1
|
Ning B, Huang J, Xu H, Lou Y, Wang W, Mu F, Yan X, Li H, Wang N. Genomic organization, intragenic tandem duplication, and expression analysis of chicken TGFBR2 gene. Poult Sci 2022; 101:102169. [PMID: 36201879 PMCID: PMC9535321 DOI: 10.1016/j.psj.2022.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Transforming growth factor beta receptor Ⅱ (TGFBR2), a core member of the transforming growth factor-β (TGF-β) signaling pathway. To date, chicken TGFBR2 (cTGFBR2) genomic structure has not been fully explored. Here, the complete sequences of cTGFBR2 transcript isoforms were determined by 5′ and 3′ rapid amplification of cDNA ends (5′ & 3′ RACE) and reverse transcription polymerase chain reaction (RT-PCR); the tissue expression profiling of cTGFBR2 transcript isoforms was performed using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that cTGFBR2 gene produced 3 transcript isoforms though alternative transcription initiation, splicing, and polyadenylation, which were designated as cTGFBR2-1, cTGFBR2-2, and cTGFBR2-3, respectively. These 3 cTGFBR2 transcript isoforms encoded 3 protein isoforms: cTGFBR2-1, cTGFBR2-2, and cTGFBR2-3. Duplication analysis revealed that, unlike other animal species, cTGFBR2 gene harbored a 5.5-kb intragenic tandem duplication. Tissue expression profiling in the 4-wk-old Arbor Acres (AA) broiler chickens showed that cTGFBR2-1 was ubiquitously expressed, with high expression in abdominal fat, subcutaneous fat, lung, gizzard, and muscle; cTGFBR2-2 was highly expressed in heart, kidney, gizzard, and muscle; cTGFBR2-3 was weakly expressed in all the tested chicken tissues. Tissue expression profiling in the 7-wk-old broiler chickens of the fat and lean lines of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) showed that cTGFBR2-1 was significantly differentially expressed in all the tested tissues except heart, cTGFBR2-2 was significantly differentially expressed in all the tested tissues except subcutaneous fat and liver, and cTGFBR2-3 was significantly differentially expressed in all the tested tissues between the lean and fat lines. Intriguingly, in the fat line, the 3 cTGFBR2 transcript isoforms were expressed to varying degrees in all the 3 tested fat tissues, while in the lean line, only cTGFBR2-1 was expressed in all the 3 tested fat tissues. This is the first report of intragenic tandem duplication within TGFBR2 gene. Our findings pave the way for further studies on the functions and regulation of cTGFBR2 gene.
Collapse
Affiliation(s)
- Bolin Ning
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haidong Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Lou
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Weishi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Fang Mu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Yan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Bee KJ, Wilkes DC, Devereux RB, Basson CT, Hatcher CJ. TGFβRIIb mutations trigger aortic aneurysm pathogenesis by altering transforming growth factor β2 signal transduction. CIRCULATION. CARDIOVASCULAR GENETICS 2012; 5:621-9. [PMID: 23099432 PMCID: PMC3547593 DOI: 10.1161/circgenetics.112.964064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a common progressive disorder involving gradual dilation of the ascending and/or descending thoracic aorta that eventually leads to dissection or rupture. Nonsydromic TAA can occur as a genetically triggered, familial disorder that is usually transmitted in a monogenic autosomal dominant fashion and is known as familial TAA. Genetic analyses of families affected with TAA have identified several chromosomal loci, and further mapping of familial TAA genes has highlighted disease-causing mutations in at least 4 genes: myosin heavy chain 11 (MYH11), α-smooth muscle actin (ACTA2), and transforming growth factor β receptors I and II (TGFβRI and TGFβRII). METHODS AND RESULTS We evaluated 100 probands to determine the mutation frequency in MYH11, ACTA2, TGFβRI, and TGFβRII in an unbiased population of individuals with genetically mediated TAA. In this study, 9% of patients had a mutation in one of the genes analyzed, 3% of patients had mutations in ACTA2, 3% in MYH11, 1% in TGFβRII, and no mutations were found in TGFβRI. Additionally, we identified mutations in a 75 base pair alternatively spliced TGFβRII exon, exon 1a that produces the TGFβRIIb isoform and accounted for 2% of patients with mutations. Our in vitro analyses indicate that the TGFβRIIb activating mutations alter receptor function on TGFβ2 signaling. CONCLUSIONS We propose that TGFβRIIb expression is a regulatory mechanism for TGFβ2 signal transduction. Dysregulation of the TGFβ2 signaling pathway, as a consequence of TGFβRIIb mutations, results in aortic aneurysm pathogenesis.
Collapse
Affiliation(s)
- Katharine J Bee
- Center for Molecular Cardiology, Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | |
Collapse
|
3
|
Klco JM, Sen S, Hansen JL, Lyngsø C, Nikiforovich GV, Sheikh SP, Baranski TJ. Complement factor 5a receptor chimeras reveal the importance of lipid-facing residues in transport competence. FEBS J 2009; 276:2786-800. [PMID: 19459935 DOI: 10.1111/j.1742-4658.2009.07002.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Residues that mediate helix-helix interactions within the seven transmembranes (TM) of G protein-coupled receptors are important for receptor biogenesis and the receptor switch mechanism. By contrast, the residues directly contacting the lipid bilayer have only recently garnered attention as potential receptor dimerization interfaces. In the present study, we aimed to determine the contributions of these lipid-facing residues to receptor function and oligomerization by systemically generating chimeric complement factor 5a receptors in which the entire lipid-exposed surface of a single TM helix was exchanged with the cognate residues from the angiotensin type 1 receptor. Disulfide-trapping and bioluminescence resonance energy transfer (BRET) studies demonstrated robust homodimerization of both complement factor 5a receptor and angiotensin type 1 receptor, but no evidence for heterodimerization. Despite relatively conservative substitutions, the lipid-facing chimeras (TM1, TM2, TM4, TM5, TM6 or TM7) were retained in the endoplasmic reticulum/cis-Golgi network. With the exception of the TM7 chimera that did not bind ligand, the lipid-facing chimeras bound ligand with low affinity, but similar to wild-type complement factor 5a receptors trapped in the endoplasmic reticulum with brefeldin A. These results suggest that the chimeric receptors were properly folded; moreover, native complement factor 5a receptors are not fully competent to bind ligand when present in the endoplasmic reticulum. BRET oligomerization studies demonstrated energy transfer between the wild-type complement factor 5a receptor and the lipid-facing chimeras, suggesting that the lipid-facing residues within a single TM segment are not essential for oligomerization. These studies highlight the importance of the lipid-facing residues in the complement factor 5a receptor for transport competence.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Lavery K, Swain P, Falb D, Alaoui-Ismaili MH. BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 2008; 283:20948-58. [PMID: 18436533 PMCID: PMC3258927 DOI: 10.1074/jbc.m800850200] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/23/2008] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily of growth factors and are used clinically to induce new bone formation. The purpose of this study was to evaluate receptor utilization by BMP-2, BMP-4, BMP-6, and BMP-7 in primary human mesenchymal stem cells (hMSC), a physiologically relevant cell type that probably mediates the in vivo effects of BMPs. RNA interference-mediated gene knockdown revealed that osteoinductive BMP activities in hMSC are elicited through the type I receptors ACVR1A and BMPR1A and the type II receptors ACVR2A and BMPR2. BMPR1B and ACVR2B were expressed at low levels and were not found to play a significant role in signaling by any of the BMPs evaluated in this study. Type II receptor utilization differed significantly between BMP-2/4 and BMP-6/7. A greater reliance on BMPR2 was observed for BMP-2/4 relative to BMP-6/7, whereas ACVR2A was more critical to signaling by BMP-6/7 than BMP-2/4. Significant differences were also observed for the type I receptors. Although BMP-2/4 used predominantly BMPR1A for signaling, ACVR1A was the preferred type I receptor for BMP-6/7. Signaling by both BMP-2/4 and BMP-6/7 was mediated by homodimers of ACVR1A or BMPR1A. A portion of BMP-2/4 signaling also required concurrent BMPR1A and ACVR1A expression, suggesting that BMP-2/4 signal in part through ACVR1A/BMPR1A heterodimers. The capacity of ACVR1A and BMPR1A to form homodimers and heterodimers was confirmed by bioluminescence resonance energy transfer analyses. These results suggest different mechanisms for BMP-2/4- and BMP-6/7-induced osteoblastic differentiation in primary hMSC.
Collapse
|
5
|
Alejandre-Alcázar MA, Michiels-Corsten M, Vicencio AG, Reiss I, Ryu J, de Krijger RR, Haddad GG, Tibboel D, Seeger W, Eickelberg O, Morty RE. TGF-beta signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev Dyn 2008; 237:259-69. [PMID: 18095342 DOI: 10.1002/dvdy.21403] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although transforming growth factor-beta (TGF-beta) signaling negatively regulates branching morphogenesis in early lung development, few studies to date have addressed the role of this family of growth factors during late lung development. We describe here that the expression, tissue localization, and activity of components of the TGF-beta signaling machinery are dynamically regulated during late lung development in the mouse and human. Pronounced changes in the expression and localization of the TGF-beta receptors Acvrl1, Tgfbr1, Tgfbr2, Tgfbr3, and endoglin, and the intracellular messengers Smad2, Smad3, Smad4, Smad6, and Smad7 were noted as mouse and human lungs progressed through the canalicular, saccular, and alveolar stages of development. TGF-beta signaling, assessed by phosphorylation of Smad2, was detected in the vascular and airway smooth muscle, as well as the alveolar and airway epithelium throughout late lung development. These data suggest that active TGF-beta signaling is required for normal late lung development.
Collapse
Affiliation(s)
- Miguel A Alejandre-Alcázar
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 2007; 185:146-56. [PMID: 17587820 DOI: 10.1159/000101315] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial-mesenchymal cell transformation (EMT) is a critical process during development of the heart valves. Transition of endothelial cells into mesenchymal cells in the atrioventricular (AV) canal and the outflow tract regions of the heart form the cardiac cushions that eventually form the heart valves. Collagen gel invasion assay has aided in the identification of molecules that regulate EMT. Among those, transforming growth factor-beta (TGF-beta) ligands and receptors demonstrate a critical role during EMT. In the chick, TGF-beta ligands and some receptors have specific functions during EMT. TGF-beta2 mediates endothelial cell-cell activation and separation, and TGF-beta3 mediates cell invasion into the extracellular matrix. Receptors involved in the EMT process include TGF-beta receptor type II (TBRII), TBRIII, endoglin and the TBRI receptors, ALK2 and ALK5. In contrast, in the mouse model, TGF-beta2 is the only ligand involved in EMT. The TGF-beta2 null mouse has either increased EMT or a mesenchymal cell proliferation after EMT. However, functional studies of TGF-beta1 in vivo and in vitro showed that TGF-beta1 functions in the EMT of the mouse AV canal. Latent TGF-beta-binding protein (LTBP-1) and endoglin have a role in the EMT process. Therefore, TGF-betas mediate cardiac EMT in both embryonic species. Further studies will reveal the identification of ligand and receptor-specific activities.
Collapse
|