1
|
Pearson AJ, Gallagher ES. Overview of Characterizing Cancer Glycans with Lectin-Based Analytical Methods. Methods Mol Biol 2019; 1928:389-408. [PMID: 30725466 DOI: 10.1007/978-1-4939-9027-6_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycosylation is a post-translational modification that is often altered in disease development and progression, including cancer. In cancerous patients, the abnormal expression of glycosylation enzymes leads to aberrant glycosylation, which has been linked to malignant tissues. Due to aberrant glycosylation, the presence of specific glycans can be used as biomarkers for identifying the type and stage of cancer. Glycan structures are heterogeneous, with different protein glycoforms having different functional activities. Lectins are an important tool in glycan analysis due to their specificity in binding to unique glycan linkages and monosaccharide units, which allows for the identification of unique glycan structural properties. In this review, we will discuss the use of lectins in microarrays and chromatography for characterizing glycan structures.
Collapse
Affiliation(s)
- Amanda J Pearson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | | |
Collapse
|
2
|
Miura Y, Endo T. Glycomics and glycoproteomics focused on aging and age-related diseases--Glycans as a potential biomarker for physiological alterations. Biochim Biophys Acta Gen Subj 2016; 1860:1608-14. [PMID: 26801879 DOI: 10.1016/j.bbagen.2016.01.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity. SCOPE OF REVIEW We herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes. MAJOR CONCLUSIONS Glycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity. GENERAL SIGNIFICANCE Alterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Tamao Endo
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| |
Collapse
|
3
|
N-Glycosylation profiling of recombinant mouse extracellular superoxide dismutase produced in Chinese hamster ovary cells. Glycoconj J 2011; 28:183-96. [PMID: 21573946 DOI: 10.1007/s10719-011-9333-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD), the major SOD isoenzyme in biological fluids, is known to be N-glycosylated and heterogeneous as was detected in most glycoproteins. However, only one N-glycan structure has been reported in recombinant human EC-SOD produced in Chinese hamster ovary (CHO) cells. Thus, a precise N-glycan profile of the recombinant EC-SOD is not available. In this study, we report profiling of the N-glycan in the recombinant mouse EC-SOD produced in CHO cells using high-resolution techniques, including the liberation of N-glycans by treatment with PNGase F, fluorescence labeling by pyridylamination, characterization by anion-exchange, normal and reversed phase-HPLC separation, and mass spectrometry. We succeeded in identifying 26 different types of N-glycans in the recombinant enzyme. The EC-SOD N-glycans were basically core-fucosylated (98.3% of the total N-glycan content), and were high mannose sugar chain, and mono-, bi-, tri-, and tetra-antennary complex sugar chains exhibiting varying degrees of sialylation. Four of the identified N-glycans were uniquely modified with a sulfate group, a Lewis(x) structure, or an α-Gal epitope. The findings will shed new light on the structure-function relationships of EC-SOD N-glycans.
Collapse
|
4
|
Böttner M, Bär F, Von Koschitzky H, Tafazzoli K, Roblick UJ, Bruch HP, Wedel T. Laser microdissection as a new tool to investigate site-specific gene expression in enteric ganglia of the human intestine. Neurogastroenterol Motil 2010; 22:168-72, e52. [PMID: 19863635 DOI: 10.1111/j.1365-2982.2009.01424.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Myenteric ganglia are key-structures for the control of intestinal motility and their mRNA expression profiles might be altered under pathological conditions. A drawback of conventional RT-PCR from full-thickness specimens is that gene expression analysis is based on heterogeneously composed tissues. To overcome this problem, laser microdissection combined with real-time RT-PCR can be used to detect and quantify low levels of gene expression in isolated enteric ganglia. METHODS Fresh unfixed full-thickness specimens of sigmoid colon were obtained from patients (n = 8) with diseases unrelated to intestinal motility disorders. 10 microm cryo-sections were mounted on membrane-coated slides and ultra-rapidly stained with toluidine blue. Myenteric ganglia were isolated by laser microdissection and catapulting for mRNA isolation. Real-time RT-PCR was performed for selected growth factors, neurotransmitter receptors and specific cell type markers. KEY RESULTS Collection of 0.5 mm(2) of ganglionic tissue was sufficient to obtain positive RT-PCR results. Collection of 4 mm(2) resulted in ct-values allowing a reliable quantitative comparison of gene expression levels. mRNA analysis revealed that neurotrophic growth factor, neurotrophin-3, serotonin receptor 3A, PGP 9.5 and S100 beta are specifically expressed in myenteric ganglia of the human colon. CONCLUSIONS & INFERENCES Laser microdissection combined with real-time RT-PCR is a novel technique to reliably detect and quantify site-specific expression of low-abundance mRNAs (e.g. growth factors, neurotransmitter receptors) related to the human enteric nervous system. This technical approach expands the spectrum of available tools to characterize enteric neuropathologies underlying human gastrointestinal motility disorders at the molecular biological level.
Collapse
Affiliation(s)
- M Böttner
- Institute of Anatomy, University of Kiel, Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Misonou Y, Shida K, Korekane H, Seki Y, Noura S, Ohue M, Miyamoto Y. Comprehensive Clinico-Glycomic Study of 16 Colorectal Cancer Specimens: Elucidation of Aberrant Glycosylation and Its Mechanistic Causes in Colorectal Cancer Cells. J Proteome Res 2009; 8:2990-3005. [DOI: 10.1021/pr900092r] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yoshiko Misonou
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan, Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan, and Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Kyoko Shida
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan, Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan, and Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Hiroaki Korekane
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan, Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan, and Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Yosuke Seki
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan, Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan, and Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Shingo Noura
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan, Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan, and Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Masayuki Ohue
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan, Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan, and Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Yasuhide Miyamoto
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan, Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan, and Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| |
Collapse
|
7
|
Blatt R, Srinivasan S. Defining disease with laser precision: laser capture microdissection in gastroenterology. Gastroenterology 2008; 135:364-9. [PMID: 18619446 PMCID: PMC3736118 DOI: 10.1053/j.gastro.2008.06.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Laser capture microdissection (LCM) is an efficient and precise method for obtaining pure cell populations or specific cells of interest from a given tissue sample. LCM has been applied to animal and human gastroenterology research in analyzing the protein, DNA, and RNA from all organs of the gastrointestinal system. There are numerous potential applications for this technology in gastroenterology research, including malignancies of the esophagus, stomach, colon, biliary tract, and liver. This technology can also be used to study gastrointestinal infections, inflammatory bowel disease, pancreatitis, motility, malabsorption, and radiation enteropathy. LCM has multiple advantages when compared with conventional methods of microdissection, and this technology can be exploited to identify precursors to disease, diagnostic biomarkers, and therapeutic interventions.
Collapse
|
8
|
Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda JI, Hirabayashi J. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem Biophys Res Commun 2008; 370:259-63. [PMID: 18375199 DOI: 10.1016/j.bbrc.2008.03.090] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 11/26/2022]
Abstract
An ultra-sensitive method for glycan analysis targeting small tissue sections (1.5mm in diameter) is described as an application of a recently-established lectin microarray technology. The developed system achieved a high level of detection of a tissue section consisting of approximately 500 cells for differential profiling, where both N- and O-glycans attached to a pool of glycoproteins are subjected to multiplex analysis with 43 lectins. By using an optimized protocol for differential glycan analysis, sections of adenocarcinoma (n=28) and normal epithelia (n=12) of the colon were analyzed in an all-in-one manner. As a result, Wisteria floribunda agglutinin (WFA) was found to clearly differentiate cancerous from normal epithelia with P<0.0001. The obtained results correlated well with the subsequent histochemical study using biotinylated WFA. Thus, the developed technology proved to be valid for expanding the lectin microarray applications to tissue-based glycomics, and hence, should accelerate a discovery phase of glycan-related biomarkers.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Lectin Application and Analysis Team, Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
| | | | | | | | | | | |
Collapse
|