1
|
Yang J, Sun L, Liu X, Huang C, Peng J, Zeng X, Zheng H, Cen W, Xu Y, Zhu W, Wu X, Ling D, Zhang L, Wei M, Liu Y, Wang D, Wang F, Li Y, Li Q, Du Z. Targeted demethylation of the CDO1 promoter based on CRISPR system inhibits the malignant potential of breast cancer cells. Clin Transl Med 2023; 13:e1423. [PMID: 37740473 PMCID: PMC10517212 DOI: 10.1002/ctm2.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cysteine dioxygenase 1 (CDO1) is frequently methylated, and its expression is decreased in many human cancers including breast cancer (BC). However, the functional and mechanistic aspects of CDO1 inactivation in BC are poorly understood, and the diagnostic significance of serum CDO1 methylation remains unclear. METHODS We performed bioinformatics analysis of publicly available databases and employed MassARRAY EpiTYPER methylation sequencing technology to identify differentially methylated sites in the CDO1 promoter of BC tissues compared to normal adjacent tissues (NATs). Subsequently, we developed a MethyLight assay using specific primers and probes for these CpG sites to detect the percentage of methylated reference (PMR) of the CDO1 promoter. Furthermore, both LentiCRISPR/dCas9-Tet1CD-based CDO1-targeted demethylation system and CDO1 overexpression strategy were utilized to detect the function and underlying mechanism of CDO1 in BC. Finally, the early diagnostic value of CDO1 as a methylation biomarker in BC serum was evaluated. RESULTS CDO1 promoter was hypermethylated in BC tissues, which was related to poor prognosis (p < .05). The CRISPR/dCas9-based targeted demethylation system significantly reduced the PMR of CDO1 promotor and increased CDO1 expression in BC cells. Consequently, this leads to suppression of cell proliferation, migration and invasion. Additionally, we found that CDO1 exerted a tumour suppressor effect by inhibiting the cell cycle, promoting cell apoptosis and ferroptosis. Furthermore, we employed the MethyLight to detect CDO1 PMR in BC serum, and we discovered that serum CDO1 methylation was an effective non-invasive biomarker for early diagnosis of BC. CONCLUSIONS CDO1 is hypermethylated and acts as a tumour suppressor gene in BC. Epigenetic editing of abnormal CDO1 methylation could have a crucial role in the clinical treatment and prognosis of BC. Additionally, serum CDO1 methylation holds promise as a valuable biomarker for the early diagnosis and management of BC.
Collapse
Affiliation(s)
- Jiaojiao Yang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Liyue Sun
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Xiao‐Yun Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Chan Huang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Junling Peng
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xinxin Zeng
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Hailin Zheng
- Department of Clinical LaboratorySun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Wenjian Cen
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Xia Xu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Weijie Zhu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xiao‐Yan Wu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Dongyi Ling
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Lu‐Lu Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Mingbiao Wei
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Ye Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Deshen Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Feng‐Hua Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Hong Li
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
| | - Ziming Du
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| |
Collapse
|
2
|
Maekawa H, Ito T, Orita H, Kushida T, Sakurada M, Sato K, Hulbert A, Brock MV. Analysis of the methylation of CpG islands in the CDO1, TAC1 and CHFR genes in pancreatic ductal cancer. Oncol Lett 2020; 19:2197-2204. [PMID: 32194717 PMCID: PMC7039134 DOI: 10.3892/ol.2020.11340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
No difference in the gene methylation status of tumor-suppression genes between pancreatic cancer tissues and adjacent non-cancer tissues is observed. The present study investigated whether the promoter CpG islands of the cysteine dioxygenase 1 (CDO1), tachykinin precursor 1 (TAC1) and checkpoint with forkhead and ring finger domains (CHFR) genes were methylated in pancreatic cancer and adjacent non-cancerous pancreatic tissue in order to determine if they could be considered as markers for the detection of pancreatic cancer. A total of 38 Formalin-fixed and paraffin-embedded pancreatic adenocarcinoma tissues and their adjacent non-cancerous specimens from patients with pancreatic cancer, as well as 9 non-cancerous pancreatic samples from patients without pancreatic adenocarcinoma were obtained following surgical resection. The hypermethylation of CpG islands was detected using a methylation-specific quantitative PCR. The methylation values were calculated using the ∆Cq method and were expressed as 2−ΔCq. The 2−ΔCq value of the CDO1 promoter from pancreatic adenocarcinoma specimens was significantly higher compared with that of adjacent non-cancerous and tumor-free pancreatic tissues (P<0.0001 and P=0.0008, respectively). The 2−ΔCq value of the TAC1 promoter of pancreatic adenocarcinoma was also significantly higher compared with that of adjacent non-cancerous tissues and tumor-free pancreatic samples (both P<0.0001). However, there was no significant difference in the 2−ΔCq value of the CHFR promoter among the pancreatic cancer, adjacent non-cancer tissue and tumor-free pancreatic samples. Furthermore, 12 out of the 38 pancreatic adenocarcinoma cases (31.6%) presented some methylation in the CHFR promoter. The results from Kaplan-Meier analysis between CHFR promoter methylation values and the clinicopathological characteristics of patients with pancreatic adenocarcinoma demonstrated that CHFR promoter methylation was significantly associated with lymph node metastasis. The methylation values of CDO1 and TAC1 promoters in cancer tissues were higher compared with adjacent tissues. However, whether hypermethylation of CDO1 and TAC1 promoters may serve as a biomarker in the diagnosis of pancreatic adenocarcinoma remains unclear.
Collapse
Affiliation(s)
- Hiroshi Maekawa
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Tomoaki Ito
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan.,Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Hajime Orita
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Tomoyuki Kushida
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Mutsumi Sakurada
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Izunokuni, Shizuoka 410-2295, Japan
| | - Alicia Hulbert
- Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA.,Department of Surgery, University of Illinois at Chicago School of Medicine, Chicago, IL 60607, USA
| | - Malcolm V Brock
- Department of Surgery, The Sidney Kimmel Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Genetic regulation of longevity and age-associated diseases through the methionine sulfoxide reductase system. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1756-1762. [PMID: 30481589 DOI: 10.1016/j.bbadis.2018.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
Methionine sulfoxide reductase enzymes are a protective system against biological oxidative stress in aerobic organisms. Modifications to this antioxidant system have been shown to impact the lifespan of several model system organisms. In humans, methionine oxidation of critical proteins and deficiencies in the methionine sulfoxide reductase system have been linked to age-related diseases, including cancer and neurodegenerative disease. Substrates for methionine sulfoxide reductases have been reviewed multiple times, and are still an active area of discovery. In contrast, less is known about the genetic regulation of methionine sulfoxide reductases. In this review, we discuss studies on the genetic regulation of the methionine sulfoxide reductase system with relevance to longevity and age-related diseases. A better understanding of genetic regulation for methionine sulfoxide reductases may lead to new therapeutic approaches for age-related diseases in the future.
Collapse
|
4
|
Choi JI, Cho EH, Kim SB, Kim R, Kwon J, Park M, Shin HJ, Ryu HS, Park SH, Lee KH. Promoter methylation of cysteine dioxygenase type 1: gene silencing and tumorigenesis in hepatocellular carcinoma. Ann Hepatobiliary Pancreat Surg 2017; 21:181-187. [PMID: 29264579 PMCID: PMC5736736 DOI: 10.14701/ahbps.2017.21.4.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022] Open
Abstract
Backgrounds/Aims Cysteine dioxygenase type 1 (CDO1) acts as a tumor suppressor and is silenced by promoter methylation in various malignancies. The relationship between the CDO1 methylation status and hepatocellular carcinoma (HCC) tumorigenesis was evaluated. Methods Using a HCC cell line (SNU423), an in vitro demethylation study was performed to confirm whether promoter methylation causes CDO1 down-regulation. The SNU423 cells transfected with the CDO1 cell function was compared to that of naïve cells. An in vivo study using immunohistochemical staining of HCC specimens that were collected from patients who underwent curative liver resection was also performed. Results CDO1 was activated after demethylation treatment in the HCC specimens. Moreover, tumor cell proliferation, colony-forming, migration, and invasion activities significantly decreased after CDO1 transfection (p<0.05). The percentage of tumors that were larger than 5 cm was higher in patients who had a lower expression of CDO1 (p=0.030). Vascular invasion and histological grade were independent prognostic factors for poor overall and recurrence-free survival. The degree of CDO1 expression was not an independent prognostic factor in this study's population. Conclusions These results suggested that methylation down-regulated CDO1 expression in the HCC cells. CDO1 methylation may be a potentially valuable diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Jung-Il Choi
- Department of Surgery, Korea Cancer Center Hospital, Seoul, Korea
| | - Eung-Ho Cho
- Department of Surgery, Korea Cancer Center Hospital, Seoul, Korea
| | - Sang Bum Kim
- Department of Surgery, Korea Cancer Center Hospital, Seoul, Korea
| | - Ryounggo Kim
- Department of Surgery, Dongnam Institution of Radiological & Medical Sciences, Busan, Korea
| | - Junhye Kwon
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Misun Park
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hye-Jin Shin
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Sun-Hoo Park
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medication Sciences, Seoul, Korea
| |
Collapse
|
5
|
Minatani N, Waraya M, Yamashita K, Kikuchi M, Ushiku H, Kojo K, Ema A, Nishimiya H, Kosaka Y, Katoh H, Sengoku N, Tanino H, Sidransky D, Watanabe M. Prognostic Significance of Promoter DNA Hypermethylation of cysteine dioxygenase 1 (CDO1) Gene in Primary Breast Cancer. PLoS One 2016; 11:e0144862. [PMID: 26785325 PMCID: PMC4718689 DOI: 10.1371/journal.pone.0144862] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
Using pharmacological unmasking microarray, we identified promoter DNA methylation of cysteine dioxygenase 1 (CDO1) gene in human cancer. In this study, we assessed the clinicopathological significance of CDO1 methylation in primary breast cancer (BC) with no prior chemotherapy. The CDO1 DNA methylation was quantified by TaqMan methylation specific PCR (Q-MSP) in 7 BC cell lines and 172 primary BC patients with no prior chemotherapy. Promoter DNA of the CDO1 gene was hypermethylated in 6 BC cell lines except SK-BR3, and CDO1 gene expression was all silenced at mRNA level in the 7 BC cell lines. Quantification of CDO1 methylation was developed using Q-MSP, and assessed in primary BC. Among the clinicopathologic factors, CDO1 methylation level was not statistically significantly associated with any prognostic factors. The log-rank plot analysis elucidated that the higher methylation the tumors harbored, the poorer prognosis the patients exhibited. Using the median value of 58.0 as a cut-off one, disease specific survival in BC patients with CDO1 hypermethylation showed significantly poorer prognosis than those with hypomethylation (p = 0.004). Multivariate Cox proportional hazards model identified that CDO1 hypermethylation was prognostic factor as well as Ki-67 and hormone receptor status. The most intriguingly, CDO1 hypermethylation was of robust prognostic relevance in triple negative BC (p = 0.007). Promoter DNA methylation of CDO1 gene was robust prognostic indicator in primary BC patients with no prior chemotherapy. Prognostic relevance of the CDO1 promoter DNA methylation is worthy of being paid attention in triple negative BC cancer.
Collapse
Affiliation(s)
- Naoko Minatani
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mina Waraya
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mariko Kikuchi
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroshi Nishimiya
- Department of Surgery, Yamato Municipal Hospital, Yamato, Kanagawa, Japan
| | - Yoshimasa Kosaka
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Norihiko Sengoku
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hirokazu Tanino
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - David Sidransky
- Department of Otolaryngology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
6
|
Cysteine dioxygenase 1 is a tumor suppressor gene silenced by promoter methylation in multiple human cancers. PLoS One 2012; 7:e44951. [PMID: 23028699 PMCID: PMC3459978 DOI: 10.1371/journal.pone.0044951] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
The human cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinate, and plays a key role in taurine biosynthesis. In our search for novel methylated gene promoters, we have analyzed differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of 5-aza-2′-deoxycytidine. Among the genes identified, the CDO1 promoter was found to be differentially methylated in primary CRC tissues with high frequency compared to normal colon tissues. In addition, a statistically significant difference in the frequency of CDO1 promoter methylation was observed between primary normal and tumor tissues derived from breast, esophagus, lung, bladder and stomach. Downregulation of CDO1 mRNA and protein levels were observed in cancer cell lines and tumors derived from these tissue types. Expression of CDO1 was tightly controlled by promoter methylation, suggesting that promoter methylation and silencing of CDO1 may be a common event in human carcinogenesis. Moreover, forced expression of full-length CDO1 in human cancer cells markedly decreased the tumor cell growth in an in vitro cell culture and/or an in vivo mouse model, whereas knockdown of CDO1 increased cell growth in culture. Our data implicate CDO1 as a novel tumor suppressor gene and a potentially valuable molecular marker for human cancer.
Collapse
|
7
|
Dietrich D, Krispin M, Dietrich J, Fassbender A, Lewin J, Harbeck N, Schmitt M, Eppenberger-Castori S, Vuaroqueaux V, Spyratos F, Foekens JA, Lesche R, Martens JWM. CDO1 promoter methylation is a biomarker for outcome prediction of anthracycline treated, estrogen receptor-positive, lymph node-positive breast cancer patients. BMC Cancer 2010; 10:247. [PMID: 20515469 PMCID: PMC2893112 DOI: 10.1186/1471-2407-10-247] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 06/01/2010] [Indexed: 01/13/2023] Open
Abstract
Background Various biomarkers for prediction of distant metastasis in lymph-node negative breast cancer have been described; however, predictive biomarkers for patients with lymph-node positive (LNP) disease in the context of distinct systemic therapies are still very much needed. DNA methylation is aberrant in breast cancer and is likely to play a major role in disease progression. In this study, the DNA methylation status of 202 candidate loci was screened to identify those loci that may predict outcome in LNP/estrogen receptor-positive (ER+) breast cancer patients with adjuvant anthracycline-based chemotherapy. Methods Quantitative bisulfite sequencing was used to analyze DNA methylation biomarker candidates in a retrospective cohort of 162 LNP/ER+ breast cancer patients, who received adjuvant anthracycline-based chemotherapy. First, twelve breast cancer specimens were analyzed for all 202 candidate loci to exclude genes that showed no differential methylation. To identify genes that predict distant metastasis, the remaining loci were analyzed in 84 selected cases, including the 12 initial ones. Significant loci were analyzed in the remaining 78 independent cases. Metastasis-free survival analysis was conducted by using Cox regression, time-dependent ROC analysis, and the Kaplan-Meier method. Pairwise multivariate regression analysis was performed by linear Cox Proportional Hazard models, testing the association between methylation scores and clinical parameters with respect to metastasis-free survival. Results Of the 202 loci analysed, 37 showed some indication of differential DNA methylation among the initial 12 patient samples tested. Of those, 6 loci were associated with outcome in the initial cohort (n = 84, log rank test, p < 0.05). Promoter DNA methylation of cysteine dioxygenase 1 (CDO1) was confirmed in univariate and in pairwise multivariate analysis adjusting for age at surgery, pathological T stage, progesterone receptor status, grade, and endocrine therapy as a strong and independent biomarker for outcome prediction in the independent validation set (log rank test p-value = 0.0010). Conclusions CDO1 methylation was shown to be a strong predictor for distant metastasis in retrospective cohorts of LNP/ER+ breast cancer patients, who had received adjuvant anthracycline-based chemotherapy.
Collapse
|
8
|
Minniti AN, Cataldo R, Trigo C, Vasquez L, Mujica P, Leighton F, Inestrosa NC, Aldunate R. Methionine sulfoxide reductase A expression is regulated by the DAF-16/FOXO pathway in Caenorhabditis elegans. Aging Cell 2009; 8:690-705. [PMID: 19747232 DOI: 10.1111/j.1474-9726.2009.00521.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The methionine sulfoxide reductase system has been implicated in aging and protection against oxidative stress. This conserved system reverses the oxidation of methionine residues within proteins. We analyzed one of the components of this system, the methionine sulfoxide reductase A gene, in Caenorhabditis elegans. We found that the msra-1 gene is expressed in most tissues, particularly in the intestine and the nervous system. Worms carrying a deletion of the msra-1 gene are more sensitive to oxidative stress, show chemotaxis and locomotory defects, and a 30% decrease in median survival. We established that msra-1 expression decreases during aging and is regulated by the DAF-16/FOXO3a transcription factor. The absence of this enzyme decreases median survival and affects oxidative stress resistance of long lived daf-2 worms. A similar effect of MSRA-1 absence in wild-type and daf-2 (where most antioxidant enzymes are activated) backgrounds, suggests that the lack of this member of the methionine repair system cannot be compensated by the general antioxidant response. Moreover, FOXO3a directly activates the human MsrA promoter in a cell culture system, implying that this could be a conserved mechanism of MsrA regulation. Our results suggest that repair of oxidative damage in proteins influences the rate at which tissues age. This repair mechanism, rather than the general decreased of radical oxygen species levels, could be one of the main determinants of organisms' lifespan.
Collapse
Affiliation(s)
- Alicia N Minniti
- Centro de Envejecimiento y Regeneración, Centro de Regulación Celular y Patología Joaquin V. Luco, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee BC, Le DT, Gladyshev VN. Mammals reduce methionine-S-sulfoxide with MsrA and are unable to reduce methionine-R-sulfoxide, and this function can be restored with a yeast reductase. J Biol Chem 2008; 283:28361-9. [PMID: 18697736 PMCID: PMC2568918 DOI: 10.1074/jbc.m805059200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/30/2008] [Indexed: 12/29/2022] Open
Abstract
Methionine is an essential amino acid in mammals at the junction of methylation, protein synthesis, and sulfur pathways. However, this amino acid is highly susceptible to oxidation, resulting in a mixture of methionine-S-sulfoxide and methionine-R-sulfoxide. Whether methionine is quantitatively regenerated from these compounds is unknown. Here we report that SK-Hep1 hepatocytes grew on methionine-S-sulfoxide and consumed this compound by import and methionine-S-sulfoxide reductase (MsrA)-dependent reduction, but methionine-R-sulfoxide reductases were not involved in this process, and methionine-R-sulfoxide could not be used by the cells. However, SK-Hep1 cells expressing a yeast free methionine-R-sulfoxide reductase proliferated in the presence of either sulfoxide, reduced them, and showed increased resistance to oxidative stress. Only methionine-R-sulfoxide was detected in the plasma of wild type mice, but both sulfoxides were in the plasma of MsrA knock-out mice. These results show that mammals can support methionine metabolism by reduction of methionine-S-sulfoxide, that this process is dependent on MsrA, that mammals are inherently deficient in the reduction of methionine-R-sulfoxide, and that expression of yeast free methionine-R-sulfoxide reductase can fully compensate for this deficiency.
Collapse
Affiliation(s)
- Byung Cheon Lee
- Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | |
Collapse
|
10
|
Satish L, LaFramboise WA, O'Gorman DB, Johnson S, Janto B, Gan BS, Baratz ME, Hu FZ, Post JC, Ehrlich GD, Kathju S. Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren's Contracture. BMC Med Genomics 2008; 1:10. [PMID: 18433489 PMCID: PMC2377253 DOI: 10.1186/1755-8794-1-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 04/23/2008] [Indexed: 11/10/2022] Open
Abstract
Dupuytren's contracture (DC) is the most common inherited connective tissue disease of humans and is hypothesized to be associated with aberrant wound healing of the palmar fascia. Fibroblasts and myofibroblasts are believed to play an important role in the genesis of DC and the fibroproliferation and contraction that are hallmarks of this disease. This study compares the gene expression profiles of fibroblasts isolated from DC patients and controls in an attempt to identify key genes whose regulation might be significantly altered in fibroblasts found within the palmar fascia of Dupuytren's patients. Total RNA isolated from diseased palmar fascia (DC) and normal palmar fascia (obtained during carpal tunnel release; 6 samples per group) was subjected to quantitative analyses using two different microarray platforms (GE Code Linktrade mark and Illuminatrade mark) to identify and validate differentially expressed genes. The data obtained was analyzed using The Significance Analysis of Microarrays (SAM) software through which we identified 69 and 40 differentially regulated gene transcripts using the CodeLinktrade mark and Illuminatrade mark platforms, respectively. The CodeLinktrade mark platform identified 18 upregulated and 51 downregulated genes. Using the Illuminatrade mark platform, 40 genes were identified as downregulated, eleven of which were identified by both platforms. Quantitative RT-PCR confirmed the downregulation of three high-interest candidate genes which are all components of the extracellular matrix: proteoglycan 4 (PRG4), fibulin-1 (FBLN-1) transcript variant D, and type XV collagen alpha 1 chain. Overall, our study has identified a variety of candidate genes that may be involved in the pathophysiology of Dupuytren's contracture and may ultimately serve as attractive molecular targets for alternative therapies.
Collapse
Affiliation(s)
- Latha Satish
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|