1
|
Li T, Liu X, Ruan X, Dong W, Liu Y, Wang P, Liu L, Tiange E, Song J, Pan A, Xue Y. A novel peptide P1-121aa encoded by STK24P1 regulates vasculogenic mimicry via ELF2 phosphorylation in glioblastoma. Exp Neurol 2023; 367:114477. [PMID: 37406957 DOI: 10.1016/j.expneurol.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. Vasculogenic mimicry (VM) is a hematological system composed of tumor cells that exert blood perfusion without relying on vascular endothelial cells. The current poor results of anti-vascular therapy for clinical GBM are associated with the presence of VM; therefore, it is important to investigate VM formation in GBM. Our results demonstrate that STK24P1 encodes P1-121aa with a kinase structural domain, and in vitro kinase assays demonstrated that P1-121aa mediates modification of ELF2 phosphorylation. ChIP and dual luciferase reporter gene assays demonstrated that the transcription factor ELF2 binds to VE-cadherin and the VEGFR2 promoter region, thereby promoting VM formation in glioma cells. P1-121aa, encoded by the pseudogene STK24P1, phosphorylates ELF2 at S107, increasing the stability of the ELF2 protein. ELF2 promotes VEGFR2 and VE-cadherin expression at the transcriptional level, which in turn promotes VM in GBM. This study demonstrates the important roles of STK24P1, P1-121aa, and ELF2 in regulating VM in GBM, which could provide potential targets for GBM treatment.
Collapse
Affiliation(s)
- Tianyun Li
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - XueLei Ruan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunhui Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Wang
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - E Tiange
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jian Song
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Aini Pan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
2
|
Shakya A, Liu P, Godek J, McKee NW, Dodson M, Anandhan A, Ooi A, Garcia JGN, Costa M, Chapman E, Zhang DD. The NRF2-p97-NRF2 negative feedback loop. Redox Biol 2023; 65:102839. [PMID: 37573837 PMCID: PMC10428046 DOI: 10.1016/j.redox.2023.102839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
p97 is a ubiquitin-targeted ATP-dependent segregase that regulates proteostasis, in addition to a variety of other cellular functions. Previously, we demonstrated that p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex, facilitating proteasomal destruction. In the current study, we identified p97 as an NRF2-target gene that contains a functional ARE, indicating the presence of an NRF2-p97-NRF2 negative feedback loop that maintains redox homeostasis. Using CRISPR/Cas9 genome editing, we generated endogenous p97 ARE-mutated BEAS-2B cell lines. These p97 ARE-mutated cell lines exhibit altered expression of p97 and NRF2, as well as a compromised response to NRF2 inducers. Importantly, we also found a positive correlation between NRF2 activation and p97 expression in human cancer patients. Finally, using chronic arsenic-transformed cell lines, we demonstrated a synergistic effect of NRF2 and p97 inhibition in killing cancer cells with high NRF2 and p97 expression. Our study suggests dual upregulation of NRF2 and p97 occurs in certain types of cancers, suggesting that inhibition of both NRF2 and p97 could be a promising treatment strategy for stratified cancer patients.
Collapse
Affiliation(s)
- Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jack Godek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nicholas W McKee
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Joe G N Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, FL, 33458, USA
| | - Max Costa
- Departments of Environmental Medicine, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10010, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Yang Y, Chen Q, Piao HY, Wang B, Zhu GQ, Chen EB, Xiao K, Zhou ZJ, Shi GM, Shi YH, Wu WZ, Fan J, Zhou J, Dai Z. HNRNPAB-regulated lncRNA-ELF209 inhibits the malignancy of hepatocellular carcinoma. Int J Cancer 2020; 146:169-180. [PMID: 31090062 DOI: 10.1002/ijc.32409] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/20/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
Our previous study demonstrated that heterogeneous nuclear ribonucleoprotein AB (HNRNPAB) is a key gene that facilitates metastasis of hepatocellular carcinoma (HCC). However, the molecular mechanisms behind this relationship are not fully understood. In our study, we utilized long-noncoding RNA (lncRNA) microarrays to identify a HNRNPAB-regulated lncRNA named lnc-ELF209. Our findings from chromatin immunoprecipitation assays indicate that HNRNPAB represses lnc-ELF209 transcription by directly binding to its promoter region. We also analyzed clinical samples from HCC patients and cell lines with quantitative real-time polymerase chain reactions, RNA in situ hybridization and immunohistochemistry, and found that there is a negative relationship between HNRNPAB and lnc-ELF209 expression. Up/downregulation assays and rescue assays indicate that lnc-ELF209 inhibits cell migration, invasion and epithelial-mesenchymal transition regulated by HNRNPAB. This suggests a new regulatory mechanism for HNRNPAB-promoted HCC progression. RNA pull-down and LC-MS/MS were used to determine triosephosphate isomerase, heat shock protein 90-beta and vimentin may be involved in the tumor-suppressed function of lnc-ELF209. Furthermore, we found lnc-ELF209 could stabilize TPI protein expression. We also found that lnc-ELF209 overexpression in HCCLM3 cell resulted in a lower rate of lung metastatic, which suggested a less aggressive HCC phenotype. Collectively, these findings offer new insights into the regulatory mechanisms that underlie HNRNPAB cancer-promoting activities and demonstrate that lnc-ELF209 is a HNRNPAB-regulated lncRNA that may play an important role in the inhibition of HCC progression.
Collapse
Affiliation(s)
- Yi Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Qing Chen
- Department of General Surgery, Zhongshan Hospital (South), Fudan University, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hai-Yan Piao
- Medical Oncology Department of Gastrointestinal cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Er-Bao Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Kun Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Zheng-Jun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| |
Collapse
|
4
|
Quiroz JQ, Torres AC, Ramirez LM, Garcia MS, Gomez GC, Rojas J. Optimization of the Microwave-Assisted Extraction Process of Bioactive Compounds from Annatto Seeds ( Bixa orellana L.). Antioxidants (Basel) 2019; 8:antiox8020037. [PMID: 30736339 PMCID: PMC6406707 DOI: 10.3390/antiox8020037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
This study deals with the extraction, optimization, and evaluation of the antioxidant and antimicrobial activities of bioactive compounds obtained from the seeds of annatto using microwave-assisted extraction as compared to leaching. Annatto seeds were subjected to a microwave treatment of 2450 MHz and power of 700 watts using a response surface design involving four factors: pH (4–11), solvent concentration (ethanol) (50–96%), solvent-to-seed ratio (2–10), and microwave exposure time (0–5 min). The contents of polyphenol compounds and bixin were taken as response variables. Subsequently, the antioxidant and antimicrobial activities were assessed at the optimal processing conditions predicted by the experimental design. Microwaves, solvent concentration, and the solvent-to-seed ratio showed a statistically significant effect for the extraction of polyphenol compounds and bixin. Thus, microwaves accelerated the extraction of those compounds and the slight increase in temperature caused some degradation of the polyphenol compounds. The microwave-assisted extraction increased the contents of polyphenols and bixin along with their antioxidant activity as compared to leaching extraction. However, this technique does not significantly improve the antimicrobial activity against Bacillus cereus and Staphylococcus aureus.
Collapse
Affiliation(s)
- Julian Q Quiroz
- College of Pharmaceutical and Food Sciences, University of Antioquia, Calle 67 No. 53-108, University campus, Medellín 050010, Colombia.
| | - Angélica C Torres
- College of Pharmaceutical and Food Sciences, University of Antioquia, Calle 67 No. 53-108, University campus, Medellín 050010, Colombia.
| | - Luisa M Ramirez
- College of Pharmaceutical and Food Sciences, University of Antioquia, Calle 67 No. 53-108, University campus, Medellín 050010, Colombia.
| | - Mariluz S Garcia
- Institute of Food Science and Technology (INTAL), Cra. 50g #12S-91, Itagüi 055412, Colombia.
| | - Gelmy C Gomez
- College of Pharmaceutical and Food Sciences, University of Antioquia, Calle 67 No. 53-108, University campus, Medellín 050010, Colombia.
| | - John Rojas
- College of Pharmaceutical and Food Sciences, University of Antioquia, Calle 67 No. 53-108, University campus, Medellín 050010, Colombia.
| |
Collapse
|
5
|
Duscharla D, Reddy Kami Reddy K, Dasari C, Bhukya S, Ummanni R. Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol 2018; 233:7148-7164. [PMID: 29693262 DOI: 10.1002/jcp.26639] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Though Androgen deprivation therapy (ADT) is effective initially, numerous patients become resistant to it and develop castration resistant PCa (CRPC). Cytokines promotes ligand independent activation of AR. Interleukin-6 (IL-6) levels are elevated in CRPC patients and regulate AR activity. However, progression to CRPC is not fully understood. In this study, we analyzed differential protein expression in LNCaP cells treated with IL-6 using proteomics. Results revealed altered expression of 27 proteins and Valosin-containing protein (VCP)/p97 plays a predominant role in co-regulation of altered proteins. Interestingly, IL-6 induced VCP expression through Pim-1 via STAT3 is AR independent there by suggesting a role for VCP in CRPC. Transfection of LNCaP cells for VCP overexpression showed an increased cell proliferation, migration, and invasion where as its inhibition by NMS-873 showed the reverse effect causing cell death. Mechanistic studies demonstrate that cell death occurs due to apoptosis by endoplasmic reticulum (ER) stress, elevated cell cycle inhibitors p21, p27kip1, and active PARP and reduced Bcl-2. VCP promotes cell invasion and migration by altering E-cadherin and Vimentin levels inversely triggering EMT of PCa cells. VCP immunostaining revealed no staining in BPH but strong staining in PCa. This study determines VCP may play an important role in progression to CRPC and it can be a favorable target with to develop new therapies to treat ADT resistant prostate cancer.
Collapse
Affiliation(s)
- Divya Duscharla
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Reddy Kami Reddy
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Supriya Bhukya
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Ramesh Ummanni
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
6
|
Suico MA, Shuto T, Kai H. Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 2018; 9:168-177. [PMID: 27932483 PMCID: PMC5907832 DOI: 10.1093/jmcb/mjw051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
7
|
ChIP-on-chip analysis of thyroid hormone-regulated genes and their physiological significance. Oncotarget 2017; 7:22448-59. [PMID: 26968954 PMCID: PMC5008372 DOI: 10.18632/oncotarget.7988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Triiodothyronine (T3) and its receptor (TR) modulate several physiological processes, including cell development, proliferation, differentiation and metabolism. The regulatory mechanism of T3/TR involves binding to the thyroid hormone response element (TRE) within the target gene promoter. However, the number of target genes directly regulated by TRα1 and the specific pathways of TR-regulated target genes remain largely unknown. Here, we expressed TRα1 in a HepG2 cell line and used chromatin immunoprecipitation coupled with microarray to determine the genes that are directly regulated by TRα1 and also involved in cell metabolism and proliferation. Our analysis identified E74-like factor 2 (ELF2), a transcription factor associated with tumor growth, as a direct target downregulated by T3/TR. Overexpression of ELF2 enhanced tumor cell proliferation, and conversely, its knockdown suppressed tumor growth. Additionally, ELF2 restored the proliferative ability of hepatoma cells inhibited by T3/TR. Our findings collectively support a potential role of T3/TR in tumor growth inhibition through regulation of ELF2.
Collapse
|
8
|
Guan FHX, Bailey CG, Metierre C, O'Young P, Gao D, Khoo TL, Holst J, Rasko JEJ. The antiproliferative ELF2 isoform, ELF2B, induces apoptosis in vitro and perturbs early lymphocytic development in vivo. J Hematol Oncol 2017; 10:75. [PMID: 28351373 PMCID: PMC5371273 DOI: 10.1186/s13045-017-0446-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background ELF2 (E74-like factor 2) also known as NERF (new Ets-related factor), a member of the Ets family of transcription factors, regulates genes important in B and T cell development, cell cycle progression, and angiogenesis. Conserved ELF2 isoforms, ELF2A, and ELF2B, arising from alternative promoter usage can exert opposing effects on target gene expression. ELF2A activates, whilst ELF2B represses, gene expression, and the balance of expression between these isoforms may be important in maintaining normal cellular function. Methods We compared the function of ELF2 isoforms ELF2A and ELF2B with other ELF subfamily proteins ELF1 and ELF4 in primary and cancer cell lines using proliferation, colony-forming, cell cycle, and apoptosis assays. We further examined the role of ELF2 isoforms in haemopoietic development using a Rag1-/-murine bone marrow reconstitution model. Results ELF2B overexpression significantly reduced cell proliferation and clonogenic capacity, minimally disrupted cell cycle kinetics, and induced apoptosis. In contrast, ELF2A overexpression only marginally reduced clonogenic capacity with little effect on proliferation, cell cycle progression, or apoptosis. Deletion of the N-terminal 19 amino acids unique to ELF2B abrogated the antiproliferative and proapoptotic functions of ELF2B thereby confirming its crucial role. Mice expressing Elf2a or Elf2b in haemopoietic cells variously displayed perturbations in the pre-B cell stage and multiple stages of T cell development. Mature B cells, T cells, and myeloid cells in steady state were unaffected, suggesting that the main role of ELF2 is restricted to the early development of B and T cells and that compensatory mechanisms exist. No differences in B and T cell development were observed between ELF2 isoforms. Conclusions We conclude that ELF2 isoforms are important regulators of cellular proliferation, cell cycle progression, and apoptosis. In respect to this, ELF2B acts in a dominant negative fashion compared to ELF2A and as a putative tumour suppressor gene. Given that these cellular processes are critical during haemopoiesis, we propose that the regulatory interplay between ELF2 isoforms contributes substantially to early B and T cell development. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0446-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fiona H X Guan
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Cynthia Metierre
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Patrick O'Young
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dadi Gao
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Teh Liane Khoo
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia. .,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
9
|
Zhang J, Hou W, Jia J, Zhao Y, Zhao B. MiR-409-3p regulates cell proliferation and tumor growth by targeting E74-like factor 2 in osteosarcoma. FEBS Open Bio 2017; 7:348-357. [PMID: 28286730 PMCID: PMC5337891 DOI: 10.1002/2211-5463.12177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/15/2016] [Accepted: 12/02/2016] [Indexed: 11/08/2022] Open
Abstract
Recent evidence has shown that miR‐409‐3p was down‐regulated in several types of cancer, including osteosarcoma. However, the potential role of miR‐409‐3p in osteosarcoma remains largely unknown. In the present study, we showed that overexpression of miR‐409‐3p in osteosarcoma cells inhibited cell proliferation in vitro and suppressed tumor growth in vivo, and the restoration of miR‐409‐3p promoted G1/S cell cycle arrest and induced cell apoptosis. Additionally, E74‐like factor 2 (ELF2) was recognized as a new target of miR‐409‐3p by dual‐luciferase reporter assay. Restoration of ELF2 rescued the inhibitory effect of miR‐409‐3p on cell proliferation in osteosarcoma cells. Moreover, ELF2 was up‐regulated in osteosarcoma tissues and negatively associated with miR‐409‐3p levels. Taken together, our findings collectively indicate that miR‐409‐3p may be a tumor suppressor in osteosarcoma and may serve as a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopaedics The First Affiliated Hospital of Xinxiang Medical College Weihui Henan China
| | - Wengen Hou
- Department of Orthopaedics The First Affiliated Hospital of Xinxiang Medical College Weihui Henan China
| | - Jinling Jia
- Department of Orthopaedics The First Affiliated Hospital of Xinxiang Medical College Weihui Henan China
| | - Yilei Zhao
- Department of Orthopaedics The First Affiliated Hospital of Xinxiang Medical College Weihui Henan China
| | - Bin Zhao
- Department of Orthopaedics The First Affiliated Hospital of Xinxiang Medical College Weihui Henan China
| |
Collapse
|
10
|
Moreira-Filho CA, Bando SY, Bertonha FB, Iamashita P, Silva FN, Costa LDF, Silva AV, Castro LHM, Wen HT. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures. PLoS One 2015; 10:e0128174. [PMID: 26011637 PMCID: PMC4444281 DOI: 10.1371/journal.pone.0128174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery.
Collapse
Affiliation(s)
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Luiz Henrique Martins Castro
- Department of Neurology, FMUSP, São Paulo, SP, Brazil
- Clinical Neurology Division, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Fessart D, Marza E, Taouji S, Delom F, Chevet E. P97/CDC-48: proteostasis control in tumor cell biology. Cancer Lett 2013; 337:26-34. [PMID: 23726843 DOI: 10.1016/j.canlet.2013.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 12/17/2022]
Abstract
P97/CDC-48 is a prominent member of a highly evolutionary conserved Walker cassette - containing AAA+ATPases. It has been involved in numerous cellular processes ranging from the control of protein homeostasis to membrane trafficking through the intervention of specific accessory proteins. Expression of p97/CDC-48 in cancers has been correlated with tumor aggressiveness and prognosis, however the precise underlying molecular mechanisms remain to be characterized. Moreover p97/CDC-48 inhibitors were developed and are currently under intense investigation as anticancer drugs. Herein, we discuss the role of p97/CDC-48 in cancer development and its therapeutic potential in tumor cell biology.
Collapse
|
12
|
Dai J, Wang X, Chen Y, Wang X, Zhu J, Lu L. Expression quantitative trait loci and genetic regulatory network analysis reveals that Gabra2 is involved in stress responses in the mouse. Stress 2009; 12:499-506. [PMID: 19212922 DOI: 10.3109/10253890802666112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies have revealed that the subunit alpha 2 (Gabra2) of the gamma-aminobutyric acid receptor plays a critical role in the stress response. However, little is known about the gentetic regulatory network for Gabra2 and the stress response. We combined gene expression microarray analysis and quantitative trait loci (QTL) mapping to characterize the genetic regulatory network for Gabra2 expression in the hippocampus of BXD recombinant inbred (RI) mice. Our analysis found that the expression level of Gabra2 exhibited much variation in the hippocampus across the BXD RI strains and between the parental strains, C57BL/6J, and DBA/2J. Expression QTL (eQTL) mapping showed three microarray probe sets of Gabra2 to have highly significant linkage likelihood ratio statistic (LRS) scores. Gene co-regulatory network analysis showed that 10 genes, including Gria3, Chka, Drd3, Homer1, Grik2, Odz4, Prkag2, Grm5, Gabrb1, and Nlgn1 are directly or indirectly associated with stress responses. Eleven genes were implicated as Gabra2 downstream genes through mapping joint modulation. The genetical genomics approach demonstrates the importance and the potential power of the eQTL studies in identifying genetic regulatory networks that contribute to complex traits, such as stress responses.
Collapse
Affiliation(s)
- Jiajuan Dai
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Braun RJ, Zischka H. Mechanisms of Cdc48/VCP-mediated cell death — from yeast apoptosis to human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1418-35. [DOI: 10.1016/j.bbamcr.2008.01.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
14
|
Qiu Y, Morii E, Zhang B, Tomita Y, Aozasa K. E74-like factor 2 transactivates valosin-containing protein gene, a gene involved in cancer growth. Exp Mol Pathol 2008; 84:226-9. [DOI: 10.1016/j.yexmp.2008.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/02/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
|