved role for PCBP1 in altered RNA splicing in the hippocampus after chronic alcohol exposure. Mol Psychiatry 2023; 28:4215-4224. [PMID: 37537282 PMCID: PMC10827656 DOI: 10.1038/s41380-023-02184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
We previously discovered using transcriptomics that rats undergoing withdrawal after chronic ethanol exposure had increased expression of several genes encoding RNA splicing factors in the hippocampus. Here, we examined RNA splicing in the rat hippocampus during withdrawal from chronic ethanol exposure and in postmortem hippocampus of human subjects diagnosed with alcohol use disorder (AUD). We found that expression of the gene encoding the splicing factor, poly r(C) binding protein 1 (PCBP1), was elevated in the hippocampus of rats during withdrawal after chronic ethanol exposure and AUD subjects. We next analyzed the rat RNA-Seq data for differentially expressed (DE) exon junctions. One gene, Hapln2, had increased usage of a novel 3' splice site in exon 4 during withdrawal. This splice site was conserved in human HAPLN2 and was used more frequently in the hippocampus of AUD compared to control subjects. To establish a functional role for PCBP1 in HAPLN2 splicing, we performed RNA immunoprecipitation (RIP) with a PCBP1 antibody in rat and human hippocampus, which showed enriched PCBP1 association near the HAPLN2 exon 4 3' splice site in the hippocampus of rats during ethanol withdrawal and AUD subjects. Our results indicate a conserved role for the splicing factor PCBP1 in aberrant splicing of HAPLN2 after chronic ethanol exposure. As the HAPLN2 gene encodes an extracellular matrix protein involved in nerve conduction velocity, use of this alternative splice site is predicted to result in loss of protein function that could negatively impact hippocampal function in AUD.
Collapse
Affiliation(s)
- Luana Carvalho
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Research Informatics Core, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
3
|
Wu Y, Zhao H, Zhang EE, Liu N. Identification of PCBP1 as a Novel Modulator of Mammalian Circadian Clock. Front Genet 2021; 12:656571. [PMID: 33841513 PMCID: PMC8034388 DOI: 10.3389/fgene.2021.656571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian clock governs our daily cycle of behavior and physiology. Previous studies have identified a handful of core clock components and hundreds of circadian modifiers. Here, we report the discovery that poly(C)-binding protein 1 (PCBP1), displaying a circadian expression pattern, was a novel circadian clock regulator. We found that knocking down PCBP1 resulted in period shortening in human U2OS cells, and that manipulations of PCBP1 expression altered the activity of CLOCK/BMAL1 in an E-box-based reporter assay. Further mechanistic study demonstrated that this clock function of PCBP1 appears to work by enhancing the association of Cryptochrome 1 (CRY1) with the CLOCK/BMAL1 complex, thereby negatively regulating the latter’s activation. Co-immunoprecipitation of PCBP1 and core clock molecules confirmed the interactions between PCBP1 and CRY1, and a time-course qPCR assay revealed the rhythmic expression of PCBP1 in mouse hearts in vivo. Given that the RNA interference of mushroom-body expressed (mub), the poly(rC) binding protein (PCBP) homolog of Drosophila, in the clock neurons also led to a circadian phenotype in the locomotor assay, our study deemed PCBP1 a novel clock modifier whose circadian regulatory mechanism is conserved during evolution.
Collapse
Affiliation(s)
- Yaling Wu
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China.,Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China.,National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, China.,College of Life Sciences, Hubei Normal University, Huangshi, China.,National Institute of Biological Sciences, Beijing, China
| | - Haijiao Zhao
- National Institute of Biological Sciences, Beijing, China
| | | | - Na Liu
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China.,Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China.,National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, China.,College of Life Sciences, Hubei Normal University, Huangshi, China.,National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
4
|
Multiphosphorylation and cellular localization of poly(rC) binding protein 1 during mitosis in hela cell. Biotechnol Lett 2019; 41:711-717. [PMID: 31076991 DOI: 10.1007/s10529-019-02679-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To monitor the phosphorylation modifications and cellular localization of poly(rC)-binding protein-1 (PCBP1) during the cell cycle progression of Hela cells. RESULT Hela cells highly synchronized at five different phases from interphase to mitosis were obtained. Using mitotic phosphoprotein-specific monoclonal antibody MPM-2, the exclusive occurrences of multiphosphorylation statuses of PCBP1 in mitosis were confirmed by a series of spots with increasing acidic pI (isoelectric point) in two rounds of 2D western blotting on the same membrane, and a visible molecular mass shift that can be eliminated by the treatment with λ phosphatase in 1D western blotting. Immnuofluorescence revealed the localization shift of PCBP1 during cell cycle, with accumulations in nucleus as a patch pattern in interphase, and a dispersive distribution without the area of the condensed chromosomes during mitosis. CONCLUSIONS These observations of mitosis-specific multiphosphorylations and localization shifts of PCBP1 suggest that the versatile PCBP1 was regulatable in a phosphorylation modification- and temporospatial-dependent manner in mitotic regulatory networks.
Collapse
|
5
|
Hunkele A, Sultan H, Ikalina FA, Liu AH, Nahar-Gohad P, Ko JL. Identification of gamma-synuclein as a new PCBP1-interacting protein. Neurol Res 2016; 38:1064-1078. [PMID: 26344801 DOI: 10.1179/1743132815y.0000000091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES PolyC binding protein 1 (PCBP1) is a transcriptional regulator of human mu-opioid receptor (hMOR) gene in the CNS and is also related to cancer/diseases. It possesses multi-roles that can be mediated by protein-protein interactions. To understand the mechanism controlling PCBP1 functions, PCBP1-interacting protein was investigated. METHODS Using PCBP1 as the bait, a human brain cDNA library was screened via two-hybrid system. DNA sequence of candidate protein was confirmed using NCBI/SNP databases. Candidate protein in various cell lines was examined by RT-PCR. Glutathione-S-transferase (GST) pull-down and co-immunoprecipitation were used to validate the physical interaction. Its effects on hMOR gene regulation were examined. RESULTS One clone was identified as gamma-synuclein110E, an SNP of gamma-synuclein110V. The interaction between PCBP1 and gamma-synuclein110E was confirmed by further validation and GST pull-down assay. Confocal analysis showed gamma-synuclein110E mainly expressing in the cytosol of human neuronal NMB cells. This interaction was confirmed by co-immunoprecipitation with NMB lysates, containing both proteins endogenously. Ectopic expression of gamma-synuclein110E or 110V did not alter hMOR mRNA level or promoter activity, suggesting no involvement of gamma-synuclein in modulating hMOR expression. Co-immunoprecipitation using gamma-synuclein110E or 110V overexpressed NMB cells with anti-PCBP1 antibody revealed a stronger intensity of co-immunoprecipitated gamma-synuclein band using gamma-synuclein110E-overexpressed cells as compared to that using gamma-synuclein110V-overexpressed cells. Synuclein110E was also identified in H292 (lung), HT29 (colon) and T47D (breast) cells, and this physical interaction was confirmed. CONCLUSION We report a newly identified PCBP1-interacting protein, gamma-synuclein110E, and provide some insight into its complex role as well as discuss potential roles of this interaction.
Collapse
Affiliation(s)
- Amanda Hunkele
- a Department of Biological Sciences ; Seton Hall University , USA
| | - Hamidah Sultan
- a Department of Biological Sciences ; Seton Hall University , USA
| | - Faith A Ikalina
- a Department of Biological Sciences ; Seton Hall University , USA
| | - Alexander H Liu
- a Department of Biological Sciences ; Seton Hall University , USA
| | | | - Jane L Ko
- a Department of Biological Sciences ; Seton Hall University , USA
| |
Collapse
|
6
|
Wagener R, Aukema SM, Schlesner M, Haake A, Burkhardt B, Claviez A, Drexler HG, Hummel M, Kreuz M, Loeffler M, Rosolowski M, López C, Möller P, Richter J, Rohde M, Betts MJ, Russell RB, Bernhart SH, Hoffmann S, Rosenstiel P, Schilhabel M, Szczepanowski M, Trümper L, Klapper W, Siebert R. ThePCBP1gene encoding poly(rc) binding protein i is recurrently mutated in Burkitt lymphoma. Genes Chromosomes Cancer 2015; 54:555-64. [DOI: 10.1002/gcc.22268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rabea Wagener
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Sietse M. Aukema
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Matthias Schlesner
- Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Division Theoretical Bioinformatics; Heidelberg Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Birgit Burkhardt
- Non-Hodgkin Lymphoma Berlin-Frankfurt-Münster Group Study Center, Department of Pediatric Hematology and Oncology, University Children's Hospital; Münster Germany
| | - Alexander Claviez
- Department of Pediatrics; University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University; Kiel Germany
| | - Hans G. Drexler
- Leibniz-Institute DSMZ- German Collection of Microorganisms and Cell Cultures GmbH; Braunschweig Germany
| | - Michael Hummel
- Institute of Pathology, Campus Benjamin Franklin, Charité-Universitätsmedizin; Berlin Germany
| | - Markus Kreuz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig; Germany
| | - Cristina López
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Peter Möller
- Institute of Pathology, Universitätsklinikum Ulm; Ulm Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | - Marius Rohde
- Department of Pediatric Hematology and Oncology; Justus Liebig University; Giessen Germany
| | - Matthew J. Betts
- Cell Networks, Bioquant, University of Heidelberg; Heidelberg Germany
| | - Robert B. Russell
- Cell Networks, Bioquant, University of Heidelberg; Heidelberg Germany
| | - Stephan H. Bernhart
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig; Leipzig Germany
| | - Steve Hoffmann
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig; Leipzig Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Kiel Germany
| | - Markus Schilhabel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Kiel Germany
| | - Monika Szczepanowski
- Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology; Georg-August University of Göttingen; Germany
| | - Wolfram Klapper
- Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel; Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein; Campus Kiel Kiel Germany
| | | |
Collapse
|
7
|
Ren Z, Wang Y, Peng J, Zhang L, Xu W, Liang X, Zhao Q, Lu S. Protein expression of sensory and motor nerves: Two-dimensional gel electrophoresis and mass spectrometry. Neural Regen Res 2015; 7:369-75. [PMID: 25774177 PMCID: PMC4350121 DOI: 10.3969/j.issn.1673-5374.2012.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/05/2012] [Indexed: 01/12/2023] Open
Abstract
The present study utilized samples from bilateral motor branches of the femoral nerve, as well as saphenous nerves, ventral roots, and dorsal roots of the spinal cord, to detect differential protein expression using two-dimensional gel electrophoresis and nano ultra-high performance liquid chromatography electrospray ionization mass spectrometry tandem mass spectrometry techniques. A mass spectrum was identified using the Mascot search. Results revealed differential expression of 11 proteins, including transgelin, Ig kappa chain precursor, plasma glutathione peroxidase precursor, an unnamed protein product (gi|55628), glyceraldehyde-3-phosphate dehydrogenase-like protein, lactoylglutathione lyase, adenylate kinase isozyme 1, two unnamed proteins products (gi|55628 and gi|1334163), and poly(rC)-binding protein 1 in motor and sensory nerves. Results suggested that these proteins played roles in specific nerve regeneration following peripheral nerve injury and served as specific markers for motor and sensory nerves.
Collapse
Affiliation(s)
- Zhiwu Ren
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China ; Medical College of Nankai University, Tianjin 300071, China
| | - Yu Wang
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang Peng
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Zhang
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Wenjing Xu
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiangdang Liang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Qing Zhao
- Department of Orthopedics, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
| | - Shibi Lu
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
8
|
Lee PT, Chao PK, Ou LC, Chuang JY, Lin YC, Chen SC, Chang HF, Law PY, Loh HH, Chao YS, Su TP, Yeh SH. Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling. Nucleic Acids Res 2014; 42:13012-25. [PMID: 25361975 PMCID: PMC4245930 DOI: 10.1093/nar/gku1016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) binds to the promoter region of mu-opioid receptor (MOR) to regulate its transcriptional activity. How hnRNP K contributes to the analgesic effects of morphine, however, is largely unknown. We provide evidence that morphine increases hnRNP K protein expression via MOR activation in rat primary cortical neurons and HEK-293 cells expressing MORs, without increasing mRNA levels. Using the bicistronic reporter assay, we examined whether morphine-mediated accumulation of hnRNP K resulted from translational control. We identified potential internal ribosome entry site elements located in the 5′ untranslated regions of hnRNP K transcripts that were regulated by morphine. This finding suggests that internal translation contributes to the morphine-induced accumulation of hnRNP K protein in regions of the central nervous system correlated with nociceptive and antinociceptive modulatory systems in mice. Finally, we found that down-regulation of hnRNP K mediated by siRNA attenuated morphine-induced hyperpolarization of membrane potential in AtT20 cells. Silencing hnRNP K expression in the spinal cord increased nociceptive sensitivity in wild-type mice, but not in MOR-knockout mice. Thus, our findings identify the role of translational control of hnRNP K in morphine-induced analgesia through activation of MOR.
Collapse
Affiliation(s)
- Pin-Tse Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Jian-Ying Chuang
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan, ROC
| | - Shu-Chun Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN 55455, USA
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| |
Collapse
|
9
|
Huo LR, Liang JT, Zou JH, Wang LY, Li Q, Wang XM. Possible novel roles of poly(rC)-binding protein 1 in SH-SY5Y neurocytes: an analysis using a dynamic Bayesian network. Neurosci Bull 2014; 28:282-90. [PMID: 22622828 DOI: 10.1007/s12264-012-1242-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Poly(rC)-binding protein 1 (PCBP1) belongs to the heterogeneous nuclear ribonucleoprotein family and participates in transcriptional and translational regulation. Previous work has identified transcripts targeted by both knockdown and overexpression of PCBP1 in SH-SY5Y neuroblastoma cells using a microarray or ProteomeLab protein fractionation 2-dimensions (PF-2D) and quadrupole time-of-flight mass spectrometer. The present study aimed to further determine whether these altered transcripts from major pathways (such as Wnt signaling, TGF-β signaling, cell cycling, and apoptosis) and two other genes, H2AFX and H2BFS (screened by PF-2D), have spatial relationships. METHODS The genes were studied by qRT-PCR, and dynamic Bayesian network analysis was used to rebuild the coordination network of these transcripts. RESULTS PCBP1 controlled the expression or activity of the seven transcripts. Moreover, PCBP1 indirectly regulated MAP2K2, FOS, FST, TP53 and WNT7B through H2AFX or regulated these genes through SAT. In contrast, TP53 and WNT7B are regulated by other genes. CONCLUSION The seven transcripts and PCBP1 are closely associated in a spatial interaction network.
Collapse
Affiliation(s)
- Li-Rong Huo
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of Ministry of Education, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
10
|
Norovirus genome circularization and efficient replication are facilitated by binding of PCBP2 and hnRNP A1. J Virol 2013; 87:11371-87. [PMID: 23946460 DOI: 10.1128/jvi.03433-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5'-3' interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5'-3' interactions and formed ribonucleoprotein complexes with the 5' and 3' ends of the MNV-1 genomic RNA. Mutations within the 3' complementary sequences (CS) that disrupt the 5'-3'-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3'-end sequence and/or the lack of complementarity with the 5' end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5' and 3' ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.
Collapse
|
11
|
Nahar-Gohad P, Sultan H, Esteban Y, Stabile A, Ko JL. RACK1 identified as the PCBP1-interacting protein with a novel functional role on the regulation of human MOR gene expression. J Neurochem 2012; 124:466-77. [PMID: 23173782 DOI: 10.1111/jnc.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/10/2012] [Accepted: 11/14/2012] [Indexed: 12/23/2022]
Abstract
Poly C binding protein 1 (PCBP1) is an expressional regulator of the mu-opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co-regulator modifying human MOR gene expression by protein-protein interaction with PCBP1. A human brain cDNA library was screened using the two-hybrid system with PCBP1 as the bait. Receptor for activated protein kinase C (RACK1) protein, containing seven WD domains, was identified. PCBP1-RACK1 interaction was confirmed via in vivo validation using the two-hybrid system, and by co-immunoprecipitation with anti-PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co-immunoprecipitation suggested that RACK1-PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 over-expression resulted in a dose-dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock-down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT-PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by (3) H-diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.
Collapse
Affiliation(s)
- Pranjal Nahar-Gohad
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | | | | | | | | |
Collapse
|
12
|
Poly(C)-binding protein 1, a novel N(pro)-interacting protein involved in classical swine fever virus growth. J Virol 2012; 87:2072-80. [PMID: 23221550 DOI: 10.1128/jvi.02807-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N(pro) is a multifunctional autoprotease unique to pestiviruses. The interacting partners of the N(pro) protein of classical swine fever virus (CSFV), a swine pestivirus, have been insufficiently defined. Using a yeast two-hybrid screen, we identified poly(C)-binding protein 1 (PCBP1) as a novel interacting partner of the CSFV N(pro) protein and confirmed this by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and confocal assays. Knockdown of PCBP1 by small interfering RNA suppressed CSFV growth, while overexpression of PCBP1 promoted CSFV growth. Furthermore, we showed that type I interferon was downregulated by PCBP1, as well as N(pro). Our results suggest that cellular PCBP1 positively modulates CSFV growth.
Collapse
|
13
|
Interaction of cellular poly(C)-binding protein 2 with nonstructural protein 1β is beneficial to Chinese highly pathogenic porcine reproductive and respiratory syndrome virus replication. Virus Res 2012; 169:222-30. [DOI: 10.1016/j.virusres.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/21/2022]
|
14
|
Norovirus regulation of the innate immune response and apoptosis occurs via the product of the alternative open reading frame 4. PLoS Pathog 2011; 7:e1002413. [PMID: 22174679 PMCID: PMC3234229 DOI: 10.1371/journal.ppat.1002413] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/12/2011] [Indexed: 12/25/2022] Open
Abstract
Small RNA viruses have evolved many mechanisms to increase the capacity of their short genomes. Here we describe the identification and characterization of a novel open reading frame (ORF4) encoded by the murine norovirus (MNV) subgenomic RNA, in an alternative reading frame overlapping the VP1 coding region. ORF4 is translated during virus infection and the resultant protein localizes predominantly to the mitochondria. Using reverse genetics we demonstrated that expression of ORF4 is not required for virus replication in tissue culture but its loss results in a fitness cost since viruses lacking the ability to express ORF4 restore expression upon repeated passage in tissue culture. Functional analysis indicated that the protein produced from ORF4 antagonizes the innate immune response to infection by delaying the upregulation of a number of cellular genes activated by the innate pathway, including IFN-Beta. Apoptosis in the RAW264.7 macrophage cell line was also increased during virus infection in the absence of ORF4 expression. In vivo analysis of the WT and mutant virus lacking the ability to express ORF4 demonstrated an important role for ORF4 expression in infection and virulence. STAT1-/- mice infected with a virus lacking the ability to express ORF4 showed a delay in the onset of clinical signs when compared to mice infected with WT virus. Quantitative PCR and histopathological analysis of samples from these infected mice demonstrated that infection with a virus not expressing ORF4 results in a delayed infection in this system. In light of these findings we propose the name virulence factor 1, VF1 for this protein. The identification of VF1 represents the first characterization of an alternative open reading frame protein for the calicivirus family. The immune regulatory function of the MNV VF1 protein provide important perspectives for future research into norovirus biology and pathogenesis. This report describes the identification and characterization of a novel protein of unknown function encoded by a mouse virus genetically similar to human noroviruses. This gene is unique to the mouse virus and occupies the same part of the genome that codes for the major capsid protein. The protein that we have described as virulence factor 1 (VF1) is found in all murine norovirus isolates, absent in all human strains but is indeed expressed during infection. Its expression enables MNV-1 to establish efficient infection of its natural host through interference with interferon-mediated response pathways and apoptosis. Our data would indicate that the VF1 protein is multi-functional with an ability to modulate the host's response to infection. Murine noroviruses are frequently used firstly as a model to study human norovirus replication and pathogenesis, studies hampered by their inability to replicate in cell culture. Secondly, persistent infection of laboratory animals with murine norovirus may affect other models of disease using experimental mice. The role of VF1 in infection and pathology in the differential outcome of infection is the source of continued research in our laboratory.
Collapse
|
15
|
Cellular poly(c) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1β and support viral replication. J Virol 2011; 85:12939-49. [PMID: 21976648 DOI: 10.1128/jvi.05177-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection of swine results in substantial economic losses to the swine industry worldwide. Identification of cellular factors involved in PRRSV life cycle not only will enable a better understanding of virus biology but also has the potential for the development of antiviral therapeutics. The PRRSV nonstructural protein 1 (nsp1) has been shown to be involved in at least two important functions in the infected hosts: (i) mediation of viral subgenomic (sg) mRNA transcription and (ii) suppression of the host's innate immune response mechanisms. To further our understanding of the role of the viral nsp1 in these processes, using nsp1β, a proteolytically processed functional product of nsp1 as bait, we have identified the cellular poly(C)-binding proteins 1 and 2 (PCBP1 and PCBP2) as two of its interaction partners. The interactions of PCBP1 and PCBP2 with nsp1β were confirmed both by coimmunoprecipitation in infected cells and/or in plasmid-transfected cells and also by in vitro binding assays. During PRRSV infection of MARC-145 cells, the cytoplasmic PCBP1 and PCBP2 partially colocalize to the viral replication-transcription complexes. Furthermore, recombinant purified PCBP1 and PCBP2 were found to bind the viral 5' untranslated region (5'UTR). Small interfering RNA (siRNA)-mediated silencing of PCBP1 and PCBP2 in cells resulted in significantly reduced PRRSV genome replication and transcription without adverse effect on initial polyprotein synthesis. Overall, the results presented here point toward an important role for PCBP1 and PCBP2 in regulating PRRSV RNA synthesis.
Collapse
|
16
|
Huo LR, Ju W, Yan M, Zou JH, Yan W, He B, Zhao XL, Jenkins EC, Brown WT, Zhong N. Identification of differentially expressed transcripts and translatants targeted by knock-down of endogenous PCBP1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1954-64. [PMID: 20624489 DOI: 10.1016/j.bbapap.2010.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/30/2022]
Abstract
PCBP1 is a member of the hnRNP family and participates in the regulation of transcription and translation. Previously, we identified transcripts targeted by overexpression of exogenous PCBP1. To further determine if these altered transcripts may also be targeted by a lack of PCBP1, we depleted endogenous PCBP1 in human SH-SY5Y cells. We identified 941 transcripts with the Affymetrix and 1362 with the Agilent expression platforms. There were 375 transcripts identified by both platforms, including 328 down-regulated and 47 up-regulated. The identified transcripts could be grouped into neuronal, cell signaling, metabolic, developmental, and differentiation categories, with pathway involvement in Wnt signaling, TGF beta signaling, translation factors and nuclear receptors. A proteomic profiling study with a two-dimensional chromatographic platform showed global translational changes over a range of isoelectric points (pI)=4.84-8.42. This study identifies the transcripts affected by knock-down of endogenous PCBP1 and compares them to the transcripts affected by overexpression of PCBP1.
Collapse
Affiliation(s)
- Li-Rong Huo
- Peking University Center of Medical Genetics, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bailey D, Kaiser WJ, Hollinshead M, Moffat K, Chaudhry Y, Wileman T, Sosnovtsev SV, Goodfellow IG. Feline calicivirus p32, p39 and p30 proteins localize to the endoplasmic reticulum to initiate replication complex formation. J Gen Virol 2009; 91:739-49. [PMID: 19906938 PMCID: PMC2885758 DOI: 10.1099/vir.0.016279-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In common with other positive-strand RNA viruses, replication of feline calicivirus (FCV) results in rearrangement of intracellular membranes and production of numerous membrane-bound vesicular structures on which viral genome replication is thought to occur. In this study, bioinformatics approaches have identified three of the FCV non-structural proteins, namely p32, p39 and p30, as potential transmembrane proteins. These proteins were able to target enhanced cyan fluorescent protein to membrane fractions where they behaved as integral membrane proteins. Immunofluorescence microscopy of these proteins expressed in cells showed co-localization with endoplasmic reticulum (ER) markers. Further electron microscopy analysis of cells co-expressing FCV p39 or p30 with a horseradish peroxidase protein containing the KDEL ER retention motif demonstrated gross morphological changes to the ER. Similar reorganization patterns, especially for those produced by p30, were observed in naturally infected Crandel–Rees feline kidney cells. Together, the data demonstrate that the p32, p39 and p30 proteins of FCV locate to the ER and lead to reorganization of ER membranes. This suggests that they may play a role in the generation of FCV replication complexes and that the endoplasmic reticulum may represent the potential source of the membrane vesicles induced during FCV infection.
Collapse
Affiliation(s)
- Dalan Bailey
- Department of Virology, Imperial College London, London W2 1PG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Choi HS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem Biophys Res Commun 2009; 380:431-6. [PMID: 19284986 DOI: 10.1016/j.bbrc.2009.01.136] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). They can be divided into two groups: hnRNP K and PCBP1-4. These proteins are involved mainly in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). In this review, we summarize and discuss how PCBPs act as transcriptional regulators by binding to specific elements in gene promoters that interact with the RNA polymerase II transcription machinery. Transcriptional regulation of PCBPs might itself be regulated by their localization within the cell. For example, activation by p21-activated kinase 1 induces increased nuclear retention of PCBP1, as well as increased promoter activity. PCBPs can function as a signal-dependent and coordinated regulator of transcription in eukaryotic cells. We address the molecular mechanisms by which PCBPs binding to single- and double-stranded DNA mediates gene expression.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Effects of trichostatin A on neuronal mu-opioid receptor gene expression. Brain Res 2008; 1246:1-10. [PMID: 18950606 DOI: 10.1016/j.brainres.2008.09.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 11/21/2022]
Abstract
In this study, we determined the effects of a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), on neuronal mu-opioid receptor (MOR) gene expression using human neuronal NMB cells, endogenously expressing MOR. Recruitment of two classes of HDAC, HDAC1 and HDAC2, to MOR promoter region in situ was detected via chromatin immunoprecipitation (ChIP) analysis with NMB cells. Functional analysis using the luciferase reporter gene system showed that TSA induced an approximately 3-fold increase of the promoter activity as compared to the vehicle treated group. Mutation analysis demonstrated that TSA response was mediated by both dsDNA (Sp1/Sp3 binding site) and ssDNA (PolyC binding protein1, PCBP, binding site) elements located in mouse MOR proximal core promoter region, further suggesting the functional importance of this cis-element, which shows high sequence homology between human and mouse MOR genes. ChIP analysis further suggested that TSA enhanced the recruitment of Sp1/Sp3 and PCBP to the promoter region, whereas no significant changes of total proteins were observed in response to TSA using Western blot analysis. Moreover, confocal images showed TSA-induced nuclear hot spots of endogenous PCBP in neuronal cells, whereas no obvious nuclear PCBP hotspot was observed in vehicle treated cells. Taken together, these results suggested that TSA enhanced neuronal MOR gene expression at the transcriptional level. RT-PCR analysis further revealed that TSA also decreased the steady-state level of MOR mRNA in a time-dependent manner by enhancing its instability. Thus, data suggest that TSA, an epigenetic regulator, affects neuronal MOR gene expression at both transcriptional and post-transcriptional levels.
Collapse
|
20
|
Choi HS, Song KY, Hwang CK, Kim CS, Law PY, Wei LN, Loh HH. A proteomics approach for identification of single strand DNA-binding proteins involved in transcriptional regulation of mouse mu opioid receptor gene. Mol Cell Proteomics 2008; 7:1517-29. [PMID: 18453338 PMCID: PMC2494908 DOI: 10.1074/mcp.m800052-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pharmacological actions of morphine and morphine-like drugs such as heroin are mediated primarily through the μ opioid receptor. Previously a single strand DNA element of the mouse μ opioid receptor gene (Oprm1) proximal promoter was found to be important for regulating Oprm1 in neuronal cells. To identify proteins binding to the single strand DNA element as potential regulators for Oprm1, affinity column chromatography with the single strand DNA element was performed using neuroblastoma NS20Y cells followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified five poly(C)-binding proteins: heterogeneous nuclear ribonucleoprotein (hnRNP) K, α-complex proteins (αCP) αCP1, αCP2, αCP2-KL, and αCP3. Binding of these proteins to the single strand DNA element of Oprm1 was sequence-specific as confirmed by supershift assays. In cotransfection studies, hnRNP K, αCP1, αCP2, and αCP2-KL activated the Oprm1 promoter activity, whereas αCP3 acted as a repressor. Ectopic expression of hnRNP K, αCP1, αCP2, and αCP2-KL also led to activation of the endogenous Oprm1 transcripts, and αCP3 repressed endogenous Oprm1 transcripts. We demonstrate novel roles as transcriptional regulators in Oprm1 regulation for hnRNP K and αCP binding to the single strand DNA element.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|