1
|
Nastasi MR, Caruso L, Giordano F, Mellini M, Rampioni G, Giuffrè A, Forte E. Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to Pseudomonas aeruginosa Aerobic Respiration. Antioxidants (Basel) 2024; 13:383. [PMID: 38539916 PMCID: PMC10968556 DOI: 10.3390/antiox13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Lorenzo Caruso
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Francesca Giordano
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Marta Mellini
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| |
Collapse
|
2
|
Ruparel FJ, Shah SK, Patel JH, Thakkar NR, Gajera GN, Kothari VO. Network analysis for identifying potential anti-virulence targets from whole transcriptome of Pseudomonas aeruginosa and Staphylococcus aureus exposed to certain anti-pathogenic polyherbal formulations. Drug Target Insights 2023; 17:58-69. [PMID: 37275512 PMCID: PMC10238913 DOI: 10.33393/dti.2022.2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a serious global threat. Identification of novel antibacterial targets is urgently warranted to help antimicrobial drug discovery programs. This study attempted identification of potential targets in two important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods Transcriptomes of P. aeruginosa and S. aureus exposed to two different quorum-modulatory polyherbal formulations were subjected to network analysis to identify the most highly networked differentially expressed genes (hubs) as potential anti-virulence targets. Results Genes associated with denitrification and sulfur metabolism emerged as the most important targets in P. aeruginosa. Increased buildup of nitrite (NO2) in P. aeruginosa culture exposed to the polyherbal formulation Panchvalkal was confirmed through in vitro assay too. Generation of nitrosative stress and inducing sulfur starvation seemed to be effective anti-pathogenic strategies against this notorious gram-negative pathogen. Important targets identified in S. aureus were the transcriptional regulator sarA, immunoglobulin-binding protein Sbi, serine protease SplA, the saeR/S response regulator system, and gamma-hemolysin components hlgB and hlgC. Conclusion Further validation of the potential targets identified in this study is warranted through appropriate in vitro and in vivo assays in model hosts. Such validated targets can prove vital to many antibacterial drug discovery programs globally.
Collapse
Affiliation(s)
- Feny J Ruparel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Siddhi K Shah
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Jhanvi H Patel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Nidhi R Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Gemini N Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Vijay O Kothari
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| |
Collapse
|
3
|
Gajera G, Henriksen N, Cox B, Kothari V. Identification of anti-pathogenic activity among in silico predicted small-molecule inhibitors of Pseudomonas aeruginosa LasR or nitric oxide reductase (NOR). Drug Target Insights 2023; 17:101-109. [PMID: 37811195 PMCID: PMC10551673 DOI: 10.33393/dti.2023.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Antibiotic-resistant Pseudomonas aeruginosa strains cause considerable morbidity and mortality globally. Identification of novel targets in this notorious pathogen is urgently warranted to facilitate discovery of new anti-pathogenic agents against it. This study attempted to identify small-molecule inhibitors of two important proteins LasR and nitric oxide reductase (NOR) in P. aeruginosa. 'Las' system can be said to be the 'master' regulator of quorum sensing in P. aeruginosa, whose receptor protein is LasR. Similarly, NOR is crucial to detoxification of reactive nitrogen species. Methods In silico identification of potential LasR or NOR inhibitors was attempted through a virtual screening platform AtomNet® to obtain a final subset of <100 top scoring compounds. These compounds were evaluated for their in vivo anti-pathogenic activity by challenging the model host Caenorhabditis elegans with P. aeruginosa in the presence or absence of test compounds. Survival of the worm population in 24-well assay plates was monitored over a period of 5 days microscopically. Results Of the 96 predicted LasR inhibitors, 11 exhibited anti-Pseudomonas activity (23%-96% inhibition of bacterial virulence as per third-day end-point) at 25-50 µg/mL. Of the 85 predicted NOR inhibitors, 8 exhibited anti-Pseudomonas activity (40%-85% inhibition of bacterial virulence as per second-day end-point) at 25-50 µg/mL. Conclusion Further investigation on molecular mode of action of compounds found active in this study is warranted. Virtual screening can be said to be a useful tool in narrowing down the list of compounds requiring actual wet-lab screening, saving considerable time and efforts for drug discovery.
Collapse
Affiliation(s)
- Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad - India
| | | | - Bryan Cox
- Atomwise Inc, San Francisco, CA - USA
| | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad - India
| |
Collapse
|
4
|
Ruparel FJ, Shah SK, Patel JH, Thakkar NR, Gajera GN, Kothari VO. Network analysis for identifying potential anti-virulence targets from whole transcriptome of Pseudomonas aeruginosa and Staphylococcus aureus exposed to certain anti-pathogenic polyherbal formulations. Drug Target Insights 2023; 17:58-69. [PMID: 37275512 PMCID: PMC10238913 DOI: 10.33393/dti.2023.2595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 03/07/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a serious global threat. Identification of novel antibacterial targets is urgently warranted to help antimicrobial drug discovery programs. This study attempted identification of potential targets in two important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods Transcriptomes of P. aeruginosa and S. aureus exposed to two different quorum-modulatory polyherbal formulations were subjected to network analysis to identify the most highly networked differentially expressed genes (hubs) as potential anti-virulence targets. Results Genes associated with denitrification and sulfur metabolism emerged as the most important targets in P. aeruginosa. Increased buildup of nitrite (NO2) in P. aeruginosa culture exposed to the polyherbal formulation Panchvalkal was confirmed through in vitro assay too. Generation of nitrosative stress and inducing sulfur starvation seemed to be effective anti-pathogenic strategies against this notorious gram-negative pathogen. Important targets identified in S. aureus were the transcriptional regulator sarA, immunoglobulin-binding protein Sbi, serine protease SplA, the saeR/S response regulator system, and gamma-hemolysin components hlgB and hlgC. Conclusion Further validation of the potential targets identified in this study is warranted through appropriate in vitro and in vivo assays in model hosts. Such validated targets can prove vital to many antibacterial drug discovery programs globally.
Collapse
Affiliation(s)
- Feny J Ruparel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Siddhi K Shah
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Jhanvi H Patel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Nidhi R Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Gemini N Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Vijay O Kothari
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| |
Collapse
|
5
|
Nishida Y, Yanagisawa S, Morita R, Shigematsu H, Shinzawa-Itoh K, Yuki H, Ogasawara S, Shimuta K, Iwamoto T, Nakabayashi C, Matsumura W, Kato H, Gopalasingam C, Nagao T, Qaqorh T, Takahashi Y, Yamazaki S, Kamiya K, Harada R, Mizuno N, Takahashi H, Akeda Y, Ohnishi M, Ishii Y, Kumasaka T, Murata T, Muramoto K, Tosha T, Shiro Y, Honma T, Shigeta Y, Kubo M, Takashima S, Shintani Y. Identifying antibiotics based on structural differences in the conserved allostery from mitochondrial heme-copper oxidases. Nat Commun 2022; 13:7591. [PMID: 36481732 PMCID: PMC9731990 DOI: 10.1038/s41467-022-34771-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global health problem. Despite the enormous efforts made in the last decade, threats from some species, including drug-resistant Neisseria gonorrhoeae, continue to rise and would become untreatable. The development of antibiotics with a different mechanism of action is seriously required. Here, we identified an allosteric inhibitory site buried inside eukaryotic mitochondrial heme-copper oxidases (HCOs), the essential respiratory enzymes for life. The steric conformation around the binding pocket of HCOs is highly conserved among bacteria and eukaryotes, yet the latter has an extra helix. This structural difference in the conserved allostery enabled us to rationally identify bacterial HCO-specific inhibitors: an antibiotic compound against ceftriaxone-resistant Neisseria gonorrhoeae. Molecular dynamics combined with resonance Raman spectroscopy and stopped-flow spectroscopy revealed an allosteric obstruction in the substrate accessing channel as a mechanism of inhibition. Our approach opens fresh avenues in modulating protein functions and broadens our options to overcome AMR.
Collapse
Affiliation(s)
- Yuya Nishida
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | | | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideki Shigematsu
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, Japan
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8; Sayo, Hyogo, Japan
| | | | - Hitomi Yuki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Iwamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | - Chisa Nakabayashi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | - Waka Matsumura
- Graduate School of Science, University of Hyogo, Hyogo, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | | | - Takemasa Nagao
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tasneem Qaqorh
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | - Yusuke Takahashi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Satoru Yamazaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Katsumasa Kamiya
- Center for Basic Education Integrated Learning, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan
| | | | | | | | - Teruki Honma
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Minoru Kubo
- Graduate School of Science, University of Hyogo, Hyogo, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | - Yasunori Shintani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan.
| |
Collapse
|
6
|
DNA Methyltransferase Regulates Nitric Oxide Homeostasis and Virulence in a Chronically Adapted Pseudomonas aeruginosa Strain. mSystems 2022; 7:e0043422. [PMID: 36106744 PMCID: PMC9600465 DOI: 10.1128/msystems.00434-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Opportunistic pathogens such as Pseudomonas aeruginosa adapt their genomes rapidly during chronic infections. Understanding their epigenetic regulation may provide biomarkers for diagnosis and reveal novel regulatory mechanisms. We performed single-molecule real-time sequencing (SMRT-seq) to characterize the methylome of a chronically adapted P. aeruginosa clinical strain, TBCF10839. Two N6-methyladenine (6mA) methylation recognition motifs (RCCANNNNNNNTGAR and TRGANNNNNNTGC [modification sites are in bold]) were identified and predicted as new type I methylation sites using REBASE analysis. We confirmed that the motif TRGANNNNNNTGC was methylated by the methyltransferase (MTase) M.PaeTBCFII, according to methylation sensitivity assays in vivo and vitro. Transcriptomic analysis showed that a ΔpaeTBCFIIM knockout mutant significantly downregulated nitric oxide reductase (NOR) regulation and expression of coding genes such as nosR and norB, which contain methylated motifs in their promoters or coding regions. The ΔpaeTBCFIIM strain exhibited reduced intercellular survival capacity in NO-producing RAW264.7 macrophages and attenuated virulence in a Galleria mellonella infection model; the complemented strain recovered these defective phenotypes. Further phylogenetic analysis demonstrated that homologs of M.PaeTBCFII occur frequently in P. aeruginosa as well as other bacterial species. Our work therefore provided new insights into the relationship between DNA methylation, NO detoxification, and bacterial virulence, laying a foundation for further exploring the molecular mechanism of DNA methyltransferase in regulating the pathogenicity of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen which causes acute and chronic infections that are difficult to treat. Comparative genomic analysis has showed broad genome diversity among P. aeruginosa clinical strains and revealed their different regulatory traits compared to the laboratory strains. While current investigation of the epigenetics of P. aeruginosa is still lacking, understanding epigenetic regulation may provide biomarkers for diagnosis and facilitate development of novel therapies. Denitrification capability is critical for microbial versatility in response to different environmental stress conditions, including the bacterial infection process, where nitric oxide (NO) can be generated by phagocytic cells. The denitrification regulation mechanisms have been studied intensively at genetic and biochemical levels. However, there is very little evidence about the epigenetic regulation of bacterial denitrification mechanism. P. aeruginosa TBCF10839 is a chronically host-adapted strain isolated from a cystic fibrosis (CF) patient with special antiphagocytosis characteristics. Here, we investigated the regulatory effect of an orphan DNA MTase, M.PaeTBCFII, in P. aeruginosa TBCF10839. We demonstrated that the DNA MTase regulates the transcription of denitrification genes represented by NOR and affects antiphagocytic ability in bacteria. In silico analysis suggested that DNA methylation modification may enhance gene expression by affecting the binding of transacting factors such as DNR and RpoN. Our findings not only deepen the understanding of the role of DNA MTase in transcriptional regulation in P. aeruginosa but also provide a theoretical foundation for the in-depth study of the molecular mechanism of the epigenetic regulation on denitrification, virulence, and host-pathogen interaction.
Collapse
|
7
|
Baty JJ, Huffines JT, Stoner SN, Scoffield JA. A Commensal Streptococcus Dysregulates the Pseudomonas aeruginosa Nitrosative Stress Response. Front Cell Infect Microbiol 2022; 12:817336. [PMID: 35619650 PMCID: PMC9127344 DOI: 10.3389/fcimb.2022.817336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infections in the cystic fibrosis (CF) airway are composed of both pathogenic and commensal bacteria. However, chronic Pseudomonas aeruginosa infections are the leading cause of lung deterioration in individuals with CF. Interestingly, oral commensals can translocate to the CF lung and their presence is associated with improved lung function, presumably due to their ability to antagonize P. aeruginosa. We have previously shown that one commensal, Streptococcus parasanguinis, produces hydrogen peroxide that reacts with nitrite to generate reactive nitrogen intermediates (RNI) which inhibit P. aeruginosa growth. In this study, we sought to understand the global impact of commensal-mediated RNI on the P. aeruginosa transcriptome. RNA sequencing analysis revealed that S. parasanguinis and nitrite-mediated RNI dysregulated expression of denitrification genes in a CF isolate of P. aeruginosa compared to when this isolate was only exposed to S. parasanguinis. Further, loss of a nitric oxide reductase subunit (norB) rendered an acute P. aeruginosa isolate more susceptible to S. parasanguinis-mediated RNI. Additionally, S. parasanguinis-mediated RNI inactivated P. aeruginosa aconitase activity. Lastly, we report that P. aeruginosa isolates recovered from CF individuals are uniquely hypersensitive to S. parasanguinis-mediated RNI compared to acute infection or environmental P. aeruginosa isolates. These findings illustrate that S. parasanguinis hinders the ability of P. aeruginosa to respond to RNI, which potentially prevents P. aeruginosa CF isolates from resisting commensal and host-induced RNI in the CF airway.
Collapse
|
8
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
9
|
Kametani Y, Abe T, Yoshizawa K, Shiota Y. Mechanistic study on reduction of nitric oxide to nitrous oxide using a dicopper complex. Dalton Trans 2022; 51:5399-5403. [PMID: 35316312 DOI: 10.1039/d2dt00275b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A density functional theory study was carried out to investigate the reduction mechanisms of NO to N2O using a dicopper complex reported by Zhang and coworkers (J. Am. Chem. Soc., 2019, 141, 10159-10164). The reaction mechanism consists of three steps: N-N bond formation, isomerization of the resultant N2O2 moiety, and cleavage of the N-O bond.
Collapse
Affiliation(s)
- Yohei Kametani
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| | - Tsukasa Abe
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
10
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
11
|
Wan X, Brynildsen MP. Robustness of nitric oxide detoxification to nitrogen starvation in Escherichia coli requires RelA. Free Radic Biol Med 2021; 176:286-297. [PMID: 34624482 DOI: 10.1016/j.freeradbiomed.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023]
Abstract
Reactive nitrogen species and nutrient deprivation are two elements of the immune response used to eliminate pathogens within phagosomes. Concomitantly, pathogenic bacteria have evolved defense systems to cope with phagosomal stressors, which include enzymes that detoxify nitric oxide (•NO) and respond to nutrient scarcity. A deeper understanding of how those defense systems are deployed under adverse conditions that contain key elements of phagosomes will facilitate targeting of those systems for therapeutic purposes. Here we investigated how Escherichia coli detoxifies •NO in the absence of useable nitrogen, because nitrogen availability is limited in phagosomes due to the removal of nitrogenous compounds (e.g., amino acids). We hypothesized that nitrogen starvation would impair •NO detoxification by E. coli because it depresses translation rates and the main E. coli defense enzyme, Hmp, is synthesized in response to •NO. However, we found that E. coli detoxifies •NO at the same rate regardless of whether useable nitrogen was present. We confirmed that the nitrogen in •NO and its autoxidation products could not be used by E. coli under our experimental conditions, and discovered that •NO eliminated differences in carbon and oxygen consumption between nitrogen-replete and nitrogen-starved cultures. Interestingly, E. coli does not consume measurable extracellular nitrogen during •NO stress despite the need to translate defense enzymes. Further, we found that RelA, which responds to uncharged tRNA, was required to observe the robustness of •NO detoxification to nitrogen starvation. These data demonstrate that E. coli is well poised to detoxify •NO in the absence of useable nitrogen and suggest that the stringent response could be a useful target to potentiate the antibacterial activity of •NO.
Collapse
Affiliation(s)
- Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
12
|
Abstract
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
Collapse
Affiliation(s)
- Darshan M Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
13
|
Takeda H, Kimura T, Nomura T, Horitani M, Yokota A, Matsubayashi A, Ishii S, Shiro Y, Kubo M, Tosha T. Timing of NO Binding and Protonation in the Catalytic Reaction of Bacterial Nitric Oxide Reductase as Established by Time-Resolved Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hanae Takeda
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Tetsunari Kimura
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Nomura
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Masaki Horitani
- Department of Applied Biochemistry & Food Science, Saga University, Saga 840-8502, Japan
| | - Azusa Yokota
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Akiko Matsubayashi
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Shoko Ishii
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Takehiko Tosha
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| |
Collapse
|
14
|
Liu H, Xiong X, Zhu T, Zhu Y, Peng Y, Zhu X, Wang J, Chen H, Chen Y, Guo A. Differential nitric oxide induced by Mycobacterium bovis and BCG leading to dendritic cells apoptosis in a caspase dependent manner. Microb Pathog 2020; 149:104303. [PMID: 32504845 DOI: 10.1016/j.micpath.2020.104303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are critical for both innate and adaptive immunity. Meanwhile, nitric oxide (NO) is a member of reactive nitrogen species (RNS) generally considered to play a key role in the bactericidal process in innate immunity against Mycobacterium tuberculosis complex infection. The present study therefore investigated the mechanism of NO production in murine DCs induced by Mycobacterium bovis (M.bovis) and its attenuated strain Bacillus Calmette-Guérin (BCG) infection. The expression of genes Slc7A1, Slc7A2, iNOS, and ArgI essential to NO synthesis was up-regulated in M.bovis/BCG infected DCs. IFN-γ addition further increased, while the iNOS inhibitor L-NMMA significantly inhibited their expression. Accordingly, the end products of arginine metabolism, NO and urea, were found to be significantly increased. In addition, BCG induced significantly higher levels of apoptosis in DCs compared to M.bovis shown by higher levels of DNA fragmentation using flow cytometry and release of mitochondrial Cytochrome C, and up-regulation of the genes caspase-3, caspase-8, caspase-9 and dffa critical to apoptosis by qRT-PCR detection and western blot analysis. Furthermore, IFN-γ increased, but L-NMMA decreased apoptosis of M.bovis/BCG infected DCs. In addition, mycobacterial intracellular survival was significantly reduced by IFN-γ treatment in BCG infected DCs, while slightly increased by L-NMMA treatment. Taken altogether, our data show that NO synthesis was differentially increased and associated with apoptosis in M.bovis/BCG infected DCs. These findings may significantly contribute to elucidate the pathogenesis of M.bovis.
Collapse
Affiliation(s)
- Han Liu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xuekai Xiong
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Tingting Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yifan Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yongchong Peng
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xiaojie Zhu
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Jieru Wang
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Huanchun Chen
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Wijeratne GB, Bhadra M, Siegler MA, Karlin KD. Copper(I) Complex Mediated Nitric Oxide Reductive Coupling: Ligand Hydrogen Bonding Derived Proton Transfer Promotes N 2O (g) Release. J Am Chem Soc 2019; 141:17962-17967. [PMID: 31621325 DOI: 10.1021/jacs.9b07286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A cuprous chelate bearing a secondary sphere hydrogen bonding functionality, [(PV-tmpa)CuI]+, transforms •NO(g) to N2O(g) in high-yields in methanol. Ligand derived proton transfer facilitates N-O bond cleavage of a putative hyponitrite intermediate releasing N2O(g), underscoring the crucial balance between H-bonding capabilities and acidities in (bio)chemical •NO(g) coupling systems.
Collapse
Affiliation(s)
- Gayan B Wijeratne
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Mayukh Bhadra
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kenneth D Karlin
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
16
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
|
18
|
Kato M, Nakagawa S, Tosha T, Shiro Y, Masuda Y, Nakata K, Yagi I. Surface-Enhanced Infrared Absorption Spectroscopy of Bacterial Nitric Oxide Reductase under Electrochemical Control Using a Vibrational Probe of Carbon Monoxide. J Phys Chem Lett 2018; 9:5196-5200. [PMID: 30141632 DOI: 10.1021/acs.jpclett.8b02581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nitric oxide reductases (NORs) reduce nitric oxide to nitrous oxide in the denitrification pathway of the global nitrogen cycle. NORs contain four iron cofactors and the NO reduction occurs at the heme b3/nonheme FeB binuclear active site. The determination of reduction potentials of the iron cofactors will help us elucidate the enzymatic reaction mechanism. However, previous reports on these potentials remain controversial. Herein, we performed electrochemical and surface-enhanced infrared absorption (SEIRA) spectroscopic measurements of Pseudomonas aeruginosa NOR immobilized on gold electrodes. Cyclic voltammograms exhibited two reduction peaks at -0.11 and -0.44 V vs SHE, and a SEIRA spectrum using a vibrational probe of CO showed a characteristic band at 1972 cm-1 at -0.4 V vs SHE, which was assigned to νCO of heme b3-CO. Our results suggest that the reduction of heme b3 initiates the enzymatic NO reduction.
Collapse
Affiliation(s)
- Masaru Kato
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) , National Institute for Materials Science (NIMS) , Tsukuba 305-0044 , Japan
| | | | - Takehiko Tosha
- RIKEN , SPring-8 Center , Kouto, Sayo , Hyogo 679-5148 , Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science , University of Hyogo , Hyogo 678-1297 , Japan
| | | | | | - Ichizo Yagi
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) , National Institute for Materials Science (NIMS) , Tsukuba 305-0044 , Japan
| |
Collapse
|
19
|
Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800155. [PMID: 29756275 PMCID: PMC6159924 DOI: 10.1002/adhm.201800155] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Exogenous nitric oxide (NO) represents an attractive antibacterial agent because of its ability to both disperse and directly kill bacterial biofilms while avoiding resistance. Due to the challenges associated with administering gaseous NO, NO-releasing macromolecular scaffolds are developed to facilitate NO delivery. This progress report describes the rational design and application of NO-releasing macromolecular scaffolds as antibacterial therapeutics. Special consideration is given to the role of the physicochemical properties of the NO storage vehicles on antibacterial or anti-biofilm activity.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Evan S. Feura
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
20
|
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is characterized by its versatility that enables persistent survival under adverse conditions. It can grow on diverse energy sources and readily acquire resistance to antimicrobial agents. As an opportunistic human pathogen, it also causes chronic infections inside the anaerobic mucus airways of cystic fibrosis patients. As a strict respirer, P. aeruginosa can grow by anaerobic nitrate ( [Formula: see text] ) respiration. Nitric oxide (NO) produced as an intermediate during anaerobic respiration exerts many important effects on the biological characteristics of P. aeruginosa. This review provides information regarding (i) how P. aeruginosa grows by anaerobic respiration, (ii) mechanisms by which NO is produced under such growth, and (iii) bacterial adaptation to NO. We also review the clinical relevance of NO in the fitness of P. aeruginosa and the use of NO as a potential therapeutic for treating P. aeruginosa infection.
Collapse
|
21
|
Wijeratne GB, Hematian S, Siegler MA, Karlin KD. Copper(I)/NO (g) Reductive Coupling Producing a trans-Hyponitrite Bridged Dicopper(II) Complex: Redox Reversal Giving Copper(I)/NO (g) Disproportionation. J Am Chem Soc 2017; 139:13276-13279. [PMID: 28820592 PMCID: PMC5630263 DOI: 10.1021/jacs.7b07808] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A copper complex, [CuI(tmpa)(MeCN)]+, effectively reductively couples NO(g) at RT in methanol (MeOH), giving a structurally characterized hyponitrito-dicopper(II) adduct. Hydrogen-bonding from MeOH is critical for the hyponitrite complex formation and stabilization. This complex exhibits the reverse redox process in aprotic solvents, giving CuI + NO(g), leading to CuI-mediated NO(g)-disproportionation. The relationship of this chemistry to biological iron and/or copper mediated NO(g) reductive coupling to give N2O(g) is discussed.
Collapse
Affiliation(s)
| | | | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
22
|
Dynamics of nitric oxide controlled by protein complex in bacterial system. Proc Natl Acad Sci U S A 2017; 114:9888-9893. [PMID: 28847930 DOI: 10.1073/pnas.1621301114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) plays diverse and significant roles in biological processes despite its cytotoxicity, raising the question of how biological systems control the action of NO to minimize its cytotoxicity in cells. As a great example of such a system, we found a possibility that NO-generating nitrite reductase (NiR) forms a complex with NO-decomposing membrane-integrated NO reductase (NOR) to efficiently capture NO immediately after its production by NiR in anaerobic nitrate respiration called denitrification. The 3.2-Å resolution structure of the complex of one NiR functional homodimer and two NOR molecules provides an idea of how these enzymes interact in cells, while the structure may not reflect the one in cells due to the membrane topology. Subsequent all-atom molecular dynamics (MD) simulations of the enzyme complex model in a membrane and structure-guided mutagenesis suggested that a few interenzyme salt bridges and coulombic interactions of NiR with the membrane could stabilize the complex of one NiR homodimer and one NOR molecule and contribute to rapid NO decomposition in cells. The MD trajectories of the NO diffusion in the NiR:NOR complex with the membrane showed that, as a plausible NO transfer mechanism, NO released from NiR rapidly migrates into the membrane, then binds to NOR. These results help us understand the mechanism of the cellular control of the action of cytotoxic NO.
Collapse
|
23
|
Jensen PØ, Kolpen M, Kragh KN, Kühl M. Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response. APMIS 2017; 125:276-288. [PMID: 28407427 DOI: 10.1111/apm.12668] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/14/2023]
Abstract
In vitro studies of Pseudomonas aeruginosa and other pathogenic bacteria in biofilm aggregates have yielded detailed insight into their potential growth modes and metabolic flexibility under exposure to gradients of substrate and electron acceptor. However, the growth pattern of P. aeruginosa in chronic lung infections of cystic fibrosis (CF) patients is very different from what is observed in vitro, for example, in biofilms grown in flow chambers. Dense in vitro biofilms of P. aeruginosa exhibit rapid O2 depletion within <50-100 μm due to their own aerobic metabolism. In contrast, in vivo investigations show that P. aeruginosa persists in the chronically infected CF lung as relatively small cell aggregates that are surrounded by numerous PMNs, where the activity of PMNs is the major cause of O2 depletion rendering the P. aeruginosa aggregates anoxic. High levels of nitrate and nitrite enable P. aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm aggregates. This configuration creates a potentially long-term stable ecological niche for P. aeruginosa in the CF lung, which is largely governed by slow growth and anaerobic metabolism and enables persistence and resilience of this pathogen even under the recurring aggressive antimicrobial treatments of CF patients. As similar slow growth of other CF pathogens has recently been observed in endobronchial secretions, there is now a clear need for better in vitro models that simulate such in vivo growth patterns and anoxic microenvironments in order to help unravel the efficiency of existing or new antimicrobials targeting anaerobic metabolism in P. aeruginosa and other CF pathogens. We also advocate that host immune responses such as PMN-driven O2 depletion play a central role in the formation of anoxic microniches governing bacterial persistence in other chronic infections such as chronic wounds.
Collapse
Affiliation(s)
- Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.,Climate Change Cluster, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
24
|
Robinson JL, Jaslove JM, Murawski AM, Fazen CH, Brynildsen MP. An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa. Metab Eng 2017; 41:67-81. [PMID: 28363762 DOI: 10.1016/j.ymben.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/21/2016] [Accepted: 03/27/2017] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2-) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3-) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO3-→NO2-→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O2, NO2-, and NO3- in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3-, which was relieved upon O2 depletion. As cell growth depleted dissolved O2 levels, NO3- was converted to NO2- at near-stoichiometric levels, whereas NO2- consumption did not coincide with NO or NO3- accumulation. Assimilatory NO2- reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Allison M Murawski
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Christopher H Fazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Chou WK, Brynildsen MP. A biochemical engineering view of the quest for immune-potentiating anti-infectives. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Bhagi-Damodaran A, Petrik I, Lu Y. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities. Isr J Chem 2016; 56:773-790. [PMID: 27994254 PMCID: PMC5161413 DOI: 10.1002/ijch.201600033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In biology, a heme-Cu center in heme-copper oxidases (HCOs) is used to catalyze the four-electron reduction of oxygen to water, while a heme-nonheme diiron center in nitric oxide reductases (NORs) is employed to catalyze the two-electron reduction of nitric oxide to nitrous oxide. Although much progress has been made in biochemical and biophysical studies of HCOs and NORs, structural features responsible for similarities and differences within the two enzymatic systems remain to be understood. Here, we discuss the progress made in the design and characterization of myoglobin-based enzyme models of HCOs and NORs. In particular, we focus on use of these models to understand the structure-function relations between HCOs and NORs, including the role of nonheme metals, conserved amino acids in the active site, heme types and hydrogen-bonding network in tuning enzymatic activities and total turnovers. Insights gained from these studies are summarized and future directions are proposed.
Collapse
Affiliation(s)
| | - Igor Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL. 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL. 61801
| |
Collapse
|
27
|
Ren H, Wu J, Colletta A, Meyerhoff ME, Xi C. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics. Front Microbiol 2016; 7:1260. [PMID: 27582732 PMCID: PMC4988120 DOI: 10.3389/fmicb.2016.01260] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/29/2016] [Indexed: 02/05/2023] Open
Abstract
Fast eradication of mature biofilms is the 'holy grail' in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters.
Collapse
Affiliation(s)
- Hang Ren
- Department of Chemistry, University of Michigan, Ann Arbor, MIUSA
| | - Jianfeng Wu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MIUSA
| | | | | | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MIUSA
| |
Collapse
|
28
|
Toll-Like Receptor 4 Agonistic Antibody Promotes Host Defense against Chronic Pseudomonas aeruginosa Lung Infection in Mice. Infect Immun 2016; 84:1986-1993. [PMID: 27091927 DOI: 10.1128/iai.01384-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic lower respiratory tract infection with Pseudomonas aeruginosa is difficult to treat due to enhanced antibiotic resistance and decreased efficacy of drug delivery to destroyed lung tissue. To determine the potential for restorative immunomodulation therapies, we evaluated the effect of Toll-like receptor 4 (TLR4) stimulation on the host immune response to Pseudomonas infection in mice. We implanted sterile plastic tubes precoated with P. aeruginosa in the bronchi of mice, administered the TLR4/MD2 agonistic monoclonal antibody UT12 intraperitoneally every week, and subsequently analyzed the numbers of viable bacteria and inflammatory cells and the levels of cytokines. We also performed flow cytometry-based phagocytosis and opsonophagocytic killing assays in vitro using UT12-treated murine peritoneal neutrophils. UT12-treated mice showed significantly enhanced bacterial clearance, increased numbers of Ly6G(+) neutrophils, and increased concentrations of macrophage inflammatory protein 2 (MIP-2) in the lungs (P < 0.05). Depletion of CD4(+) T cells eliminated the ability of the UT12 treatment to improve bacterial clearance and promote neutrophil recruitment and MIP-2 production. Additionally, UT12-pretreated peritoneal neutrophils exhibited increased opsonophagocytic killing activity via activation of the serine protease pathway, specifically neutrophil elastase activity, in a TLR4-dependent manner. These data indicated that UT12 administration significantly augmented the innate immune response against chronic bacterial infection, in part by promoting neutrophil recruitment and bactericidal function.
Collapse
|
29
|
Vázquez-Torres A, Bäumler AJ. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol 2015; 29:1-8. [PMID: 26426528 DOI: 10.1016/j.mib.2015.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 01/16/2023]
Abstract
The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4(+), but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome c oxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and -negative pathogens during their associations with invertebrate and vertebrate hosts.
Collapse
Affiliation(s)
- Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States; Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States.
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
30
|
An ensemble-guided approach identifies ClpP as a major regulator of transcript levels in nitric oxide-stressed Escherichia coli. Metab Eng 2015; 31:22-34. [DOI: 10.1016/j.ymben.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/21/2015] [Accepted: 06/15/2015] [Indexed: 11/23/2022]
|
31
|
Chakraborty S, Reed J, Sage JT, Branagan NC, Petrik ID, Miner KD, Hu MY, Zhao J, Alp EE, Lu Y. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies. Inorg Chem 2015; 54:9317-29. [PMID: 26274098 PMCID: PMC4677664 DOI: 10.1021/acs.inorgchem.5b01105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This Forum Article focuses on recent
advances in structural and spectroscopic studies of biosynthetic models
of nitric oxide reductases (NORs). NORs are complex metalloenzymes
found in the denitrification pathway of Earth’s nitrogen cycle
where they catalyze the proton-dependent two-electron reduction of
nitric oxide (NO) to nitrous oxide (N2O). While much progress
has been made in biochemical and biophysical studies of native NORs
and their variants, a clear mechanistic understanding of this important
metalloenzyme related to its function is still elusive. We report
herein UV–vis and nuclear resonance vibrational spectroscopy
(NRVS) studies of mononitrosylated intermediates of the NOR reaction
of a biosynthetic model. The ability to selectively substitute metals
at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation
of analogues of stable reaction intermediates by replacing either
metal with a redox inactive metal. Together with previous structural
and spectroscopic results, we summarize insights gained from studying
these biosynthetic models toward understanding structural features
responsible for the NOR activity and its mechanism. The outlook on
NOR modeling is also discussed, with an emphasis on the design of
models capable of catalytic turnovers designed based on close mimics
of the secondary coordination sphere of native NORs. New insights into nitric oxide reductases (NORs) are obtained. Using
nuclear resonance vibrational spectroscopy, we probe both iron atoms
in mononitrosylated intermediates of the NOR reaction in a biosynthetic
protein model that reveal new insights into the structural and electronic
features responsible for the NOR activity and its likely mechanism.
Collapse
Affiliation(s)
| | | | - J Timothy Sage
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Nicole C Branagan
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - E Ercan Alp
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | | |
Collapse
|
32
|
Backlund CJ, Worley BV, Sergesketter AR, Schoenfisch MH. Kinetic-dependent Killing of Oral Pathogens with Nitric Oxide. J Dent Res 2015; 94:1092-8. [PMID: 26078424 DOI: 10.1177/0022034515589314] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO)-releasing silica nanoparticles were synthesized via the co-condensation of tetramethyl orthosilicate with aminosilanes and subsequent conversion of secondary amines to N-diazeniumdiolate NO donors. A series of ~150 nm NO-releasing particles with different NO totals and release kinetics (i.e., half-lives) were achieved by altering both the identity and mol% composition of the aminosilane precursors. Independent of identical 2 h NO-release totals, enhanced antibacterial action was observed against the periodontopathogens Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis with extended NO-release kinetics at pH 7.4. Negligible bactericidal effect was observed against cariogenic Streptococcus mutans at pH 7.4, even when using NO-releasing silica particles with greater NO-release totals. However, antibacterial activity was observed against S. mutans at lower pH (6.4). This result was attributed to more rapid proton-initiated decomposition of the N-diazeniumdiolate NO donors and greater NO-release payloads. The data suggest a differential sensitivity to NO between cariogenic and periodontopathogenic bacteria with implications for the future development of NO-releasing oral care therapeutics.
Collapse
Affiliation(s)
- C J Backlund
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B V Worley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A R Sergesketter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Lewis AM, Matzdorf SS, Endres JL, Windham IH, Bayles KW, Rice KC. Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Mol Microbiol 2015; 96:651-69. [PMID: 25651868 DOI: 10.1111/mmi.12962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus nitrosative stress resistance is due in part to flavohemoprotein (Hmp). Although hmp is present in all sequenced S. aureus genomes, 37% of analyzed strains also contain nor, encoding a predicted quinol-type nitric oxide (NO) reductase (saNOR). DAF-FM staining of NO-challenged wild-type, nor, hmp and nor hmp mutant biofilms suggested that Hmp may have a greater contribution to intracellular NO detoxification relative to saNOR. However, saNOR still had a significant impact on intracellular NO levels and complemented NO detoxification in a nor hmp mutant. When grown as NO-challenged static (low-oxygen) cultures, hmp and nor hmp mutants both experienced a delay in growth initiation, whereas the nor mutant's ability to initiate growth was comparable with the wild-type strain. However, saNOR contributed to cell respiration in this assay once growth had resumed, as determined by membrane potential and respiratory activity assays. Expression of nor was upregulated during low-oxygen growth and dependent on SrrAB, a two-component system that regulates expression of respiration and nitrosative stress resistance genes. High-level nor promoter activity was also detectable in a cell subpopulation near the biofilm substratum. These results suggest that saNOR contributes to NO-dependent respiration during nitrosative stress, possibly conferring an advantage to nor+ strains in vivo.
Collapse
Affiliation(s)
- A M Lewis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA
| | | | | | | | | | | |
Collapse
|
34
|
Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide. BMC Genomics 2014; 15:1065. [PMID: 25477071 PMCID: PMC4289026 DOI: 10.1186/1471-2164-15-1065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/24/2014] [Indexed: 11/23/2022] Open
Abstract
Background Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. Results We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Conclusions Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1065) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Kuroki M, Igarashi Y, Ishii M, Arai H. Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:792-801. [PMID: 25186017 DOI: 10.1111/1758-2229.12212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Nitrite reductase (NIR) catalyses the reduction of nitrite to nitric oxide (NO) in the denitrification pathway. In Pseudomonas aeruginosa, expression of the gene encoding NIR (nirS) is induced by NO and is under control of the NO-sensing regulator DNR (dissimilatory nitrate respiration regulator). Because DNR is under control of the oxygen-sensing regulator ANR (anaerobic regulator of arginine deiminase and nitrate reductase), nirS is expressed only under low oxygen and anaerobic conditions. Both ANR and DNR are FNR (fumarate and nitrate reductase regulator)-type regulators and recognize the consensus FNR-binding motif. The motif of the nirS promoter is thought to be recognized only by DNR, and not by ANR. Here, mutant strains expressing either ANR or DNR were constructed and used to analyse the role of ANR and DNR in the activation of nirS expression. Analysis of transcriptional activity by microarray and quantitative reverse transcription polymerase chain reaction revealed that nirS is transcribed under low oxygen conditions in an ANR-dependent manner, although the expression level was 10-fold lower than that of the DNR-dependent expression. An artificial promoter containing the FNR-binding motif of the nirS promoter was also twofold upregulated by ANR. These results indicate that low-level expression of NIR in the presence of nitrite may provide NO as a trigger for the full expression of denitrification genes when oxygen is depleted.
Collapse
Affiliation(s)
- Miho Kuroki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
36
|
Kolpen M, Kragh KN, Bjarnsholt T, Line L, Hansen CR, Dalbøge CS, Hansen N, Kühl M, Høiby N, Jensen PØ. Denitrification by cystic fibrosis pathogens - Stenotrophomonas maltophilia is dormant in sputum. Int J Med Microbiol 2014; 305:1-10. [PMID: 25441256 DOI: 10.1016/j.ijmm.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Chronic Pseudomonas aeruginosa lung infection is the most severe complication for cystic fibrosis (CF) patients. Infected endobronchial mucus of CF patients contains anaerobic zones mainly due to the respiratory burst of polymorphonuclear leukocytes. We have recently demonstrated ongoing denitrification in sputum from patients infected with P. aeruginosa. Therefore we aimed to investigate, whether the pathogenicity of several known CF pathogens is correlated to their ability to perform denitrification. METHODS We measured denitrification with N(2)O microsensors in concert with anaerobic growth measurements by absorbance changes and colony counting in isolates from 32 CF patients chronically infected with the highly pathogenic bacteria P. aeruginosa, Achromobacter xylosoxidans, Burkholderia multivorans or the less pathogenic bacterium Stenotrophomonas maltophilia. Consumption of NO(3)(-) and NO(2)(-) was estimated by the Griess Assay. All isolates were assayed during 2 days of incubation in anaerobic LB broth with NO(3)(-) or NO(2)(-). PNA FISH staining of 16S rRNA was used to estimate the amount of ribosomes per bacterial cells and thereby the in situ growth rate of S. maltophilia in sputum. RESULTS Supplemental NO(3)(-) caused increased production of N(2)O by P. aeruginosa, A. xylosoxidans and B. multivorans and increased growth for all pathogens. Growth was, however, lowest for S. maltophilia. NO(3)(-) was metabolized by all pathogens, but only P. aeruginosa was able to remove NO(2)(-). S. maltophilia had limited growth in sputum as seen by the weak PNA FISH staining. CONCLUSIONS All four pathogens were able to grow anaerobically by NO(3)(-) reduction. Denitrification as demonstrated by N(2)O production was, however, not found in S. maltophilia isolates. The ability to perform denitrification may contribute to the pathogenicity of the infectious isolates since complete denitrification promotes faster anaerobic growth. The inability of S. maltophilia to proliferate by denitrification and therefore grow in the anaerobic CF sputum may explain its low pathogenicity in CF patients.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Laura Line
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Christine Rønne Hansen
- Department of Paediatrics, Copenhagen CF Centre, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | - Nana Hansen
- Department of Veterinary Disease Biology, Veterinary Clinical Microbiology, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark; Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
37
|
Kolpen M, Bjarnsholt T, Moser C, Hansen CR, Rickelt LF, Kühl M, Hempel C, Pressler T, Høiby N, Jensen PØ. Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen. Clin Exp Immunol 2014; 177:310-9. [PMID: 24611476 DOI: 10.1111/cei.12318] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 11/30/2022] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) patients is characterized by persisting mucoid biofilms in hypoxic endobronchial mucus. These biofilms are surrounded by numerous polymorphonuclear leucocytes (PMNs), which consume a major part of present molecular oxygen (O(2)) due to production of superoxide (O(2)(-)). In this study, we show that the PMNs also consume O(2) for production of nitric oxide (NO) by the nitric oxide synthases (NOS) in the infected endobronchial mucus. Fresh expectorated sputum samples (n = 28) from chronically infected CF patients (n = 22) were analysed by quantifying and visualizing the NO production. NO production was detected by optode measurements combined with fluorescence microscopy, flow cytometry and spectrophotometry. Inhibition of nitric oxide synthases (NOS) with N(G) -monomethyl-L-arginine (L-NMMA) resulted in reduced O(2) consumption (P < 0·0008, n = 8) and a lower fraction of cells with fluorescence from the NO-indicator 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) (P < 0·002, n = 8). PMNs stained with DAF-FM and the superoxide indicator hydroethidine (HE) and host cells with inducible NOS (iNOS) were identified in the sputum. In addition, the production of the stable end-products of NO in CF sputum was correlated with the concentration of PMNs; NO(3)(-) (P < 0·04, r = 0·66, n = 10) and NO(2)(-) (P< 0·006, r = 0·78, n = 11). The present study suggests that besides consumption of O(2) for production of reactive oxygen species, the PMNs in CF sputum also consume O(2) for production of NO.
Collapse
Affiliation(s)
- M Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Helsingør, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Robinson JL, Adolfsen KJ, Brynildsen MP. Deciphering nitric oxide stress in bacteria with quantitative modeling. Curr Opin Microbiol 2014; 19:16-24. [PMID: 24983704 DOI: 10.1016/j.mib.2014.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/02/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Many pathogens depend on nitric oxide (NO•) detoxification and repair to establish an infection, and inhibitors of these systems are under investigation as next-generation antibiotics. Because of the broad reactivity of NO• and its derivatives with biomolecules, a deep understanding of how pathogens sense and respond to NO•, as an integrated system, has been elusive. Quantitative kinetic modeling has been proposed as a method to enhance analysis and understanding of NO• stress at the systems-level. Here we review the motivation for, current state of, and future prospects of quantitative modeling of NO• stress in bacteria, and suggest that such mathematical approaches would prove equally useful in the study of other broadly reactive antimicrobials, such as hydrogen peroxide (H2O2).
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
39
|
The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to β-lactams, fitness, biofilm growth, and global regulation. Antimicrob Agents Chemother 2014; 58:5084-95. [PMID: 24936599 DOI: 10.1128/aac.02556-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous versatile environmental microorganism with a remarkable ability to grow under diverse environmental conditions. Moreover, P. aeruginosa is responsible for life-threatening infections in immunocompromised and cystic fibrosis patients, as the extraordinary capacity of this pathogen to develop antimicrobial resistance dramatically limits our therapeutic arsenal. Its large genome carries an outstanding number of genes belonging to regulatory systems, including multiple two-component sensor-regulator systems that modulate the response to the different environmental stimuli. Here, we show that one of two systems, designated CreBC (carbon source responsive) and BlrAB (β-lactam resistance), might be of particular relevance. We first identified the stimuli triggering the activation of the CreBC system, which specifically responds to penicillin-binding protein 4 (PBP4) inhibition by certain β-lactam antibiotics. Second, through an analysis of a large comprehensive collection of mutants, we demonstrate an intricate interconnection between the CreBC system, the peptidoglycan recycling pathway, and the expression of the concerning chromosomal β-lactamase AmpC. Third, we show that the CreBC system, and particularly its effector inner membrane protein CreD, plays a major role in bacterial fitness and biofilm development, especially in the presence of subinhibitory concentrations of β-lactams. Finally, global transcriptomics reveals broad regulatory functions of CreBC in basic physiological aspects, particularly anaerobic respiration, in both the presence and absence of antibiotics. Therefore, the CreBC system is envisaged as a potentially interesting target for improving the efficacy of β-lactams against P. aeruginosa infections.
Collapse
|
40
|
Terasaka E, Okada N, Sato N, Sako Y, Shiro Y, Tosha T. Characterization of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus: enzymatic activity and active site structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1019-26. [PMID: 24569054 DOI: 10.1016/j.bbabio.2014.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
Nitric oxide reductase (NOR) catalyzes the reduction of nitric oxide to generate nitrous oxide. We recently reported on the crystal structure of a quinol-dependent NOR (qNOR) from Geobacillus stearothermophilus [Y. Matsumoto, T. Tosha, A.V. Pisliakov, T. Hino, H. Sugimoto, S. Nagano, Y. Sugita and Y. Shiro, Nat. Struct. Mol. Biol. 19 (2012) 238-246], and suggested that a water channel from the cytoplasm, which is not observed in cytochrome c-dependent NOR (cNOR), functions as a pathway transferring catalytic protons. Here, we further investigated the functional and structural properties of qNOR, and compared the findings with those for cNOR. The pH optimum for the enzymatic reaction of qNOR was in the alkaline range, whereas Pseudomonas aeruginosa cNOR showed a higher activity at an acidic pH. The considerably slower reduction rate, and a correlation of the pH dependence for enzymatic activity and the reduction rate suggest that the reduction process is the rate-determining step for the NO reduction by qNOR, while the reduction rate for cNOR was very fast and therefore is unlikely to be the rate-determining step. A close examination of the heme/non-heme iron binuclear center by resonance Raman spectroscopy indicated that qNOR has a more polar environment at the binuclear center compared with cNOR. It is plausible that a water channel enhances the accessibility of the active site to solvent water, creating a more polar environment in qNOR. This structural feature could control certain properties of the active site, such as redox potential, which could explain the different catalytic properties of the two NORs. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Erina Terasaka
- RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan; Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Norihiro Okada
- RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan; Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Nozomi Sato
- RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan; Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshihiko Sako
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan; Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | - Takehiko Tosha
- RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan.
| |
Collapse
|
41
|
Kolpen M, Kühl M, Bjarnsholt T, Moser C, Hansen CR, Liengaard L, Kharazmi A, Pressler T, Høiby N, Jensen PØ. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS One 2014; 9:e84353. [PMID: 24465406 PMCID: PMC3894955 DOI: 10.1371/journal.pone.0084353] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/14/2013] [Indexed: 02/01/2023] Open
Abstract
Chronic lung infection by Pseudomonas aeruginosa is the major severe complication in cystic fibrosis (CF) patients, where P. aeruginosa persists and grows in biofilms in the endobronchial mucus under hypoxic conditions. Numerous polymorphonuclear leukocytes (PMNs) surround the biofilms and create local anoxia by consuming the majority of O2 for production of reactive oxygen species (ROS). We hypothesized that P. aeruginosa acquires energy for growth in anaerobic endobronchial mucus by denitrification, which can be demonstrated by production of nitrous oxide (N2O), an intermediate in the denitrification pathway. We measured N2O and O2 with electrochemical microsensors in 8 freshly expectorated sputum samples from 7 CF patients with chronic P. aeruginosa infection. The concentrations of NO3− and NO2− in sputum were estimated by the Griess reagent. We found a maximum median concentration of 41.8 µM N2O (range 1.4–157.9 µM N2O). The concentration of N2O in the sputum was higher below the oxygenated layers. In 4 samples the N2O concentration increased during the initial 6 h of measurements before decreasing for approximately 6 h. Concomitantly, the concentration of NO3− decreased in sputum during 24 hours of incubation. We demonstrate for the first time production of N2O in clinical material from infected human airways indicating pathogenic metabolism based on denitrification. Therefore, P. aeruginosa may acquire energy for growth by denitrification in anoxic endobronchial mucus in CF patients. Such ability for anaerobic growth may be a hitherto ignored key aspect of chronic P. aeruginosa infections that can inform new strategies for treatment and prevention.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | | | - Lars Liengaard
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Arsalan Kharazmi
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Tanja Pressler
- Copenhagen CF Centre, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
42
|
Andonova M, Urumova V. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa—Review. Comp Immunol Microbiol Infect Dis 2013; 36:433-48. [DOI: 10.1016/j.cimid.2013.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 01/21/2013] [Accepted: 03/30/2013] [Indexed: 01/01/2023]
|
43
|
Hemschemeier A, Casero D, Liu B, Benning C, Pellegrini M, Happe T, Merchant SS. Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia. THE PLANT CELL 2013; 25:3186-211. [PMID: 24014546 PMCID: PMC3809527 DOI: 10.1105/tpc.113.115741] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Anaerobiosis is a stress condition for aerobic organisms and requires extensive acclimation responses. We used RNA-Seq for a whole-genome view of the acclimation of Chlamydomonas reinhardtii to anoxic conditions imposed simultaneously with transfer to the dark. Nearly 1.4 × 10(3) genes were affected by hypoxia. Comparing transcript profiles from early (hypoxic) with those from late (anoxic) time points indicated that cells activate oxidative energy generation pathways before employing fermentation. Probable substrates include amino acids and fatty acids (FAs). Lipid profiling of the C. reinhardtii cells revealed that they degraded FAs but also accumulated triacylglycerols (TAGs). In contrast with N-deprived cells, the TAGs in hypoxic cells were enriched in desaturated FAs, suggesting a distinct pathway for TAG accumulation. To distinguish transcriptional responses dependent on copper response regulator1 (CRR1), which is also involved in hypoxic gene regulation, we compared the transcriptomes of crr1 mutants and complemented strains. In crr1 mutants, ~40 genes were aberrantly regulated, reaffirming the importance of CRR1 for the hypoxic response, but indicating also the contribution of additional signaling strategies to account for the remaining differentially regulated transcripts. Based on transcript patterns and previous results, we conclude that nitric oxide-dependent signaling cascades operate in anoxic C. reinhardtii cells.
Collapse
Affiliation(s)
- Anja Hemschemeier
- Ruhr Universität Bochum, Fakultät für Biologie und Biotechnologie, Arbeitsgruppe Photobiotechnologie, 44801 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Unexpected weak magnetic exchange coupling between haem and non-haem iron in the catalytic site of nitric oxide reductase (NorBC) from Paracoccus denitrificans1. Biochem J 2013; 451:389-94. [DOI: 10.1042/bj20121406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial NOR (nitric oxide reductase) is a major source of the powerful greenhouse gas N2O. NorBC from Paracoccus denitrificans is a heterodimeric multi-haem transmembrane complex. The active site, in NorB, comprises high-spin haem b3 in close proximity with non-haem iron, FeB. In oxidized NorBC, the active site is EPR-silent owing to exchange coupling between FeIII haem b3 and FeBIII (both S=5/2). On the basis of resonance Raman studies [Moënne-Loccoz, Richter, Huang, Wasser, Ghiladi, Karlin and de Vries (2000) J. Am. Chem. Soc. 122, 9344–9345], it has been assumed that the coupling is mediated by an oxo-bridge and subsequent studies have been interpreted on the basis of this model. In the present study we report a VFVT (variable-field variable-temperature) MCD (magnetic circular dichroism) study that determines an isotropic value of J=−1.7 cm−1 for the coupling. This is two orders of magnitude smaller than that encountered for oxo-bridged diferric systems, thus ruling out this configuration. Instead, it is proposed that weak coupling is mediated by a conserved glutamate residue.
Collapse
|
45
|
Role of nitric oxide-detoxifying enzymes in the virulence of Pseudomonas aeruginosa against the silkworm, Bombyx mori. Biosci Biotechnol Biochem 2013; 77:198-200. [PMID: 23291757 DOI: 10.1271/bbb.120656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas aeruginosa has two nitric oxide (NO)-detoxification enzymes, NO reductase and flavohemoglobin, which catalyze the reduction and oxygenation of NO respectively. In this study, the NO reductase-deficient mutant showed decreased virulence against the silkworm Bombyx mori, but the flavohemoglobin-deficient mutant did not, indicating that NO-reduction is important to the full virulence of P. aeruginosa against B. mori.
Collapse
|
46
|
|
47
|
Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 2011; 13:1133-45. [PMID: 21839853 DOI: 10.1016/j.micinf.2011.07.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/05/2023]
Abstract
Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models.
Collapse
|
48
|
Arai H. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Front Microbiol 2011; 2:103. [PMID: 21833336 PMCID: PMC3153056 DOI: 10.3389/fmicb.2011.00103] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO), and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
49
|
Abstract
The cd1 NiRs (nitrite reductases) are enzymes catalysing the reduction of nitrite to NO (nitric oxide) in the bacterial energy conversion denitrification process. These enzymes contain two distinct redox centres: one covalently bound c-haem, which is reduced by external electron donors, and another peculiar porphyrin, the d1-haem (3,8-dioxo-17-acrylate-porphyrindione), where nitrite is reduced to NO. In the present paper, we summarize the most recent results on the mechanism of nitrite reduction by the cd1 NiR from Pseudomonas aeruginosa. We discuss the essential catalytic features of this enzyme, with special attention to the allosteric regulation of the enzyme's activity and to the mechanism employed to avoid product inhibition, i.e. trapping of the active-site reduced haem by the product NO. These results shed light on the reactivity of cd1 NiRs and assign a central role to the unique d1-haem, present only in this class of enzymes.
Collapse
|
50
|
Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y. Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 2010; 330:1666-70. [PMID: 21109633 DOI: 10.1126/science.1195591] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nitric oxide reductase (NOR) is an iron-containing enzyme that catalyzes the reduction of nitric oxide (NO) to generate a major greenhouse gas, nitrous oxide (N(2)O). Here, we report the crystal structure of NOR from Pseudomonas aeruginosa at 2.7 angstrom resolution. The structure reveals details of the catalytic binuclear center. The non-heme iron (Fe(B)) is coordinated by three His and one Glu ligands, but a His-Tyr covalent linkage common in cytochrome oxidases (COX) is absent. This structural characteristic is crucial for NOR reaction. Although the overall structure of NOR is closely related to COX, neither the D- nor K-proton pathway, which connect the COX active center to the intracellular space, was observed. Protons required for the NOR reaction are probably provided from the extracellular side.
Collapse
Affiliation(s)
- Tomoya Hino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|