1
|
Chen PY, Wu CC, Lu DH, Sumi S, Lin FH, Yang KC. Microenvironment-regulated gene expression, morphology, and in vivo performance of mouse pancreatic β-cells. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Cho IS, Jung M, Kwon KS, Moon E, Cho JH, Yoon KH, Kim JW, Lee YD, Kim SS, Suh-Kim H. Deregulation of CREB signaling pathway induced by chronic hyperglycemia downregulates NeuroD transcription. PLoS One 2012; 7:e34860. [PMID: 22509362 PMCID: PMC3318007 DOI: 10.1371/journal.pone.0034860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 03/08/2012] [Indexed: 01/05/2023] Open
Abstract
CREB mediates the transcriptional effects of glucose and incretin hormones in insulin-target cells and insulin-producing β-cells. Although the inhibition of CREB activity is known to decrease the β-cell mass, it is still unknown what factors inversely alter the CREB signaling pathway in β-cells. Here, we show that β-cell dysfunctions occurring in chronic hyperglycemia are not caused by simple inhibition of CREB activity but rather by the persistent activation of CREB due to decreases in protein phophatase PP2A. When freshly isolated rat pancreatic islets were chronically exposed to 25 mM (high) glucose, the PP2A activity was reduced with a concomitant increase in active pCREB. Brief challenges with 15 mM glucose or 30 µM forskolin after 2 hour fasting further increased the level of pCREB and consequently induced the persistent expression of ICER. The excessively produced ICER was sufficient to repress the transcription of NeuroD, insulin, and SUR1 genes. In contrast, when islets were grown in 5 mM (low) glucose, CREB was transiently activated in response to glucose or forskolin stimuli. Thus, ICER expression was transient and insufficient to repress those target genes. Importantly, overexpression of PP2A reversed the adverse effects of chronic hyperglycemia and successfully restored the transient activation of CREB and ICER. Conversely, depletion of PP2A with siRNA was sufficient to disrupt the negative feedback regulation of CREB and induce hyperglycemic phenotypes even under low glucose conditions. Our findings suggest that the failure of the negative feedback regulation of CREB is the primary cause for β-cell dysfunctions under conditions of pathogenic hyperglycemia, and PP2A can be a novel target for future therapies aiming to protect β-cells mass in the late transitional phase of non-insulin dependent type 2 diabetes (NIDDM).
Collapse
Affiliation(s)
- In-Su Cho
- Department of Anatomy, Ajou University, Suwon, South Korea
- Graduate Neuroscience Program, Ajou University, Suwon, South Korea
- BK21, Division of Cell Transformation and Restoration, Ajou University, Suwon, South Korea
| | - Miyoung Jung
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Eunpyo Moon
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Jang-Hyeon Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kun-Ho Yoon
- Department of Endocrinology, Catholic University, School of Medicine, Seoul, South Korea
| | - Ji-Won Kim
- Department of Endocrinology, Catholic University, School of Medicine, Seoul, South Korea
| | - Young-Don Lee
- Department of Anatomy, Ajou University, Suwon, South Korea
- Molecular Science and Technology, Ajou University, Suwon, South Korea
- Control for Cell Death Regulating Biodrug, Ajou University, Suwon, South Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University, Suwon, South Korea
- Control for Cell Death Regulating Biodrug, Ajou University, Suwon, South Korea
- * E-mail: (HS-K); (S-SK)
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University, Suwon, South Korea
- Graduate Neuroscience Program, Ajou University, Suwon, South Korea
- BK21, Division of Cell Transformation and Restoration, Ajou University, Suwon, South Korea
- * E-mail: (HS-K); (S-SK)
| |
Collapse
|
3
|
Cawley NX, Wetsel WC, Murthy SRK, Park JJ, Pacak K, Loh YP. New roles of carboxypeptidase E in endocrine and neural function and cancer. Endocr Rev 2012; 33:216-53. [PMID: 22402194 PMCID: PMC3365851 DOI: 10.1210/er.2011-1039] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/18/2012] [Indexed: 01/14/2023]
Abstract
Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
4
|
Yang KC, Qi Z, Yanai G, Shirouza Y, Lu DH, Lee HS, Sumi S. Cell coupling regulates Ins1, Pdx-1 and MafA to promote insulin secretion in mouse pancreatic beta cells. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Ma WN, Park SY, Han JS. Role of phospholipase D1 in glucose-induced insulin secretion in pancreatic Beta cells. Exp Mol Med 2010; 42:456-64. [PMID: 20448441 DOI: 10.3858/emm.2010.42.6.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As glucose is known to induce insulin secretion in pancreatic Beta cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic Beta-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/ Beta2 pathway in MIN6N8 cells.
Collapse
Affiliation(s)
- Wei-na Ma
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | | | | |
Collapse
|
6
|
Gu C, Stein GH, Pan N, Goebbels S, Hörnberg H, Nave KA, Herrera P, White P, Kaestner KH, Sussel L, Lee JE. Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab 2010; 11:298-310. [PMID: 20374962 PMCID: PMC2855640 DOI: 10.1016/j.cmet.2010.03.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 12/06/2009] [Accepted: 03/16/2010] [Indexed: 12/19/2022]
Abstract
NeuroD, a transactivator of the insulin gene, is critical for development of the endocrine pancreas, and NeuroD mutations cause MODY6 in humans. To investigate the role of NeuroD in differentiated beta cells, we generated mice in which neuroD is deleted in insulin-expressing cells. These mice exhibit severe glucose intolerance. Islets lacking NeuroD respond poorly to glucose and display a glucose metabolic profile similar to immature beta cells, featuring increased expression of glycolytic genes and LDHA, elevated basal insulin secretion and O2 consumption, and overexpression of NPY. Moreover, the mutant islets appear to have defective K(ATP) channel-mediated insulin secretion. Unexpectedly, virtually all insulin in the mutant mice is derived from ins2, whereas ins1 expression is almost extinguished. Overall, these results indicate that NeuroD is required for beta cell maturation and demonstrate the importance of NeuroD in the acquisition and maintenance of fully functional glucose-responsive beta cells.
Collapse
Affiliation(s)
- Chunyan Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Production and secretion of insulin from the β-cells of the pancreas is very crucial in maintaining normoglycaemia. This is achieved by tight regulation of insulin synthesis and exocytosis from the β-cells in response to changes in blood glucose levels. The synthesis of insulin is regulated by blood glucose levels at the transcriptional and post-transcriptional levels. Although many transcription factors have been implicated in the regulation of insulin gene transcription, three β-cell-specific transcriptional regulators, Pdx-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation 1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A), have been demonstrated to play a crucial role in glucose induction of insulin gene transcription and pancreatic β-cell function. These three transcription factors activate insulin gene expression in a co-ordinated and synergistic manner in response to increasing glucose levels. It has been shown that changes in glucose concentrations modulate the function of these β-cell transcription factors at multiple levels. These include changes in expression levels, subcellular localization, DNA-binding activity, transactivation capability and interaction with other proteins. Furthermore, all three transcription factors are able to induce insulin gene expression when expressed in non-β-cells, including liver and intestinal cells. The present review summarizes the recent findings on how glucose modulates the function of the β-cell transcription factors Pdx-1, NeuroD1 and MafA, and thereby tightly regulates insulin synthesis in accordance with blood glucose levels.
Collapse
|
8
|
D’Alessandro R, Klajn A, Stucchi L, Podini P, Malosio ML, Meldolesi J. Expression of the neurosecretory process in pc12 cells is governed by rest. J Neurochem 2008; 105:1369-83. [DOI: 10.1111/j.1471-4159.2008.05259.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|