1
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
2
|
Trezza A, Iovinelli D, Santucci A, Prischi F, Spiga O. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Sci Rep 2020; 10:13866. [PMID: 32807895 PMCID: PMC7431416 DOI: 10.1038/s41598-020-70863-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The virus has rapidly spread in humans, causing the ongoing Coronavirus pandemic. Recent studies have shown that, similarly to SARS-CoV, SARS-CoV-2 utilises the Spike glycoprotein on the envelope to recognise and bind the human receptor ACE2. This event initiates the fusion of viral and host cell membranes and then the viral entry into the host cell. Despite several ongoing clinical studies, there are currently no approved vaccines or drugs that specifically target SARS-CoV-2. Until an effective vaccine is available, repurposing FDA approved drugs could significantly shorten the time and reduce the cost compared to de novo drug discovery. In this study we attempted to overcome the limitation of in silico virtual screening by applying a robust in silico drug repurposing strategy. We combined and integrated docking simulations, with molecular dynamics (MD), Supervised MD (SuMD) and Steered MD (SMD) simulations to identify a Spike protein - ACE2 interaction inhibitor. Our data showed that Simeprevir and Lumacaftor bind the receptor-binding domain of the Spike protein with high affinity and prevent ACE2 interaction.
Collapse
Affiliation(s)
- Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Daniele Iovinelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
3
|
Purslow JA, Khatiwada B, Bayro MJ, Venditti V. NMR Methods for Structural Characterization of Protein-Protein Complexes. Front Mol Biosci 2020; 7:9. [PMID: 32047754 PMCID: PMC6997237 DOI: 10.3389/fmolb.2020.00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/10/2020] [Indexed: 01/21/2023] Open
Abstract
Protein-protein interactions and the complexes thus formed are critical elements in a wide variety of cellular events that require an atomic-level description to understand them in detail. Such complexes typically constitute challenging systems to characterize and drive the development of innovative biophysical methods. NMR spectroscopy techniques can be applied to extract atomic resolution information on the binding interfaces, intermolecular affinity, and binding-induced conformational changes in protein-protein complexes formed in solution, in the cell membrane, and in large macromolecular assemblies. Here we discuss experimental techniques for the characterization of protein-protein complexes in both solution NMR and solid-state NMR spectroscopy. The approaches include solvent paramagnetic relaxation enhancement and chemical shift perturbations (CSPs) for the identification of binding interfaces, and the application of intermolecular nuclear Overhauser effect spectroscopy and residual dipolar couplings to obtain structural constraints of protein-protein complexes in solution. Complementary methods in solid-state NMR are described, with emphasis on the versatility provided by heteronuclear dipolar recoupling to extract intermolecular constraints in differentially labeled protein complexes. The methods described are of particular relevance to the analysis of membrane proteins, such as those involved in signal transduction pathways, since they can potentially be characterized by both solution and solid-state NMR techniques, and thus outline key developments in this frontier of structural biology.
Collapse
Affiliation(s)
- Jeffrey A Purslow
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | | | - Marvin J Bayro
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, IA, United States.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Cicaloni V, Trezza A, Pettini F, Spiga O. Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:534-554. [PMID: 30836920 DOI: 10.2174/1568026619666190304153901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Identification of Protein-Protein Interactions (PPIs) is a major challenge in modern molecular biology and biochemistry research, due to the unquestionable role of proteins in cells, biological process and pathological states. Over the past decade, the PPIs have evolved from being considered a highly challenging field of research to being investigated and examined as targets for pharmacological intervention. OBJECTIVE Comprehension of protein interactions is crucial to known how proteins come together to build signalling pathways, to carry out their functions, or to cause diseases, when deregulated. Multiplicity and great amount of PPIs structures offer a huge number of new and potential targets for the treatment of different diseases. METHODS Computational techniques are becoming predominant in PPIs studies for their effectiveness, flexibility, accuracy and cost. As a matter of fact, there are effective in silico approaches which are able to identify PPIs and PPI site. Such methods for computational target prediction have been developed through molecular descriptors and data-mining procedures. RESULTS In this review, we present different types of interactions between protein-protein and the application of in silico methods for design and development of drugs targeting PPIs. We described computational approaches for the identification of possible targets on protein surface and to detect of stimulator/ inhibitor molecules. CONCLUSION A deeper study of the most recent bioinformatics methodologies for PPIs studies is vital for a better understanding of protein complexes and for discover new potential PPI modulators in therapeutic intervention.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy.,Toscana Life Sciences Foundation, via Fiorentina 1, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Francesco Pettini
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
5
|
Niccolai N, Morandi E, Gardini S, Costabile V, Spadaccini R, Crescenzi O, Picone D, Spiga O, Bernini A. Hot spot mapping of protein surfaces with TEMPOL: Bovine pancreatic RNase A as a model system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:201-207. [PMID: 27890678 DOI: 10.1016/j.bbapap.2016.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
TEMPOL spin-label has been used to identify surface exposure of protein nuclei from NMR analysis of the induced paramagnetic relaxation enhancements (PRE). The absence of linear dependence between atom depths and observed PRE reveals that specific mechanisms drive the approach of the paramagnet to the protein surface. RNase A represents a unique protein system to explore the fine details of the information offered by TEMPOL induced PRE, due to the abundance of previous results, obtained in solution and in the crystal, dealing with surface dynamics behavior of this protein. MD simulations in explicit solvent have been performed, also in the presence of TEMPOL, in order to delineate the role of intermolecular hydrogen bonds (HB) on PRE extents. Comparison of our results with the ones obtained from multiple solvent crystal structure (MSCS) studies yields information on the specificities that these two techniques have for characterizing protein-ligand interactions, a fundamental step in the development of reliable surface druggability predictors.
Collapse
Affiliation(s)
- Neri Niccolai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Edoardo Morandi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Simone Gardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Valentino Costabile
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Roberta Spadaccini
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.
| | - Orlando Crescenzi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy.
| | - Delia Picone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy.
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Andrea Bernini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
| |
Collapse
|
6
|
Squeglia F, Romano M, Ruggiero A, Vitagliano L, De Simone A, Berisio R. Carbohydrate recognition by RpfB from Mycobacterium tuberculosis unveiled by crystallographic and molecular dynamics analyses. Biophys J 2013; 104:2530-9. [PMID: 23746526 PMCID: PMC3672874 DOI: 10.1016/j.bpj.2013.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022] Open
Abstract
Resuscitation of Mtb is crucial to the etiology of Tuberculosis, because latent tuberculosis is estimated to affect one-third of the world population. The resuscitation-promoting factor RpfB is mainly responsible for Mtb resuscitation from dormancy. Given the impact of latent Tuberculosis, RpfB represents an interesting target for tuberculosis drug discovery. However, no molecular models of substrate binding and catalysis are hitherto available for this enzyme. Here, we identified key interactions involved in substrate binding to RpfB by combining x-ray diffraction studies and computational approaches. The crystal structure of RpfB catalytic domain in complex with N,N',N"-triacetyl-chitotriose, as described here, provides the first, to our knowledge, atomic representation of ligand recognition by RpfB and demonstrates that the strongest interactions are established by the N-acetylglucosamine moiety in the central region of the enzyme binding cleft. Molecular dynamics analyses provided information on the dynamic behavior of protein-substrate interactions and on the role played by the solvent in RpfB function. These data combined with sequence conservation analysis suggest that Glu-292 is the sole residue crucial for catalysis, implying that RpfB acts via the formation of an oxocarbenium ion rather than a covalent intermediate. Present data represent a solid base for the design of effective drug inhibitors of RpfB. Moreover, homology models were generated for the catalytic domains of all members of the Mtb Rpf family (RpfA-E). The analysis of these models unveiled analogies and differences among the different members of the Rpf protein family.
Collapse
Key Words
- mtb, mycobacterium tuberculosis
- rpfb, resuscitation promoting factor b
- pdb, protein data bank
- rpfbc, catalytic domain of rpfb
- nag3, n,n',n"-triacetyl-chitotriose
- nag6, hexa-n- acetylchitohexaose
- md, molecular dynamics
- rmsf, root mean-square fluctuation
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
- Department of Chemistry, University of Naples Federico II, Napoli, Italy
| | - Maria Romano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
- Seconda Università di Napoli, Caserta, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, United Kingdom
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| |
Collapse
|
7
|
Zhang J, Qu X, Covarrubias M, Germann MW. Insight into the modulation of Shaw2 Kv channels by general anesthetics: structural and functional studies of S4-S5 linker and S6 C-terminal peptides in micelles by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:595-601. [PMID: 23031574 DOI: 10.1016/j.bbamem.2012.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 12/20/2022]
Abstract
The modulation of the Drosophila Shaw2 Kv channel by 1-alkanols and inhaled anesthetics is correlated with the involvement of the S4-S5 linker and C-terminus of S6, and consistent with stabilization of the channel's closed state. Structural analysis of peptides from S4-S5 (L45) and S6 (S6c), by nuclear magnetic resonance and circular dichroism spectroscopy supports that an α-helical conformation was adopted by L45, while S6c was only in an unstable/dynamic partially folded α-helix in dodecylphosphocholine micelles. Solvent accessibility and paramagnetic probing of L45 revealed that L45 lies parallel to the surface of micelles with charged and polar residues pointing towards the solution while hydrophobic residues are buried inside the micelles. Chemical shift perturbation introduced by 1-butanol on residues Gln320, Thr321, Phe322 and Arg323 of L45, as well as Thr423 and Gln424 of S6c indicates possible anesthetic binding sites on these two important components in the channel activation apparatus. Diffusion measurements confirmed the association of L45, S6c and 1-butanol with micelles which suggests the capability of 1-butanol to influence a possible interaction of L45 and S6c in the micelle environment.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
8
|
Bernini A, Spiga O, Venditti V, Prischi F, Botta M, Croce G, Tong APL, Wong WT, Niccolai N. The use of a ditopic Gd(III) paramagnetic probe for investigating α-bungarotoxin surface accessibility. J Inorg Biochem 2012; 112:25-31. [DOI: 10.1016/j.jinorgbio.2012.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 03/02/2012] [Accepted: 03/03/2012] [Indexed: 01/06/2023]
|
9
|
Bernini A, Spiga O, Consonni R, Arosio I, Fusi P, Cirri S, Guagliardi A, Niccolai N. Hydration studies on the archaeal protein Sso7d using NMR measurements and MD simulations. BMC STRUCTURAL BIOLOGY 2011; 11:44. [PMID: 22017970 PMCID: PMC3207888 DOI: 10.1186/1472-6807-11-44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/21/2011] [Indexed: 11/25/2022]
Abstract
Background How proteins approach surrounding molecules is fundamental to our understanding of the specific interactions that occur at the surface of proteins. The enhanced surface accessibility of small molecules such as organic solvents and paramagnetic probes to protein binding sites has been observed; however, the molecular basis of this finding has not been fully established. Recently, it has been suggested that hydration dynamics play a predominant role in controlling the distribution of hot spots on surface of proteins. Results In the present study, the hydration of the archaeal multifunctional protein Sso7d from Solfolobus solfataricus was investigated using a combination of computational and experimental data derived from molecular dynamics simulations and ePHOGSY NMR spectroscopy. Conclusions We obtained a convergent protein hydration landscape that indicated how the shape and stability of the Sso7d hydration shell could modulate the function of the protein. The DNA binding domain overlaps with the protein region involved in chaperon activity and this domain is hydrated only in a very small central region. This localized hydration seems to favor intermolecular approaches from a large variety of ligands. Conversely, high water density was found in surface regions of the protein where the ATP binding site is located, suggesting that surface water molecules play a role in protecting the protein from unspecific interactions.
Collapse
Affiliation(s)
- Andrea Bernini
- Dipartimento di Biotecnologie, Università degli Studi di Siena, via Fiorentina 1, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Stable nitroxyl radicals are important tools in chemistry, biophysics, biology, and materials science. Their stability and the sensitivity of their EPR spectra to the local environment make them valuable molecular probes. This review seeks to give an overview of the developments in the field of nitroxide spin probes and their various applications, with the main focus on the pH-sensitive imidazoline nitroxide family.
Collapse
Affiliation(s)
- Evelyn Zottler
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
11
|
Franzmann M, Otzen D, Wimmer R. Quantitative Use of Paramagnetic Relaxation Enhancements for Determining Orientations and Insertion Depths of Peptides in Micelles. Chembiochem 2009; 10:2339-47. [DOI: 10.1002/cbic.200900347] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Bernini A, Venditti V, Spiga O, Ciutti A, Prischi F, Consonni R, Zetta L, Arosio I, Fusi P, Guagliardi A, Niccolai N. NMR studies on the surface accessibility of the archaeal protein Sso7d by using TEMPOL and Gd(III)(DTPA-BMA) as paramagnetic probes. Biophys Chem 2008; 137:71-5. [DOI: 10.1016/j.bpc.2008.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/27/2022]
|
13
|
Venditti V, Niccolai N, Butcher SE. Measuring the dynamic surface accessibility of RNA with the small paramagnetic molecule TEMPOL. Nucleic Acids Res 2007; 36:e20. [PMID: 18056080 PMCID: PMC2275091 DOI: 10.1093/nar/gkm1062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The surface accessibility of macromolecules plays a key role in modulating molecular recognition events. RNA is a complex and dynamic molecule involved in many aspects of gene expression. However, there are few experimental methods available to measure the accessible surface of RNA. Here, we investigate the accessible surface of RNA using NMR and the small paramagnetic molecule TEMPOL. We investigated two RNAs with known structures, one that is extremely stable and one that is dynamic. For helical regions, the TEMPOL probing data correlate well with the predicted RNA surface, and the method is able to distinguish subtle variations in atom depths, such as the relative accessibility of pyrimidine versus purine aromatic carbon atoms. Dynamic motions are also detected by TEMPOL probing, and the method accurately reports a previously characterized pH-dependent conformational transition involving formation of a protonated C-A pair and base flipping. Some loop regions are observed to exhibit anomalously high accessibility, reflective of motions that are not evident within the ensemble of NMR structures. We conclude that TEMPOL probing can provide valuable insights into the surface accessibility and dynamics of RNA, and can also be used as an independent means of validating RNA structure and dynamics in solution.
Collapse
Affiliation(s)
- Vincenzo Venditti
- Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Università di Siena, via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|