1
|
Iannitti R, Mascanzoni F, Colanzi A, Spano D. The role of Golgi complex proteins in cell division and consequences of their dysregulation. Front Cell Dev Biol 2025; 12:1513472. [PMID: 39839669 PMCID: PMC11747491 DOI: 10.3389/fcell.2024.1513472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The GC (Golgi complex) plays a pivotal role in the trafficking and sorting of proteins and lipids until they reach their final destination. Additionally, the GC acts as a signalling hub to regulate a multitude of cellular processes, including cell polarity, motility, apoptosis, DNA repair and cell division. In light of these crucial roles, the GC has garnered increasing attention, particularly given the evidence that a dysregulation of GC-regulated signalling pathways may contribute to the onset of various pathological conditions. This review examines the functions of the GC and GC-localised proteins in regulating cell cycle progression, in both mitosis and meiosis. It reviews the involvement of GC-resident proteins in the formation and orientation of the spindle during cell division. In light of the roles played by the GC in controlling cell division, this review also addresses the involvement of the GC in cancer development. Furthermore, TCGA (The Cancer Genome Atlas) database has been queried in order to retrieve information on the genetic alterations and the correlation between the expression of GC-localised proteins and the survival of cancer patients. The data presented in this review highlight the relevance of the GC in regulating cell cycle progression, cellular differentiation and tumourigenesis.
Collapse
Affiliation(s)
| | | | | | - Daniela Spano
- Department of Biomedical Sciences (DSB), Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
2
|
Sagathia V, Patel C, Beladiya J, Patel S, Sheth D, Shah G. Tankyrase: a promising therapeutic target with pleiotropic action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3363-3374. [PMID: 37338576 DOI: 10.1007/s00210-023-02576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Tankyrase 1 (TNKS1) and tankyrase 2 (TNKS2) enzymes belong to the poly (ADP-ribose) polymerase (PARP) family participates in process of poly-ADP-ribosylation of different target proteins which leads to ubiquitin-mediated proteasomal degradation. Tankyrases are also involved in the pathophysiology of many diseases, especially cancer. Their functions include cell cycle homeostasis (primarily in mitosis), telomere maintenance, Wnt signaling pathway regulation, and insulin signaling (particularly GLUT4 translocation). Studies have implicated that genetic changes, mutations in the tankyrase coding sequence, or up regulation and down regulation of tankyrase are reflected in the numerous disease conditions. Investigations are pursued to develop putative molecules that target tankyrase in various diseases such as cancer, obesity, osteoarthritis, fibrosis, cherubism, and diabetes, thereby providing a new therapeutic treatment option. In the present review, we described the structure and function of tankyrase along with its role in different disease conditions. Furthermore, we also presented cumulative experimental evidences of different drugs acting on tankyrase.
Collapse
Affiliation(s)
- Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Devang Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Gaurang Shah
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
3
|
Damale MG, Pathan SK, Shinde DB, Patil RH, Arote RB, Sangshetti JN. Insights of tankyrases: A novel target for drug discovery. Eur J Med Chem 2020; 207:112712. [PMID: 32877803 DOI: 10.1016/j.ejmech.2020.112712] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Tankyrases are the group of enzymes belonging to a class of Poly (ADP-ribose) polymerase (PARP) recently named ADP-ribosyltransferase (ARTD). The two isoforms of tankyrase i.e. tankyrase1 (TNKS1) and tankyrase2 (TNKS2) were abundantly expressed in various biological functions in telomere regulation, Wnt/β-catenin signaling pathway, viral replication, endogenous hormone regulation, glucose transport, cherubism disease, erectile dysfunction, and apoptosis. The structural analysis, mechanistic information, in vitro and in vivo studies led identification and development of several classes of tankyrase inhibitors under clinical phases. In the nutshell, this review will drive future research on tankyrase as it enlighten the structural and functional features of TNKS 1 and TNKS 2, different classes of inhibitors with their structure-activity relationship studies, molecular modeling studies, as well as past, current and future perspective of the different class of tankyrase inhibitors.
Collapse
Affiliation(s)
- Manoj G Damale
- Department of Pharmaceutical Medicinal Chemistry, Srinath College of Pharmacy, Aurangabad, 431136, MS, India
| | - Shahebaaz K Pathan
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS, 431001, India
| | | | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, M.S, India
| | - Rohidas B Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jaiprakash N Sangshetti
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS, 431001, India.
| |
Collapse
|
4
|
Zheng D, Xie W, Li L, Jiang W, Zou Y, Chiang C, Shao G, Yan K. RXXPEG motif of MERIT40 is required to maintain spindle structure and function through its interaction with Tankyrase1. Cell Biol Int 2019; 43:174-181. [DOI: 10.1002/cbin.11086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Duo Zheng
- Shenzhen Longhua District Central Hospital; Shenzhen 518110 China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Wangqing Xie
- Shenzhen Longhua District Central Hospital; Shenzhen 518110 China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Li Li
- Department of Cell Biology; School of Basic Medical Sciences, Peking University; Beijing 100191 China
| | - Wenqi Jiang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Yongdong Zou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Chengyao Chiang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention; Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Health Science Center; Shenzhen 518060 China
| | - Genze Shao
- Department of Cell Biology; School of Basic Medical Sciences, Peking University; Beijing 100191 China
| | - Kaowen Yan
- Institute for Translational Medicine; Qingdao University; Qingdao 266071 China
| |
Collapse
|
5
|
Kim MK. Novel insight into the function of tankyrase. Oncol Lett 2018; 16:6895-6902. [PMID: 30546421 PMCID: PMC6256358 DOI: 10.3892/ol.2018.9551] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/31/2018] [Indexed: 01/14/2023] Open
Abstract
Tankyrases are multifunctional poly(ADP-ribose) polymerases that regulate a variety of cellular processes, including Wnt signaling, telomere maintenance and mitosis regulation. Tankyrases interact with target proteins and regulate their interactions and stability through poly(ADP-ribosyl) ation. In addition to their roles in telomere maintenance and regulation of mitosis, tankyrase proteins regulate tumor suppressors, including AXIN, phosphatase and tensin homolog and angiomotin. Therefore, tankyrases may be effective targets for cancer treatment. Tankyrase inhibitors could affect a variety of carcinogenic pathways that promote uncontrolled proliferation, including Wnt, AKT, yes-associated protein, telomere maintenance and mitosis regulation. Recently, novel aspects of the function and mechanism of tankyrases have been reported, and a number of tankyrase inhibitors have been identified. A combination of conventional chemotherapy agents with tankyrase inhibitors may have synergistic anticancer effects. Therefore, it is expected that more advanced and improved tankyrase inhibitors will be developed, enabling novel therapeutic strategies against cancer and other tankyrase-associated diseases. The present review discusses tankyrase function and the role of tankyrase inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Mi Kyung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Feng Y, Li Z, Lv L, Du A, Lin Z, Ye X, Lin Y, Lin X. Tankyrase regulates apoptosis by activating JNK signaling in Drosophila. Biochem Biophys Res Commun 2018; 503:2234-2239. [PMID: 29953853 DOI: 10.1016/j.bbrc.2018.06.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
Programmed cell death (PCD), or apoptosis, plays essential roles in various cellular and developmental processes, and dysregulation of apoptosis causes many diseases. Thus, regulation of apoptotic process is very important. Drosophila tankyrase (DTNKS) is an evolutionarily conserved protein with poly(ADP-ribose) polymerase activity. In mammalian cells, tankyrases (TNKSs) have been reported to regulate cell death. To determine whether DTNKS plays function in inducing apoptosis in in vivo development, we used Drosophila as a model system and generated transgenic flies expressing DTNKS. We show that ectopic expression of DTNKS promotes caspase-dependent apoptosis and knockdown of DTNKS by RNAi dramatically alleviates apoptotic defect caused by ectopic expression of pro-apoptotic protein hid or rpr in the adult eye. Moreover, our result shows that ectopic expression of DTNKS triggers the activation of c-Jun N-terminal kinase (JNK) signaling, which is required for DTNKS-mediated apoptosis. Taken together, our finding identifies the role of DTNKS in regulating apoptosis by activating JNK signaling in Drosophila.
Collapse
Affiliation(s)
- Ying Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Zhenzhen Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Anle Du
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yi Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
7
|
Li X, Han H, Zhou MT, Yang B, Ta AP, Li N, Chen J, Wang W. Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. Cell Rep 2018; 20:737-749. [PMID: 28723574 DOI: 10.1016/j.celrep.2017.06.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022] Open
Abstract
Tankyrase 1 (TNKS) and tankyrase 2 (TNKS2) belong to the poly(ADP-ribose) polymerase family of proteins, which use nicotinamide adenine dinucleotide to modify substrate proteins with ADP-ribose modifications. Emerging evidence has revealed the pathological relevance of TNKS and TNKS2, and identified these two enzymes as potential drug targets. However, the cellular functions and regulatory mechanisms of TNKS/2 are still largely unknown. Through a proteomic analysis, we defined the protein-protein interaction network for human TNKS/2 and revealed more than 100 high-confidence interacting proteins with numerous biological functions in this network. Finally, through functional validation, we uncovered a role for TNKS/2 in peroxisome homeostasis and determined that this function is independent of TNKS enzyme activities. Our proteomic study of the TNKS/2 protein interaction network provides a rich resource for further exploration of tankyrase functions in numerous cellular processes.
Collapse
Affiliation(s)
- Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mao-Tian Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Albert Paul Ta
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Gravells P, Neale J, Grant E, Nathubhai A, Smith KM, James DI, Bryant HE. Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib. DNA Repair (Amst) 2017; 61:25-36. [PMID: 29179156 PMCID: PMC5765821 DOI: 10.1016/j.dnarep.2017.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
PARG and PARP inhibition both radiosensitize. PARP and PARG inhibition both alter the DNA damage response following irradiation (IR). PARP and PARG inhibition both alter homologous recombination following IR. Only PARG inhibition induces rapid activation of non-homologous end-joining post-IR. Only inhibition of PARG causes accumulation of cells in metaphase post-IR.
Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an inhibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radiosensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents.
Collapse
Affiliation(s)
- Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - James Neale
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Emma Grant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Amit Nathubhai
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, Somerset, BA2 7AY, United Kingdom
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
9
|
Exploration of the nicotinamide-binding site of the tankyrases, identifying 3-arylisoquinolin-1-ones as potent and selective inhibitors in vitro. Bioorg Med Chem 2015; 23:5891-908. [PMID: 26189030 DOI: 10.1016/j.bmc.2015.06.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/17/2022]
Abstract
Tankyrases-1 and -2 (TNKS-1 and TNKS-2) have three cellular roles which make them important targets in cancer. Using NAD(+) as a substrate, they poly(ADP-ribosyl)ate TRF1 (regulating lengths of telomeres), NuMA (facilitating mitosis) and axin (in wnt/β-catenin signalling). Using molecular modelling and the structure of the weak inhibitor 5-aminoiso quinolin-1-one, 3-aryl-5-substituted-isoquinolin-1-ones were designed as inhibitors to explore the structure-activity relationships (SARs) for binding and to define the shape of a hydrophobic cavity in the active site. 5-Amino-3-arylisoquinolinones were synthesised by Suzuki-Miyaura coupling of arylboronic acids to 3-bromo-1-methoxy-5-nitro-isoquinoline, reduction and O-demethylation. 3-Aryl-5-methylisoquinolin-1-ones, 3-aryl-5-fluoroisoquinolin-1-ones and 3-aryl-5-methoxyisoquinolin-1-ones were accessed by deprotonation of 3-substituted-N,N,2-trimethylbenzamides and quench with an appropriate benzonitrile. SAR around the isoquinolinone core showed that aryl was required at the 3-position, optimally with a para-substituent. Small meta-substituents were tolerated but groups in the ortho-positions reduced or abolished activity. This was not due to lack of coplanarity of the rings, as shown by the potency of 4,5-dimethyl-3-phenylisoquinolin-1-one. Methyl and methoxy were optimal at the 5-position. SAR was rationalised by modelling and by crystal structures of examples with TNKS-2. The 3-aryl unit was located in a large hydrophobic cavity and the para-substituents projected into a tunnel leading to the exterior. Potency against TNKS-1 paralleled potency against TNKS-2. Most inhibitors were highly selective for TNKSs over PARP-1 and PARP-2. A range of highly potent and selective inhibitors is now available for cellular studies.
Collapse
|
10
|
Haikarainen T, Krauss S, Lehtio L. Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des 2015; 20:6472-88. [PMID: 24975604 PMCID: PMC4262938 DOI: 10.2174/1381612820666140630101525] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Several cellular signaling pathways are regulated by ADP-ribosylation, a posttranslational modification catalyzed by members of the ARTD superfamily. Tankyrases are distinguishable from the rest of this family by their unique domain organization, notably the sterile alpha motif responsible for oligomerization and ankyrin repeats mediating protein-protein interactions. Tankyrases are involved in various cellular functions, such as telomere homeostasis, Wnt/β-catenin signaling, glucose metabolism, and cell cycle progression. In these processes, Tankyrases regulate the interactions and stability of target proteins by poly (ADP-ribosyl)ation. Modified proteins are subsequently recognized by the E3 ubiquitin ligase RNF146, poly-ubiquitinated and predominantly guided to 26S proteasomal degradation. Several small molecule inhibitors have been described for Tankyrases; they compete with the co-substrate NAD+ for binding to the ARTD catalytic domain. The recent, highly potent and selective inhibitors possess several properties of lead compounds and can be used for proof-of-concept studies in cancer and other Tankyrase linked diseases.
Collapse
Affiliation(s)
| | | | - Lari Lehtio
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleen 21, 0349, Oslo, Norway.
| |
Collapse
|
11
|
Bai P, Nagy L, Fodor T, Liaudet L, Pacher P. Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab 2015; 26:75-83. [PMID: 25497347 DOI: 10.1016/j.tem.2014.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022]
Abstract
Mitochondria are essential in cellular stress responses. Mitochondrial output to environmental stress is a major factor in metabolic adaptation and is regulated by a complex network of energy and nutrient sensing proteins. Activation of poly(ADP-ribose) polymerases (PARPs) has been known to impair mitochondrial function; however, our view of PARP-mediated mitochondrial dysfunction and injury has only recently fundamentally evolved. In this review, we examine our current understanding of PARP-elicited mitochondrial damage, PARP-mediated signal transduction pathways, transcription factors that interact with PARPs and govern mitochondrial biogenesis, as well as mitochondrial diseases that are mediated by PARPs. With PARP activation emerging as a common underlying mechanism in numerous pathologies, a better understanding the role of various PARPs in mitochondrial regulation may help open new therapeutic avenues.
Collapse
Affiliation(s)
- Peter Bai
- Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism Research Group, Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary.
| | - Lilla Nagy
- MTA-DE Lendület Laboratory of Cellular Metabolism Research Group, Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Fodor
- MTA-DE Lendület Laboratory of Cellular Metabolism Research Group, Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Pal Pacher
- Laboratory Physiological Studies, Section on Oxidative Stress and Tissue Injury, NIH/NIAAA/DICBR, Bethesda, MD, USA
| |
Collapse
|
12
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD(+) as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Lehtiö L, Chi NW, Krauss S. Tankyrases as drug targets. FEBS J 2013; 280:3576-93. [PMID: 23648170 DOI: 10.1111/febs.12320] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022]
Abstract
Tankyrase 1 and tankyrase 2 are poly(ADP-ribosyl)ases that are distinguishable from other members of the enzyme family by the structural features of the catalytic domain, and the presence of a sterile α-motif multimerization domain and an ankyrin repeat protein-interaction domain. Tankyrases are implicated in a multitude of cellular functions, including telomere homeostasis, mitotic spindle formation, vesicle transport linked to glucose metabolism, Wnt-β-catenin signaling, and viral replication. In these processes, tankyrases interact with target proteins, catalyze poly(ADP-ribosyl)ation, and regulate protein interactions and stability. The proposed roles of tankyrases in disease-relevant cellular processes have made them attractive drug targets. Recently, several inhibitors have been identified. The selectivity and potency of these small molecules can be rationalized by how they fit within the NAD(+)-binding groove of the catalytic domain. Some molecules bind to the nicotinamide subsite, such as generic diphtheria toxin-like ADP-ribosyltransferase inhibitors, whereas others bind to a distinct adenosine subsite that diverges from other diphtheria toxin-like ADP-ribosyltransferases and confers specificity. A highly potent dual-site inhibitor is also available. Within the last few years, tankyrase inhibitors have proved to be useful chemical probes and potential lead compounds, especially for specific cancers.
Collapse
Affiliation(s)
- Lari Lehtiö
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland.
| | | | | |
Collapse
|
14
|
Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 2013; 34:1168-201. [PMID: 23357756 DOI: 10.1016/j.mam.2013.01.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/17/2013] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.
Collapse
Affiliation(s)
- Carles Cantó
- Nestlé Institute of Health Sciences, Lausanne CH-1015, Switzerland
| | | | | |
Collapse
|
15
|
Riffell JL, Lord CJ, Ashworth A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 2012; 11:923-36. [PMID: 23197039 DOI: 10.1038/nrd3868] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) protein superfamily has wide-ranging roles in cellular processes such as DNA repair and WNT signalling. Efforts to pharmacologically target PARP enzymes have largely focused on PARP1 and the closely related PARP2, but recent work highlighting the role of another family member, tankyrase 1 (TANK1; also known as PARP5A and ARTD5), in the control of WNT signalling has fuelled interest in the development of additional inhibitors to target this enzyme class. Tankyrase function is also implicated in other processes such as the regulation of telomere length, lung fibrogenesis and myelination, suggesting that tankyrase inhibitors could have broad clinical utility. Here, we discuss the biology of tankyrases and the discovery of tankyrase-specific inhibitors. We also consider the challenges that lie ahead for the clinical development of PARP family inhibitors in general.
Collapse
Affiliation(s)
- Jenna L Riffell
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
16
|
Ozaki Y, Matsui H, Asou H, Nagamachi A, Aki D, Honda H, Yasunaga S, Takihara Y, Yamamoto T, Izumi S, Ohsugi M, Inaba T. Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol Cell 2012; 47:694-706. [PMID: 22864114 DOI: 10.1016/j.molcel.2012.06.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/28/2012] [Accepted: 06/19/2012] [Indexed: 11/26/2022]
Abstract
During prometaphase, dense microtubule nucleation sites at centrosomes form robust spindles that align chromosomes promptly. Failure of centrosome maturation leaves chromosomes scattered, as seen routinely in cancer cells, including myelodysplastic syndrome (MDS). We previously reported that the Miki (LOC253012) gene is frequently deleted in MDS patients, and that low levels of Miki are associated with abnormal mitosis. Here we demonstrate that Miki localizes to the Golgi apparatus and is poly(ADP-ribosyl)ated by tankyrase-1 during late G2 and prophase. PARsylated Miki then translocates to mitotic centrosomes and anchors CG-NAP, a large scaffold protein of the γ-tubulin ring complex. Due to impairment of microtubule aster formation, cells in which tankyrase-1, Miki, or CG-NAP expression is downregulated all show prometaphase disturbances, including scattered and lagging chromosomes. Our data suggest that PARsylation of Miki by tankyrase-1 is a key initial event promoting prometaphase.
Collapse
Affiliation(s)
- Yuko Ozaki
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, Paulsen JE, Pedersen NM, Eide TJ, Machonova O, Gradl D, Voronkov A, von Kries JP, Krauss S. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res 2012; 72:2822-32. [PMID: 22440753 DOI: 10.1158/0008-5472.can-11-3336] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increased nuclear accumulation of β-catenin, a mediator of canonical Wnt signaling, is found in numerous tumors and is frequently associated with tumor progression and metastasis. Inhibition of Wnt/β-catenin signaling therefore is an attractive strategy for anticancer drugs. In this study, we have identified a novel small molecule inhibitor of the β-catenin signaling pathway, JW55, that functions via inhibition of the PARP domain of tankyrase 1 and tankyrase 2 (TNKS1/2), regulators of the β-catenin destruction complex. Inhibition of TNKS1/2 poly(ADP-ribosyl)ation activity by JW55 led to stabilization of AXIN2, a member of the β-catenin destruction complex, followed by increased degradation of β-catenin. In a dose-dependent manner, JW55 inhibited canonical Wnt signaling in colon carcinoma cells that contained mutations in either the APC (adenomatous polyposis coli) locus or in an allele of β-catenin. In addition, JW55 reduced XWnt8-induced axis duplication in Xenopus embryos and tamoxifen-induced polyposis formation in conditional APC mutant mice. Together, our findings provide a novel chemotype for targeting canonical Wnt/β-catenin signaling through inhibiting the PARP domain of TNKS1/2.
Collapse
Affiliation(s)
- Jo Waaler
- Oslo University Hospital, SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Forskningsparken, Gaustadalleen and Center for Molecular Biology and Neuroscience, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of tankyrase 1. J Virol 2011; 86:492-503. [PMID: 22013039 DOI: 10.1128/jvi.05897-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) which localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Poly(ADP-ribosyl)ation of the nuclear mitotic apparatus (NuMA) protein by tankyrase 1 during mitosis is essential for sister telomere resolution and mitotic spindle pole formation. In interphase cells, tankyrase 1 resides in the cytoplasm, and its role therein is not well understood. In this study, we found that herpes simplex virus (HSV) infection induced extensive modification of tankyrase 1 but not tankyrase 2. This modification was dependent on extracellular signal-regulated kinase (ERK) activity triggered by HSV infection. Following HSV-1 infection, tankyrase 1 was recruited to the nucleus. In the early phase of infection, tankyrase 1 colocalized with ICP0 and thereafter localized within the HSV replication compartment, which was blocked in cells infected with the HSV-1 ICP0-null mutant R7910. In the absence of infection, ICP0 interacted with tankyrase 1 and efficiently promoted its nuclear localization. HSV did not replicate efficiently in cells depleted of both tankyrases 1 and 2. Moreover, XAV939, an inhibitor of tankyrase PARP activity, decreased viral titers to 2 to 5% of control values. We concluded that HSV targets tankyrase 1 in an ICP0- and ERK-dependent manner to facilitate its replication.
Collapse
|
19
|
Ohishi T, Hirota T, Tsuruo T, Seimiya H. TRF1 mediates mitotic abnormalities induced by Aurora-A overexpression. Cancer Res 2010; 70:2041-52. [PMID: 20160025 DOI: 10.1158/0008-5472.can-09-2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora-A, a conserved serine-threonine kinase, plays essential roles in mitosis. Aberrant upregulation of Aurora-A perturbs proper mitotic progression and results in a generation of multinucleated cells with centrosome amplification. The molecular mechanisms for these mitotic defects remain elusive. Here, we show that the overexpressed Aurora-A-induced mitotic defects depend on the telomeric protein TRF1. Live and fixed cell analyses revealed that Aurora-A overexpression in HeLa cells compromises chromosome biorientation, which leads to cytokinetic failure and tetraploidization with increased centrosome numbers. TRF1 depletion by small interfering RNAs or by tankyrase-1 overexpression suppresses Aurora-A-induced occurrence of unaligned chromosomes in metaphase, thus preventing the subsequent abnormalities. We found that Aurora-A binds and phosphorylates TRF1. When TRF1 knockdown cells are complemented with wild-type TRF1, Aurora-A-induced mitotic defects recur. By contrast, a TRF1 mutant that is not phosphorylatable by Aurora-A does not restore such Aurora-A-induced phenotype. We propose that TRF1 phosphorylation by excessive Aurora-A may provoke abnormal mitosis and chromosomal instability.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Division of Molecular Biotherapy, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
20
|
Chang P, Coughlin M, Mitchison TJ. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol Biol Cell 2009; 20:4575-85. [PMID: 19759176 DOI: 10.1091/mbc.e09-06-0477] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Poly(ADP-ribose) (pADPr), made by PARP-5a/tankyrase-1, localizes to the poles of mitotic spindles and is required for bipolar spindle assembly, but its molecular function in the spindle is poorly understood. To investigate this, we localized pADPr at spindle poles by immuno-EM. We then developed a concentrated mitotic lysate system from HeLa cells to probe spindle pole assembly in vitro. Microtubule asters assembled in response to centrosomes and Ran-GTP in this system. Magnetic beads coated with pADPr, extended from PARP-5a, also triggered aster assembly, suggesting a functional role of the pADPr in spindle pole assembly. We found that PARP-5a is much more active in mitosis than interphase. We used mitotic PARP-5a, self-modified with pADPr chains, to capture mitosis-specific pADPr-binding proteins. Candidate binding proteins included the spindle pole protein NuMA previously shown to bind to PARP-5a directly. The rod domain of NuMA, expressed in bacteria, bound directly to pADPr. We propose that pADPr provides a dynamic cross-linking function at spindle poles by extending from covalent modification sites on PARP-5a and NuMA and binding noncovalently to NuMA and that this function helps promote assembly of exactly two poles.
Collapse
Affiliation(s)
- Paul Chang
- Koch Institute for Integrative Cancer Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
21
|
Buelow B, Song Y, Scharenberg AM. The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem 2008; 283:24571-83. [PMID: 18599483 PMCID: PMC3259813 DOI: 10.1074/jbc.m802673200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
TRPM2 cation channels are widely expressed in the immune system and are thought to play a role in immune cell responses to oxidative stress. Patch clamp analyses suggest that TRPM2 channel activation can occur through a direct action of oxidants on TRPM2 channels or indirectly through the actions of a related group of adenine nucleotide 2nd messengers. However, the contribution of each gating mechanism to oxidative stress-induced TRPM2 activation in lymphocytes remains undefined. To better understand the molecular events leading to TRPM2 activation in lymphocytes, we analyzed oxidative stress-induced turnover of intracellular NAD, the metabolic precursor of adenine nucleotide 2nd messengers implicated in TRPM2 gating, and oxidative stress-induced TRPM2-mediated currents and Ca2+ transients in DT40 B cells. TRPM2-dependent Ca2+ entry did not influence the extent or time course of oxidative stress-induced turnover of NAD. Furthermore, expression of oxidative stress-activated poly(ADP-ribose) polymerases (PARPs) was required for oxidative stress-induced NAD turnover, TRPM2 currents, and TRPM2-dependent Ca2+ transients; no oxidant-induced activation of TRPM2 channels could be detected in PARP-deficient cells. Together, our results suggest that during conditions of oxidative stress in lymphocytes, TRPM2 acts as a downstream effector of the PARP/poly(ADP-ribose) glycohydrolase pathway through PARP-dependent formation of ADP-ribose.
Collapse
Affiliation(s)
- Ben Buelow
- Department of Pediatrics and Immunology, University of Washington, Seattle, Washington 98103, USA
| | | | | |
Collapse
|
22
|
Beneke S. Poly(ADP-ribose) polymerase activity in different pathologies--the link to inflammation and infarction. Exp Gerontol 2008; 43:605-614. [PMID: 18511226 DOI: 10.1016/j.exger.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 12/27/2022]
Abstract
DNA repair and aging are two phenomena closely connected to each other. The poly(ADP-ribosyl)ation reaction has been implicated in both of them. Poly(ADP-ribose) was originally discovered as an enzymatic reaction product after DNA damage. Soon it became evident that it is necessary for regulation of different repair pathways. Also, evidence accumulated that poly(ADP-ribose) formation capacity is at least correlated with the life span of mammalian species. As a NAD(+)-consuming process, poly(ADP-ribosyl)ation can lead to cell death by energy depletion. This finding opened the area for investigation of poly(ADP-ribose) polymerase activity and polymer formation in pathologies. This review provides an introduction into the wide and complex field of poly(ADP-ribosyl)ation in different pathologies with regards of cell death regulation, inflammation and resulting tissue damage.
Collapse
Affiliation(s)
- Sascha Beneke
- University of Konstanz, Molecular Toxicology Group, Universiteatsstr. 10, Box X911, 78457 Konstanz, Germany
| |
Collapse
|