1
|
Lin M, Dan H. Design of a novel affinity probe using the cell wall-binding domain of a Listeria monocytogenes autolysin for pathogen detection. Microbiol Spectr 2023; 11:e0535622. [PMID: 37795989 PMCID: PMC10714868 DOI: 10.1128/spectrum.05356-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/18/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Human listeriosis is caused by consuming foods contaminated with the bacterial pathogen Listeria monocytogenes, leading to the development of a severe and life-threatening foodborne illness. Detection of L. monocytogenes present in food and food processing environments is crucial for preventing Listeria infection. The L. monocytogenes peptidoglycan hydrolase IspC anchors non-covalently to the bacterial surface through its C-terminal cell wall-binding domain (CWBD), CWBDIspC. This study explored the surface binding property of CWBDIspC to design, construct, characterize, and assess an affinity molecular probe for detecting L. monocytogenes. CWBDIspC recognized a cell wall ligand lipoteichoic acid that remains evenly displayed and mostly unoccupied on the bacterial surface for interaction with the exogenously added CWBDIspC. CWBDIspC, when fused to the enhanced green fluorescent protein reporter or covalently conjugated onto magnetic beads, exhibited the functionality as an antibody alternative for rapid detection and efficient separation of the pathogen.
Collapse
Affiliation(s)
- Min Lin
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hanhong Dan
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Cardoso VM, Campani G, Santos MP, Silva GG, Pires MC, Gonçalves VM, de C. Giordano R, Sargo CR, Horta AC, Zangirolami TC. Cost analysis based on bioreactor cultivation conditions: Production of a soluble recombinant protein using Escherichia coli BL21(DE3). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00441. [PMID: 32140446 PMCID: PMC7049567 DOI: 10.1016/j.btre.2020.e00441] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
Abstract
The impact of cultivation strategy on the cost of recombinant protein production is crucial for defining cost-effective bioreactor operation conditions. This paper presents a methodology to estimate and compare cost impacts related to utilities as well as medium composition, using simple design equations and accessible data. Data from batch bioreactor cultures were used as case study involving the production of pneumococcal surface protein A, a soluble recombinant protein, employing E. coli BL21(DE3). Cultivation strategies and corresponding process costs covered a wide range of operational conditions, including different media, inducers, and temperatures. The core expenses were related to the medium and cooling. When the price of peptone was above the threshold value of US$ 30/kg, defined medium became the best choice. IPTG and temperatures around 32 °C led to shorter cultures and lower PspA4Pro production costs. The procedure offers a simple, accessible theoretical tool to identify cost-effective production strategies using bioreactors.
Collapse
Affiliation(s)
- Valdemir M. Cardoso
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Gilson Campani
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
- Department of Engineering, Federal University of Lavras, 37200-000, Lavras, MG, Brazil
| | - Maurício P. Santos
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Gabriel G. Silva
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Manuella C. Pires
- Laboratory of Vaccine Development, Butantan Institute, Av. Vital Brasil 1500, 05508-900, São Paulo, SP, Brazil
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Butantan Institute, Av. Vital Brasil 1500, 05508-900, São Paulo, SP, Brazil
| | - Roberto de C. Giordano
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Cíntia R. Sargo
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Antônio C.L. Horta
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Teresa C. Zangirolami
- Graduate Program of Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
3
|
Monoclonal antibodies recognizing the surface autolysin IspC of Listeria monocytogenes serotype 4b: epitope localization, kinetic characterization, and cross-reaction studies. PLoS One 2013; 8:e55098. [PMID: 23390515 PMCID: PMC3563664 DOI: 10.1371/journal.pone.0055098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/23/2012] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes serotype 4b is responsible for a high percentage of fatal cases of food-borne infection. In a previous study, we created 15 monoclonal antibodies (MAbs) against a ∼77 kDa antigen that is associated with the cell surface of live L. monocytogenes serotype 4b cells. Here we report an extensive characterization of these MAbs to further their development as diagnostic reagents. The ∼77 kDa target antigen was identified by mass spectrometry and N-terminal sequencing to be IspC, a novel surface associated autolysin. Epitope localization experiments revealed that each of the 15 MAbs recognized the C-terminal cell-wall binding domain of IspC. The presence of IspC was shown to be highly conserved within L. monocytogenes serotype 4b, as evidenced by a strong reaction between anti-IspC MAbs and all 4b isolates. To determine the range of cross-reactivity with other L. monocytogenes serotypes ELISA was used to test each MAb against multiple isolates from each of the L. monocytogenes serotypes. Of the 15 MAbs, five: M2774, M2775, M2780, M2790 and M2797, showed specificity for L. monocytogenes serotype 4b and only cross reacted with serotype 4ab isolates. The kinetics of the interaction between each of the MAbs and IspC was measured using surface plasmon resonance. The MAbs M2773, M2792, M2775, M2797 and M2781 each had very low dissociation constants (4.5 × 10−9 to 1.2 × 10−8 M). While several of these antibodies have properties which could be useful in diagnostic tests, the combined high fidelity and affinity of M2775 for the IspC protein and serotype 4b isolates, makes it a particularly promising candidate for use in the development of a specific L. monocytogenes serotype 4b diagnostic test.
Collapse
|
4
|
Ronholm J, Wang L, Hayashi I, Sugai M, Zhang Z, Cao X, Lin M. The Listeria monocytogenes serotype 4b autolysin IspC has N-acetylglucosaminidase activity. Glycobiology 2012; 22:1311-20. [DOI: 10.1093/glycob/cws100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
5
|
Actin polymerization drives septation of Listeria monocytogenes namA hydrolase mutants, demonstrating host correction of a bacterial defect. Infect Immun 2011; 79:1458-70. [PMID: 21263016 DOI: 10.1128/iai.01140-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Gram-positive bacterial cell wall presents a structural barrier that requires modification for protein secretion and large-molecule transport as well as for bacterial growth and cell division. The Gram-positive bacterium Listeria monocytogenes adjusts cell wall architecture to promote its survival in diverse environments that include soil and the cytosol of mammalian cells. Here we provide evidence for the enzymatic flexibility of the murein hydrolase NamA and demonstrate that bacterial septation defects associated with a loss of NamA are functionally complemented by physical forces associated with actin polymerization within the host cell cytosol. L. monocytogenes ΔnamA mutants formed long bacterial chains during exponential growth in broth culture; however, normal septation could be restored if mutant cells were cocultured with wild-type L. monocytogenes bacteria or by the addition of exogenous NamA. Surprisingly, ΔnamA mutants were not significantly attenuated for virulence in mice despite the pronounced exponential growth septation defect. The physical force of L. monocytogenes-mediated actin polymerization within the cytosol was sufficient to sever ΔnamA mutant intracellular chains and thereby enable the process of bacterial cell-to-cell spread so critical for L. monocytogenes virulence. The inhibition of actin polymerization by cytochalasin D resulted in extended intracellular bacterial chains for which septation was restored following drug removal. Thus, despite the requirement for NamA for the normal septation of exponentially growing L. monocytogenes cells, the hydrolase is essentially dispensable once L. monocytogenes gains access to the host cell cytosol. This phenomenon represents a notable example of eukaryotic host cell complementation of a bacterial defect.
Collapse
|
6
|
Lo HF, Chou WM, Chen PJ, Lin LL. Influence of signal-peptide truncations on the functional expression of Escherichia coli gamma -glutamyltranspeptidase. J Basic Microbiol 2008; 48:260-8. [PMID: 18720502 DOI: 10.1002/jobm.200700325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The full-length Escherichia coli gamma -glutamyltranspeptidase (EcGGT) gene and five truncations lacking 33, 51, 54, 60, and 78 bp respectively at the 5' end were prepared by polymerase chain reaction and cloned into the expression vector pQE-30. Isopropyl-beta -D-thiogalactopyranoside induction of E. coli M15 cells bearing the recombinant plasmids resulted in the intracellular production of the expressed proteins, EcGGT, EcGGT/DeltaN11, EcGGT/DeltaN17, EcGGT/DeltaN18, EcGGT/DeltaN20, and EcGGT/DeltaN26. The overexpressed enzymes were purified to near homogeneity by Ni(2+)-NTA resin. The specific activity for EcGGT, EcGGT/DeltaN11 and EcGGT/DeltaN17 was 5.3, 4.9, and 4.8 U/mg protein respectively, whereas the rest three enzymes had shown no GGT activity under the enzyme assay conditions. More than 94% of the activity was found in the cytoplasmic fraction of E. coli M15 cells harboring pQE-EcGGT, pQE-EcGGT/DeltaN11 or pQE-EcGGT/DeltaN17. Western blot analysis confirmed that the majority of N-terminally truncated enzymes were present in the cytoplasm.
Collapse
Affiliation(s)
- Huei-Fen Lo
- Department of Food and Nutrition, Hungkuang University, Shalu, Taichung, Taiwan
| | | | | | | |
Collapse
|
7
|
Wang L, Lin M. A novel cell wall-anchored peptidoglycan hydrolase (autolysin), IspC, essential for Listeria monocytogenes virulence: genetic and proteomic analysis. MICROBIOLOGY-SGM 2008; 154:1900-1913. [PMID: 18599819 DOI: 10.1099/mic.0.2007/015172-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have recently concluded that a Listeria monocytogenes 86 kDa immunogenic surface protein, IspC, is a cell wall-anchored peptidoglycan hydrolase (autolysin), capable of degrading the cell wall peptidoglycan of the bacterium itself. To determine if this enzyme has any biological functions and/or plays a role in virulence, we in-frame-deleted the ispC gene from the L. monocytogenes chromosome. This DeltaispC mutant exhibited complete abrogation of expression of IspC and displayed no defects in in vitro growth, colony and microscopic morphologies, or biochemical characteristics. Lack of IspC led to attenuated virulence in mice, evidenced by a significant reduction in bacterial counts in livers and brains and no mortality compared with the wild-type. Furthermore, the data from assays using various eukaryotic cells for adhesion, invasion, actin tail formation, plaque formation and intracellular growth indicated that the mutant was severely attenuated in virulence in a cell culture model in a cell type-dependent manner. The findings that (i) the mutant was impaired for adhesion to certain eukaryotic cells, and (ii) both purified IspC and its C-terminal cell wall-binding domain were capable of binding sheep choroid plexus (SCP) epithelial cells and Vero cells, supported the role of IspC as an adhesin in virulence. The DeltaispC mutant exhibited a marked defect in adhesion to and invasion of SCP cells but not human brain microvascular endothelial cells (HBMEC), suggesting that IspC is necessary for crossing the blood-cerebrospinal fluid barrier. Proteomic and immunological analysis showed a reduced surface expression of some known or putative virulence factors (e.g. ActA, InlC2 and a flagellin homologue, FlaA) due to IspC deficiency. Altogether, this study demonstrates that IspC, expressed as a minor autolysin in vitro, is not important for cell division or separation but is essential for full virulence of L. monocytogenes in vivo.
Collapse
Affiliation(s)
- Linru Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Animal Diseases Research Institute, Ottawa, ON K2H 8P9, Canada
| | - Min Lin
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Animal Diseases Research Institute, Ottawa, ON K2H 8P9, Canada
| |
Collapse
|