1
|
Park J, Kwak CH, Ha SH, Kwon KM, Abekura F, Cho SH, Chang YC, Lee YC, Ha KT, Chung TW, Kim CH. Ganglioside GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 264.7 macrophage cells through NF-κB, AP-1, and MAPKs signaling. J Cell Biochem 2017; 119:1173-1182. [PMID: 28708322 DOI: 10.1002/jcb.26287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023]
Abstract
Gangliosides are known to specifically inhibit vascular leukocyte recruitment and consequent interaction with the injured endothelium, the basic inflammatory process. In this study, we have found that the production of nitric oxide (NO), a main regulator of inflammation, is suppressed by GM3 on murine macrophage RAW 264.7 cells, when induced by LPS. In addition, GM3 attenuated the increase in cyclooxyenase-2 (COX-2) protein and mRNA levels in lipopolysaccharide (LPS)-activated RAW 264.7 cells in a dose-dependent manner. Moreover, GM3 inhibited the expression and release of pro-inflammatory cytokines of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in RAW 264.7 macrophages. At the intracellular level, GM3 inhibited LPS-induced nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein (AP)-1 in RAW 264.7 macrophages. We, therefore, investigated whether GM3 affects mitogen-activated protein kinase (MAPK) phosphorylation, a process known as the upstream signaling regulator. GM3 dramatically reduced the expression levels of the phosphorylated forms of ERK, JNK, and p38 in LPS-activated RAW 264.7 cells. These results indicate that GM3 is a promising suppressor of the vascular inflammatory responses and ganglioside GM3 suppresses the LPS-induced inflammatory response in RAW 264.7 macrophages by suppression of NF-κB, AP-1, and MAPKs signaling. Accordingly, GM3 is suggested as a beneficial agent for the treatment of diseases that are associated with inflammation.
Collapse
Affiliation(s)
- Junyoung Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea.,Research Institute, Davinch-K Co., Ltd, Geumcheon-Gu, Seoul, Republic of Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Saha-Gu, Busan, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| |
Collapse
|
2
|
Glycohydrolases β-hexosaminidase and β-galactosidase are associated with lipid microdomains of Jurkat T-lymphocytes. Biochimie 2012; 94:684-94. [DOI: 10.1016/j.biochi.2011.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
|
3
|
GM3 Upregulation of matrix metalloproteinase-9 possibly through PI3K, AKT, RICTOR, RHOGDI-2, and TNF-A pathways in mouse melanoma B16 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:335-48. [PMID: 21618116 DOI: 10.1007/978-1-4419-7877-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Zhang L, Wang Y, Wang L, Cao T, Hyuga S, Sato T, Wu Y, Yamagata S, Yamagata T. Ganglioside GD1a negatively regulates hepatocyte growth factor expression through caveolin-1 at the transcriptional level in murine osteosarcoma cells. Biochim Biophys Acta Gen Subj 2011; 1810:759-68. [DOI: 10.1016/j.bbagen.2011.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/10/2011] [Accepted: 04/20/2011] [Indexed: 01/24/2023]
|
5
|
Wang P, Xu S, Wang Y, Wu P, Zhang J, Sato T, Yamagata S, Yamagata T. GM3 suppresses anchorage-independent growth via Rho GDP dissociation inhibitor beta in melanoma B16 cells. Cancer Sci 2011; 102:1476-85. [PMID: 21518140 DOI: 10.1111/j.1349-7006.2011.01963.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Ly-GDI, Rho GTPase dissociation inhibitor beta, was found to be expressed parallel to the GM3 level in mouse B16 cells whose GM3 contents were modified by B4galt6 sense, B4galt6 antisense cDNA, or St3galt5 siRNA transfection. Ly-GDI expression was increased on GM3 addition to these cells and decreased with D-PDMP treatment, a glucosylceramide synthesis inhibitor. Suppression of GM3 or Ly-GDI by RNAi was concomitantly associated with an increase in anchorage-independent growth in soft agar. These results clearly indicate that GM3 suppresses anchorage-independent growth through Ly-GDI. GM3 signals regulating Ly-GDI expression was inhibited by LY294002, siRNA against Akt1 and Akt2 and rapamycin, showing that GM3 signals are transduced via the PI3K/Akt/mTOR pathway. Either siRNA towards Rictor or Raptor suppressed Ly-GDI expression. The Raptor siRNA suppressed the effects of GM3 on Ly-GDI expression and Akt phosphorylation at Thr(308) , suggesting GM3 signals to be transduced to mTOR-Raptor and Akt-Thr(308) , leading to Ly-GDI stimulation. siRNA targeting Pdpk1 reduced Akt phosphorylation at Thr(308) and rendered the cells insensitive to GM3 stimulation, indicating that Akt-Thr(308) plays a critical role in the pathway. The components aligned in this pathway showed similar effects on anchorage-independent growth as GM3 and Ly-GDI. Taken together, GM3 signals are transduced in B16 cells through PI3K, Pdpk1, Akt(Thr308) and the mTOR/Raptor pathway, leading to enhanced expression of Ly-GDI mRNA, which in turn suppresses anchorage-independent growth in melanoma B16 cells.
Collapse
Affiliation(s)
- Pu Wang
- Laboratory of Tumor Biology and Glycobiology, Department of Life Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Patwardhan GA, Liu YY. Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res 2011; 50:104-14. [PMID: 20970453 PMCID: PMC3012148 DOI: 10.1016/j.plipres.2010.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
Abstract
Sphingolipids including glycosphingolipids have myriad effects on cell functions and affect cancer in aspects of tumorigenesis, metastasis and tumor response to treatments. Bioactive ones like ceramide, sphingosine 1-phosphate and globotriaosylceramide initiate and process cellular signaling to alter cell behaviors immediately responding to oncogenic stress or treatment challenges. Recent studies pinpoint that sphingolipid-mediated gene expression has long and profound impacts on cancer cells, and these play crucial roles in tumor progression and in treatment outcome. More than 10 sphingolipids and glycosphingolipids selectively mediate expressions of approximately 50 genes including c-myc, p21, c-fos, telomerase reverse transcriptase, caspase-9, Bcl-x, cyclooxygenase-2, matrix metalloproteinases, integrins, Oct-4, glucosylceramide synthase and multidrug-resistant gene 1. By diverse functions of these genes, sphingolipids enduringly affect cellular processes of mitosis, apoptosis, migration, stemness of cancer stem cells and cellular resistance to therapies. Mechanistic studies indicate that sphingolipids regulate particular gene expression by modulating phosphorylation and acetylation of proteins that serve as transcription factors (β-catenin, Sp1), repressor of transcription (histone H3), and regulators (SRp30a) in RNA splicing. Disclosing molecular mechanisms by which sphingolipids selectively regulate particular gene expression, instead of other relevant ones, requires understanding of the exact roles of individual lipid instead of a group, the signaling pathways that are implicated in and interaction with proteins or other lipids in details. These studies not only expand our knowledge of sphingolipids, but can also suggest novel targets for cancer treatments.
Collapse
Affiliation(s)
| | - Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| |
Collapse
|
7
|
Kuan CT, Chang J, Mansson JE, Li J, Pegram C, Fredman P, McLendon RE, Bigner DD. Multiple phenotypic changes in mice after knockout of the B3gnt5 gene, encoding Lc3 synthase--a key enzyme in lacto-neolacto ganglioside synthesis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:114. [PMID: 21087515 PMCID: PMC2998480 DOI: 10.1186/1471-213x-10-114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 11/18/2010] [Indexed: 01/21/2023]
Abstract
BACKGROUND Ganglioside biosynthesis occurs through a multi-enzymatic pathway which at the lactosylceramide step is branched into several biosynthetic series. Lc3 synthase utilizes a variety of galactose-terminated glycolipids as acceptors by establishing a glycosidic bond in the beta-1,3-linkage to GlcNaAc to extend the lacto- and neolacto-series gangliosides. In order to examine the lacto-series ganglioside functions in mice, we used gene knockout technology to generate Lc3 synthase gene B3gnt5-deficient mice by two different strategies and compared the phenotypes of the two null mouse groups with each other and with their wild-type counterparts. RESULTS B3gnt5 gene knockout mutant mice appeared normal in the embryonic stage and, if they survived delivery, remained normal during early life. However, about 9% developed early-stage growth retardation, 11% died postnatally in less than 2 months, and adults tended to die in 5-15 months, demonstrating splenomegaly and notably enlarged lymph nodes. Without lacto-neolacto series gangliosides, both homozygous and heterozygous mice gradually displayed fur loss or obesity, and breeding mice demonstrated reproductive defects. Furthermore, B3gnt5 gene knockout disrupted the functional integrity of B cells, as manifested by a decrease in B-cell numbers in the spleen, germinal center disappearance, and less efficiency to proliferate in hybridoma fusion. CONCLUSIONS These novel results demonstrate unequivocally that lacto-neolacto series gangliosides are essential to multiple physiological functions, especially the control of reproductive output, and spleen B-cell abnormality. We also report the generation of anti-IgG response against the lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1.
Collapse
Affiliation(s)
- Chien-Tsun Kuan
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Prokazova NV, Samovilova NN, Gracheva EV, Golovanova NK. Ganglioside GM3 and its biological functions. BIOCHEMISTRY (MOSCOW) 2009; 74:235-49. [PMID: 19364317 DOI: 10.1134/s0006297909030018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolism, topology, and possible mechanisms for regulation of the ganglioside GM3 content in the cell are reviewed. Under consideration are biological functions of GM3, such as involvement in cell differentiation, proliferation, oncogenesis, and apoptosis.
Collapse
Affiliation(s)
- N V Prokazova
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Russian Ministry of Health, 121552 Moscow, Russia.
| | | | | | | |
Collapse
|
9
|
Kroczynska B, Kaur S, Platanias LC. Growth suppressive cytokines and the AKT/mTOR pathway. Cytokine 2009; 48:138-43. [PMID: 19682919 DOI: 10.1016/j.cyto.2009.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/06/2009] [Indexed: 11/29/2022]
Abstract
The mTOR signaling pathway plays a very important role in the transmission of signals for initiation of mRNA translation and protein expression in mammalian cells. mTOR activates various downstream effectors to promote initiation of cap-dependent mRNA translation and mediate pro-mitogenic and pro-survival signals. Recent evidence has implicated effectors of this signaling cascade in mRNA translation for interferon stimulated genes (ISGs). In addition, it was recently shown that AKT/mTOR-mediated signals play important roles in the generation of IFN-dependent antiviral and growth inhibitory responses, suggesting that mTOR and its effectors can mediate diverse biological responses, depending on the cellular context and the triggering stimuli. In this review, the regulatory effects of various growth suppressive cytokines on the mTOR pathway are summarized and the emerging new functions of mTOR are discussed.
Collapse
Affiliation(s)
- Barbara Kroczynska
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, 303 East Superior Street, Lurie 3-107, Chicago, IL 60611, USA
| | | | | |
Collapse
|
10
|
Wang L, Wang Y, Sato T, Yamagata S, Yamagata T. Ganglioside GD1a suppresses TNFalpha expression via Pkn1 at the transcriptional level in mouse osteosarcoma-derived FBJ cells. Biochem Biophys Res Commun 2008; 371:230-5. [PMID: 18435913 DOI: 10.1016/j.bbrc.2008.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 11/29/2022]
Abstract
Ganglioside GD1a has been reported to suppress metastasis [S. Hyuga, S. Yamagata, Y. Takatsu, M. Hyuga, H. Nakanishi, K. Furukawa, T. Yamagata, Suppression of FBJ-LL cell adhesion to vitronectin by ganglioside GD1a and loss of metastatic capacity, International J. Cancer. 83 (1999) 685-691.] and MMP-9 production in mouse osteosarcoma FBJ cells [D. Hu, Z. Man, P. Wang, X. Tan, X. Wang, S. Takaku, S. Hyuga, T. Sato, X. Yao, S. Yamagata, T. Yamagata, Ganglioside GD1a negatively regulates MMP9 expression in mouse FBJ cell lines at the transcriptional level, Connect. Tissue Res. 48 (2007) 198-205.]. In the present study, TNFalpha increased cell motility and MMP-9 and TNFalpha expression at the transcriptional level. TNFalpha expression was found to be inversely proportional to GD1a content in the FBJ-cell variants. The addition of exogenous GD1a to FBJ-LL cells suppressed TNFalpha expression, and treatment of FBJ-S1 cells with D-PDMP (glucosylceramide synthesis inhibitor) led to an increase in TNFalpha, indicating that TNFalpha is negatively regulated by GD1a in FBJ cells. SiRNA of Pkn1, a Rho-GTPase effecter protein kinase, suppressed TNFalpha levels as well as Pkn1 expression, suggesting that Pkn1 is involved in TNFalpha signaling. Treatment of Pkn1-silenced FBJ-LL cells with GD1a failed to suppress TNFalpha expression, demonstrating that GD1a signals that lead to TNFalpha suppression are transduced through Pkn1.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Tumor Biology and Glycobiology, Department of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, PO Box 29, 103 WenHua Road, Shenyang, LiaoNing 110016, People's Republic of China
| | | | | | | | | |
Collapse
|