1
|
Meng X, Zhou Y, Xu L, Hu L, Wang C, Tian X, Zhang X, Hao Y, Cheng B, Ma J, Wang L, Liu J, Xie R. O-GlcNAcylation Facilitates the Interaction between Keratin 18 and Isocitrate Dehydrogenases and Potentially Influencing Cholangiocarcinoma Progression. ACS CENTRAL SCIENCE 2024; 10:1065-1083. [PMID: 38799671 PMCID: PMC11117311 DOI: 10.1021/acscentsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Glycosylation plays a pivotal role in the intricate landscape of human cholangiocarcinoma (CCA), actively participating in key pathophysiological processes driving tumor progression. Among the various glycosylation modifications, O-linked β-N-acetyl-glucosamine modification (O-GlcNAcylation) emerges as a dynamic regulator influencing diverse tumor-associated biological activities. In this study, we employed a state-of-the-art chemical proteomic approach to analyze intact glycopeptides, unveiling the critical role of O-GlcNAcylation in orchestrating Keratin 18 (K18) and its interplay with tricarboxylic acid (TCA) cycle enzymes, specifically isocitrate dehydrogenases (IDHs), to propel CCA progression. Our findings shed light on the mechanistic intricacies of O-GlcNAcylation, revealing that site-specific modification of K18 on Ser 30 serves as a stabilizing factor, amplifying the expression of cell cycle checkpoints. This molecular event intricately fosters cell cycle progression and augments cellular growth in CCA. Notably, the interaction between O-GlcNAcylated K18 and IDHs orchestrates metabolic reprogramming by down-regulating citrate and isocitrate levels while elevating α-ketoglutarate (α-KG). These metabolic shifts further contribute to the overall tumorigenic potential of CCA. Our study thus expands the current understanding of protein O-GlcNAcylation and introduces a new layer of complexity to post-translational control over metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhou
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei Xu
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Limu Hu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changjiang Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao Tian
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Hao
- College
of
Chemistry and Molecular Engineering, Peking
University, Beijing 100871, China
| | - Bo Cheng
- School
of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Ma
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Collaborative
Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lei Wang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jialin Liu
- State
Key Laboratory of Medical Proteomics, Beijing Proteome Research Center,
National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ran Xie
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100191, China
| |
Collapse
|
2
|
Evans CA, Corfe BM. Colorectal keratins: Integrating nutrition, metabolism and colorectal health. Semin Cell Dev Biol 2021; 128:103-111. [PMID: 34481710 DOI: 10.1016/j.semcdb.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
The colon mucosa is lined with crypts of circa 300 cells, forming a continuous barrier whose roles include absorption of water, recovery of metabolic energy sources (notably short chain fatty acids), secretion of a protective mucus barrier, and physiological signalling. There is high turnover and replenishment of cells in the mucosa, disruption of this may lead to bowel pathologies including cancer and inflammatory bowel disease. Keratins have been implicated in the processes of cell death, epithelial integrity, response to inflammation and as a result are often described as guardians of the colonic epithelium. Keratin proteins carry extensive post-translational modifications, the cofactors for kinases, acetyl transferases and other modification-regulating enzymes are themselves products of metabolism. A cluster of studies has begun to reveal a bidirectional relationship between keratin form and function and metabolism. In this paper we hypothesise a mechanistic interaction between keratins and metabolism is governed through regulation of post-translational modifications and may contribute significantly to the normal functioning of the colon, placing keratins at the centre of a nutrition-metabolism-health triangle.
Collapse
Affiliation(s)
- Caroline A Evans
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, S1 3JD Sheffield, United Kingdom
| | - Bernard M Corfe
- Population Health Sciences Institute, Human Nutrition Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, United Kingdom.
| |
Collapse
|
3
|
Tarbet HJ, Dolat L, Smith TJ, Condon BM, O'Brien ET, Valdivia RH, Boyce M. Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. eLife 2018. [PMID: 29513221 PMCID: PMC5841932 DOI: 10.7554/elife.31807] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermediate filaments (IF) are a major component of the metazoan cytoskeleton and are essential for normal cell morphology, motility, and signal transduction. Dysregulation of IFs causes a wide range of human diseases, including skin disorders, cardiomyopathies, lipodystrophy, and neuropathy. Despite this pathophysiological significance, how cells regulate IF structure, dynamics, and function remains poorly understood. Here, we show that site-specific modification of the prototypical IF protein vimentin with O-linked β-N-acetylglucosamine (O-GlcNAc) mediates its homotypic protein-protein interactions and is required in human cells for IF morphology and cell migration. In addition, we show that the intracellular pathogen Chlamydia trachomatis, which remodels the host IF cytoskeleton during infection, requires specific vimentin glycosylation sites and O-GlcNAc transferase activity to maintain its replicative niche. Our results provide new insight into the biochemical and cell biological functions of vimentin O-GlcNAcylation, and may have broad implications for our understanding of the regulation of IF proteins in general. Like the body's skeleton, the cytoskeleton gives shape and structure to the inside of a cell. Yet, unlike a skeleton, the cytoskeleton is ever changing. The cytoskeleton consists of many fibers each made from chains of protein molecules. One of these proteins is called vimentin and it forms intermediate filaments in the cytoskeleton. Many different types of cells contain vimentin and a lot of it is found in cancer cells that have spread beyond their original location to other sites in the body. Cells use chemical modifications to regulate cytoskeleton proteins. For example, through a process called glycosylation, cells can reversibly attach a sugar modification called O-GlcNAc to vimentin. O-GlcNAc can be attached to several different parts of vimentin and each location may have a different effect. It is not currently clear how cells control their vimentin filaments or what role O-GlcNAc plays in this process. Using genetic engineering, Tarbet et al. produced human cells in the laboratory with modified vimentin proteins. These altered proteins lacked some of the sites for O-GlcNAc attachment. The goal was to see whether the loss of O-GlcNAc at a specific location would affect fiber formation and cell behavior. The results showed one site where vimentin needs O-GlcNAc to form fibers. Without O-GlcNAc at this site, cells could not migrate towards chemical signals. In addition, in normal human cells, Chlamydia bacteria hijack vimentin and rearrange the filaments to form a cage around themselves for protection. However, the cells lacking O-GlcNAc on vimentin were resistant to infection by Chlamydia bacteria. These findings highlight the importance of O-GlcNAc on vimentin in healthy cells and during infection. Vimentin’s contribution to cell migration may also help to explain its role in the spread of cancer. The importance of O-GlcNAc suggests it could be a new target for therapies. Yet, it also highlights the need for caution due to the delicate balance between the activity of vimentin in healthy and diseased cells. In addition, human cells produce about 70 other vimentin-like proteins and further work will examine if they are also affected by O-GlcNAc.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - E Timothy O'Brien
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Department of Physics and Astronomy, University of North Carolina, Chapel Hill, United States
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| |
Collapse
|
4
|
Tarbet HJ, Toleman CA, Boyce M. A Sweet Embrace: Control of Protein-Protein Interactions by O-Linked β-N-Acetylglucosamine. Biochemistry 2017; 57:13-21. [PMID: 29099585 DOI: 10.1021/acs.biochem.7b00871] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a critical post-translational modification (PTM) of thousands of intracellular proteins. Reversible O-GlcNAcylation governs many aspects of cell physiology and is dysregulated in numerous human diseases. Despite this broad pathophysiological significance, major aspects of O-GlcNAc signaling remain poorly understood, including the biochemical mechanisms through which O-GlcNAc transduces information. Recent work from many laboratories, including our own, has revealed that O-GlcNAc, like other intracellular PTMs, can control its substrates' functions by inhibiting or inducing protein-protein interactions. This dynamic regulation of multiprotein complexes exerts diverse downstream signaling effects in a range of processes, cell types, and organisms. Here, we review the literature about O-GlcNAc-regulated protein-protein interactions and suggest important questions for future studies in the field.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| | - Clifford A Toleman
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| |
Collapse
|
5
|
Consequences of Keratin Phosphorylation for Cytoskeletal Organization and Epithelial Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 330:171-225. [DOI: 10.1016/bs.ircmb.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Kakade PS, Budnar S, Kalraiya RD, Vaidya MM. Functional Implications of O-GlcNAcylation-dependent Phosphorylation at a Proximal Site on Keratin 18. J Biol Chem 2016; 291:12003-13. [PMID: 27059955 DOI: 10.1074/jbc.m116.728717] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 01/16/2023] Open
Abstract
Keratins 8/18 (K8/18) are phosphoglycoproteins and form the major intermediate filament network of simple epithelia. The three O-GlcNAcylation (Ser(29), Ser(30), and Ser(48)) and two phosphorylation (Ser(33) and Ser(52)) serine sites on K18 are well characterized. Both of these modifications have been reported to increase K18 solubility and regulate its filament organization. In this report, we investigated the site-specific interplay between these two modifications in regulating the functional properties of K18, like solubility, stability, and filament organization. An immortalized hepatocyte cell line (HHL-17) stably expressing site-specific single, double, and triple O-GlcNAc and phosphomutants of K18 were used to identify the site(s) critical for regulating these functions. Keratin 18 mutants where O-GlcNAcylation at Ser(30) was abolished (K18-S30A) exhibited reduced phosphorylation induced solubility, increased stability, defective filament architecture, and slower migration. Interestingly, K18-S30A mutants also showed loss of phosphorylation at Ser(33), a modification known to regulate the solubility of K18. Further to this, the K18 phosphomutant (K18-S33A) mimicked K18-S30A in its stability, filament organization, and cell migration. These results indicate that O-GlcNAcylation at Ser(30) promotes phosphorylation at Ser(33) to regulate the functional properties of K18 and also impact cellular processes like migration. O-GlcNAcylation and phosphorylation on the same or adjacent sites on most proteins antagonize each other in regulating protein functions. Here we report a novel, positive interplay between O-GlcNAcylation and phosphorylation at adjacent sites on K18 to regulate its fundamental properties.
Collapse
Affiliation(s)
- Poonam S Kakade
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Srikanth Budnar
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Rajiv D Kalraiya
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Milind M Vaidya
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
7
|
|
8
|
Padidar S, Farquharson AJ, Williams LM, Hoggard N, Reid MD, Duncan GJ, Drew JE. Impact of obesity and leptin on protein expression profiles in mouse colon. Dig Dis Sci 2011; 56:1028-36. [PMID: 20824498 DOI: 10.1007/s10620-010-1394-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/11/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND Elevated leptin levels in obesity are associated with increased risk of colon pathology, implicating leptin signaling in colon disease. However, leptin-regulated processes in the colon are currently uncharacterized. Previously, we demonstrated that leptin receptors are expressed on colon epithelium and that increased adiposity and elevated plasma leptin in rats are associated with perturbed metabolism in colon tissue. Thus, we hypothesize that obesity disrupts expression of proteins regulated by leptin in the colon. METHODS A proteomic analysis was conducted to investigate firstly, differences in the colon of mice lacking leptin and leptin signaling (ob/ob and db/db, respectively) by comparing protein expression profiles with wild-type mice. Secondly, responses to leptin challenge in wild-type mice and ob/ob mice were compared to identify leptin-regulated proteins and associated cellular processes. RESULTS Forty proteins were identified with significantly altered expression patterns associated with differences in leptin status in comparisons between all groups of mice. These proteins are associated with calcium binding, cell cycle, cell proliferation, electron transport chain, energy metabolism, protein folding and transport, redox regulation, structural proteins, and proteins involved in transport and regulation of mucus production. CONCLUSIONS This study provides evidence that obesity and leptin significantly alter protein profiles of a number of proteins linked to cellular processes in colon tissues that may be linked to the increased risk of colon pathology associated with obesity.
Collapse
Affiliation(s)
- Sara Padidar
- Molecular Nutrition Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Srikanth B, Vaidya MM, Kalraiya RD. O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18. J Biol Chem 2010; 285:34062-71. [PMID: 20729549 DOI: 10.1074/jbc.m109.098996] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Keratins 8 and 18 (K8/18) are intermediate filament proteins expressed specifically in simple epithelial tissues. Dynamic equilibrium of these phosphoglycoproteins in the soluble and filament pool is an important determinant of their cellular functions, and it is known to be regulated by site-specific phosphorylation. However, little is known about the role of dynamic O-GlcNAcylation on this keratin pair. Here, by comparing immortalized (Chang) and transformed hepatocyte (HepG2) cell lines, we have demonstrated that O-GlcNAcylation of K8/18 exhibits a positive correlation with their solubility (Nonidet P-40 extractability). Heat stress, which increases K8/18 solubility, resulted in a simultaneous increase in O-GlcNAc on these proteins. Conversely, increasing O-GlcNAc levels were associated with a concurrent increase in their solubility. This was also associated with a notable decrease in total cellular levels of K8/18. Unaltered levels of transcripts and the reduced half-life of K8 and K18 indicated their decreased stability on increasing O-GlcNAcylation. On the contrary, the K18 glycosylation mutant (K18 S29A/S30A/S48A) was notably more stable than the wild type K18 in Chang cells. The K18-O-GlcNAc mutant accumulated as aggregates upon stable expression, which possibly altered endogenous filament architecture. These results strongly indicate the involvement of O-GlcNAc on K8/18 in regulating their solubility and stability, which may have a bearing on the functions of these keratins.
Collapse
Affiliation(s)
- Budnar Srikanth
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | | |
Collapse
|
10
|
Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem 2010; 285:5204-11. [PMID: 20018868 PMCID: PMC2820748 DOI: 10.1074/jbc.m109.077818] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/07/2009] [Indexed: 01/01/2023] Open
Abstract
Increased O-linked beta-N-acetylglucosamine (O-GlcNAc) is associated with insulin resistance in muscle and adipocytes. Upon insulin treatment of insulin-responsive adipocytes, O-GlcNAcylation of several proteins is increased. Key insulin signaling proteins, including IRS-1, IRS-2, and PDK1, are substrates for OGT, suggesting potential O-GlcNAc control points within the pathway. To elucidate the roles of O-GlcNAc in dampening insulin signaling (Vosseller, K., Wells, L., Lane, M. D., and Hart, G. W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5313-5318), we focused on the pathway upstream of AKT. Increasing O-GlcNAc in 3T3-L1 adipocytes decreases phosphoinositide 3-kinase (PI3K) interactions with both IRS-1 and IRS-2. Elevated O-GlcNAc also reduces phosphorylation of the PI3K p85 binding motifs (YXXM) of IRS-1 and results in a concomitant reduction in tyrosine phosphorylation of Y(608)XXM in IRS-1, one of the two main PI3K p85 binding motifs. Additionally, insulin signaling stimulates the interaction of OGT with PDK1. We conclude that one of the steps at which O-GlcNAc contributes to insulin resistance is by inhibiting phosphorylation at the Y(608)XXM PI3K p85 binding motif in IRS-1 and possibly at PDK1 as well.
Collapse
Affiliation(s)
- Stephen A. Whelan
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Wagner B. Dias
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | | | - M. Daniel Lane
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Gerald W. Hart
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| |
Collapse
|
11
|
Whelan SA, Lane MD, Hart GW. Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J Biol Chem 2008; 283:21411-7. [PMID: 18519567 DOI: 10.1074/jbc.m800677200] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-Linked beta-N-acetylglucosamine (O-GlcNAc) transferase (OGT) catalyzes the addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues in response to stimuli or stress analogous to phosphorylation by Ser/Thr-kinases. Like protein phosphatases, OGT appears to be targeted to myriad specific substrates by transiently interacting with specific targeting subunits. Here, we show that OGT is activated by insulin signaling. Insulin treatment of 3T3-L1 adipocytes stimulates both tyrosine phosphorylation and catalytic activity of OGT. A subset of OGT co-immunoprecipitates with the insulin receptor. Insulin stimulates purified insulin receptor to phosphorylate OGT in vitro. OGT is a competitive substrate with reduced and carboxyamidomethylated lysozyme (RCAM-lysozyme), a well characterized insulin receptor substrate. Insulin stimulation of 3T3-L1 adipocytes results in a partial translocation of OGT from the nucleus to the cytoplasm. The insulin activation of OGT results in increased O-GlcNAc modification of OGT and other proteins including, signal transducer and activator of transcription 3 (STAT3). We conclude that insulin stimulates the tyrosine phosphorylation and activity of OGT.
Collapse
Affiliation(s)
- Stephen A Whelan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
12
|
Hyder CL, Pallari HM, Kochin V, Eriksson JE. Providing cellular signposts - Post-translational modifications of intermediate filaments. FEBS Lett 2008; 582:2140-8. [DOI: 10.1016/j.febslet.2008.04.064] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
|