1
|
Rubel AA, Saifitdinova AF, Lada AG, Nizhnikov AA, Inge-Vechtomov SG, Galkin AP. Yeast chaperone Hsp104 controls gene expression at the posttranscriptional level. Mol Biol 2011; 42:110-6. [DOI: 10.1134/s0026893308010160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Gonzalez O, Fontanes V, Raychaudhuri S, Loo R, Loo J, Arumugaswami V, Sun R, Dasgupta A, French SW. The heat shock protein inhibitor Quercetin attenuates hepatitis C virus production. Hepatology 2009; 50:1756-64. [PMID: 19839005 PMCID: PMC3846025 DOI: 10.1002/hep.23232] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The hepatitis C viral (HCV) genome is translated through an internal ribosome entry site (IRES) as a single polyprotein precursor that is subsequently cleaved into individual mature viral proteins. Nonstructural protein 5A (NS5A) is one of these proteins that has been implicated in regulation of viral genome replication, translation from the viral IRES and viral packaging. We sought to identify cellular proteins that interact with NS5A and determine whether these interactions may play a role in viral production. Mass spectrometric analysis of coimmunoprecipitated NS5A complexes from cell extracts identified heat shock proteins (HSPs) 40 and 70. We confirmed an NS5A/HSP interaction by confocal microscopy demonstrating colocalization of NS5A with HSP40 and with HSP70. Western analysis of coimmunoprecipitated NS5A complexes further confirmed interaction of HSP40 and HSP70 with NS5A. A transient transfection, luciferase-based, tissue culture IRES assay demonstrated NS5A augmentation of HCV IRES-mediated translation, and small interfering RNA (siRNA)-mediated knockdown of HSP70 reduced this augmentation. Treatment with an inhibitor of HSP synthesis, Quercetin, markedly reduced baseline IRES activity and its augmentation by NS5A. HSP70 knockdown also modestly reduced viral protein accumulation, whereas HSP40 and HSP70 knockdown both reduced infectious viral particle production in an HCV cell culture system using the J6/JFH virus fused to the Renilla luciferase reporter. Treatment with Quercetin reduced infectious particle production at nontoxic concentrations. The marked inhibition of virus production by Quercetin may partially be related to reduction of HSP40 and HSP70 and their potential involvement in IRES translation, as well as viral morphogenesis or secretion. CONCLUSION Quercetin may allow for dissection of the viral life cycle and has potential therapeutic use to reduce virus production with low associated toxicity.
Collapse
Affiliation(s)
- Oscar Gonzalez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Vanessa Fontanes
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Santanu Raychaudhuri
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Rachel Loo
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Joseph Loo
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, CA,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA,UCLA Molecular Biology Institute, Los Angeles, CA
| | | | - Ren Sun
- UCLA Molecular Biology Institute, Los Angeles, CA,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA,Jonsson Comprehensive Cancer Center, Los Angeles, CA,UCLA AIDS Institute, Los Angeles, CA
| | - Asim Dasgupta
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA,UCLA Molecular Biology Institute, Los Angeles, CA,Jonsson Comprehensive Cancer Center, Los Angeles, CA,UCLA AIDS Institute, Los Angeles, CA
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA,Jonsson Comprehensive Cancer Center, Los Angeles, CA
| |
Collapse
|
3
|
Peisker K, Braun D, Wölfle T, Hentschel J, Fünfschilling U, Fischer G, Sickmann A, Rospert S. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol Biol Cell 2008; 19:5279-88. [PMID: 18829863 DOI: 10.1091/mbc.e08-06-0661] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ribosome-associated complex (RAC) consists of the Hsp40 homolog Zuo1 and the Hsp70 homolog Ssz1. The chaperone participates in the biogenesis of newly synthesized polypeptides. Here we have identified yeast Rpl31, a component of the large ribosomal subunit, as a contact point of RAC at the polypeptide tunnel exit. Rpl31 is encoded by RPL31a and RPL31b, two closely related genes. Delta rpl31a Delta rpl31b displayed slow growth and sensitivity to low as well as high temperatures. In addition, Delta rpl31a Delta rpl31b was highly sensitive toward aminoglycoside antibiotics and suffered from defects in translational fidelity. With the exception of sensitivity at elevated temperature, the phenotype resembled yeast strains lacking one of the RAC subunits or Rpl39, another protein localized at the tunnel exit. Defects of Delta rpl31a Delta rpl31b Delta zuo1 did not exceed that of Delta rpl31a Delta rpl31b or Delta zuo1. However, the combined deletion of RPL31a, RPL31b, and RPL39 was lethal. Moreover, RPL39 was a multicopy suppressor, whereas overexpression of RAC failed to rescue growth defects of Delta rpl31a Delta rpl31b. The findings are consistent with a model in that Rpl31 and Rpl39 independently affect a common ribosome function, whereas Rpl31 and RAC are functionally interdependent. Rpl31, while not essential for binding of RAC to the ribosome, might be involved in proper function of the chaperone complex.
Collapse
Affiliation(s)
- Kristin Peisker
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Reineke LC, Komar AA, Caprara MG, Merrick WC. A small stem loop element directs internal initiation of the URE2 internal ribosome entry site in Saccharomyces cerevisiae. J Biol Chem 2008; 283:19011-25. [PMID: 18460470 DOI: 10.1074/jbc.m803109200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Internal initiation of translation is the process of beginning protein synthesis independent of the m(7)G cap structure at the 5'-end of an mRNA molecule. We have previously shown that the URE2 mRNA in the yeast Saccharomyces cerevisiae contains an internal ribosome entry site (IRES) whose activity is suppressed by eukaryotic initiation factor 2A (eIF2A; YGR054W). In this study, the minimal sequence required to efficiently direct internal initiation was determined using a system that abrogates cap-dependent scanning of the 40 S ribosomal subunit in both wild-type and eIF2A knock-out cells. Subsequently, secondary structural elements within the minimal sequence were determined by probing with RNases T1 and V1 and the small molecule diethylpyrocarbonate. It was found that the URE2 minimal IRES comprises a 104 nucleotide A-rich stem loop element encompassing the internal AUG codon. Interestingly, the internal AUG seems to be involved in base-pairing interactions that would theoretically hamper its ability to interact with incoming initiator tRNA molecules. Furthermore, none of the truncations used to identify the minimal IRES element were capable of abrogating the suppressive effect of eIF2A. Our data provide the first insight into the RNA structural requirements of the yeast translational machinery for cap-independent initiation of protein synthesis.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Biochemistry, Case Western Reserve University, Cleveland, School of Medicine, Ohio 44106, USA
| | | | | | | |
Collapse
|