1
|
Awda BJ, Mahoney IV, Pettitt M, Imran M, Katselis GS, Buhr MM. Existence and importance of Na +K +-ATPase in the plasma membrane of boar spermatozoa. Can J Physiol Pharmacol 2024; 102:254-269. [PMID: 38029410 DOI: 10.1139/cjpp-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Sodium-potassium-ATPase (Na+K+-ATPase), a target to treat congestive heart failure, is the only known receptor for cardiac glycosides implicated in intracellular signaling and additionally functions enzymatically in ion transport. Spermatozoa need transmembrane ion transport and signaling to fertilize, and Na+K+-ATPase is identified here for the first time in boar spermatozoa. Head plasma membrane (HPM) isolated from boar spermatozoa was confirmed pure by marker enzymes acid and alkaline phosphatase (218 ± 23% and 245 ± 38% enrichment, respectively, versus whole spermatozoa). Western immunoblotting detected α and β subunits (isoforms α1, α3, β1, β2, and β3) in different concentrations in whole spermatozoa and HPM. Immunofluorescence of intact sperm only detected α3 on the post-equatorial exterior membrane; methanol-permeabilized sperm also had α3 post-equatorially and other isoforms on the acrosomal ridge and cap. Mass spectrometry confirmed the presence of all isoforms in HPM. Incubating boar sperm in capacitating media to induce the physiological changes preceding fertilization significantly increased the percentage of capacitated sperm compared to 0 h control (33.0 ± 2.6% vs. 19.2 ± 2.6% capacitated sperm, respectively; p = 0.014) and altered the β2 immunofluorescence pattern. These results demonstrate the presence of Na+K+-ATPase in boar sperm HPM and that it changes during capacitation.
Collapse
Affiliation(s)
- Basim J Awda
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Ian V Mahoney
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
| | - Murray Pettitt
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Muhammad Imran
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - George S Katselis
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Mary M Buhr
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
2
|
Cornelius F, Kanai R, Toyoshima C. A structural view on the functional importance of the sugar moiety and steroid hydroxyls of cardiotonic steroids in binding to Na,K-ATPase. J Biol Chem 2013; 288:6602-16. [PMID: 23341448 DOI: 10.1074/jbc.m112.442137] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na,K-ATPase is specifically inhibited by cardiotonic steroids (CTSs) like digoxin and is of significant therapeutic value in the treatment of congestive heart failure and arrhythmia. Recently, new interest has arisen in developing Na,K-ATPase inhibitors as anticancer agents. In the present study, we compare the potency and rate of inhibition as well as the reactivation of enzyme activity following inhibition by various cardiac glycosides and their aglycones at different pH values using shark Na,K-ATPase stabilized in the E2MgPi or in the E2BeFx conformations. The effects of the number and nature of various sugar residues as well as changes in the positions of hydroxyl groups on the β-side of the steroid core of cardiotonic steroids were investigated by comparing various cardiac glycoside compounds like ouabain, digoxin, digitoxin, and gitoxin with their aglycones. The results confirm our previous hypothesis that CTS binds primarily to the E2-P ground state through an extracellular access channel and that binding of extracellular Na(+) ions to K(+) binding sites relieved the CTS inhibition. This reactivation depended on the presence or absence of the sugar moiety on the CTS, and a single sugar is enough to impede reactivation. Finally, increasing the number of hydroxyl groups of the steroid was sterically unfavorable and was found to decrease the inhibitory potency and to confer high pH sensitivity, depending on their position on the steroid β-face. The results are discussed with reference to the recent crystal structures of Na,K-ATPase in the unbound and ouabain-bound states.
Collapse
Affiliation(s)
- Flemming Cornelius
- Department of Biomedicine, University of Aarhus, Ole Worms Allé 6, Building 1180, 8000 Aarhus C 8000, Denmark.
| | | | | |
Collapse
|
3
|
Cornelius F, Mahmmoud YA. Interaction between Cardiotonic Steroids and Na,K-ATPase. Effects of pH and Ouabain-Induced Changes in Enzyme Conformation. Biochemistry 2009; 48:10056-65. [DOI: 10.1021/bi901212r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Flemming Cornelius
- Department of Physiology and Biophysics, University of Aarhus, Ole Worms Allé 1185, 8000 Aarhus C, Denmark
| | - Yasser A. Mahmmoud
- Department of Physiology and Biophysics, University of Aarhus, Ole Worms Allé 1185, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
De Pont JJHHM, Swarts HGP, Karawajczyk A, Schaftenaar G, Willems PHGM, Koenderink JB. The non-gastric H,K-ATPase as a tool to study the ouabain-binding site in Na,K-ATPase. Pflugers Arch 2008; 457:623-34. [DOI: 10.1007/s00424-008-0467-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
|